Playing with Fire: Pre-Electoral Fiscal Manipulation and the Risk of a Speculative Attack

BENJAMIN NYBLADE

University of British Columbia

AND

ANGELA O’MAHONY

RAND Corporation

Conventional wisdom holds that pre-electoral fiscal manipulation is pervasive and goes unpunished by voters in developing countries. However, elections are increasingly conducted on an international stage, and in a global economy in which speculative currency attacks are an increasingly common and costly feature, punishment for pre-electoral fiscal manipulation may stem from international financial markets in the form of a run on the currency. We argue that governments are unlikely to engage in pre-electoral fiscal manipulation when the risk of a speculative attack is high. In particular, when the exchange rate is fixed, governments are less likely to engage in fiscal electioneering when their real exchange rate is highly appreciated or when their foreign exchange reserves are low. In contrast, under a flexible exchange rate, neither a country’s real exchange rate nor its reserves affects governments’ decision to engage in fiscal manipulation. This argument receives support through a quantitative analysis of government budget balances in 97 developing countries from 1975 to 2005.

July 2013
Forthcoming in International Studies Quarterly

Authors’ Note: We thank Nathan Allen, Alan Jacobs, Lisa Sundstrom, Stefanie Walter, participants at the 2010 IPES conference and 2011 ECPR Joint Sessions in St. Gallen, as well as the editor and anonymous reviewers at ISQ for providing comments and suggestions on earlier versions of this article. Data, replication materials and an online appendix are available at both Nyblade’s website, http://faculty.arts.ubc.ca/bnyblade/, and O’Mahony’s website, http://angelaomahony.wordpress.com/.
Governments are more likely to be reelected in economic good times. Pre-electoral fiscal manipulation—spending more or taxing less prior to an election—is a powerful policy tool that governments may employ to increase the strength of the economy in the run up to an election. Recent studies have found that pre-electoral fiscal manipulation is a pervasive phenomenon in developing countries, suggesting that in these countries the likelihood that fiscal manipulation will be punished electorally is low and governments’ desire to remain in office is high (Brender and Drazen 2005; Shi and Svensson 2006). However, despite widespread recognition of the impact of the international environment on developing countries’ fiscal policies, little attention has been paid to how developing countries’ international economic ties constrain governments’ decision to engage in fiscal manipulation.

In a global economy in which speculative currency attacks are an increasingly common and costly feature, punishment for pre-electoral fiscal manipulation may stem from international financial markets in the form of a run on the currency. We argue that governments in developing countries are less likely to engage in pre-electoral fiscal manipulation when their country is at risk of a speculative attack. In particular, countries that maintain fixed exchange rates are vulnerable to speculative currency attacks, with the risk of an attack increasing as their real exchange rate appreciates or their foreign exchange reserves decline. ¹ As a result, we expect that under a fixed exchange rate governments engage in less fiscal manipulation when their real exchange rate is highly appreciated or their foreign exchange reserves are low. In contrast, because flexible

¹ A country’s real exchange rate is appreciated when the nominal value of the country’s currency is relatively greater than that indicated by the country’s purchasing power; i.e., the country’s nominal exchange rate is overvalued.
exchange rate regimes do not face the same risk of a speculative attack, under a flexible exchange rate neither a country’s real exchange rate nor its level of reserves should affect governments’ decision to engage in fiscal electioneering in the same manner. This argument is tested in this article and receives support through a time-series cross-sectional quantitative analysis of government budget balances in 97 developing countries from 1975 to 2005.

The results demonstrate that the constraining effect of countries’ international economic ties is an important factor mediating when governments choose to manipulate the economy in order to enhance their chances for reelection. This is consistent with a broader literature suggesting that many governments in developing countries face substantial credibility problems domestically (Keefer 2007) and internationally (Wibbels 2006), and that fixing the exchange rate alone, like other imperfect solutions to commitment problems such as central bank independence, may be inadequate to reassure market actors (Bodea 2010). This article also substantially qualifies the expectation from existing scholarship that fixed exchange rates necessarily provide greater opportunity for government fiscal expansion (Frieden 1991; Clark and Hallerberg 2000). Indeed, the analyses presented here suggest that for developing countries, pre-electoral fiscal expansion is on average greater in countries with flexible exchange rates.

More broadly, this paper contributes to a growing literature devoted to the internationalization of elections. While traditional scholarship has focused on democratic elections as purely domestic events in which governments, parties and politicians are selected by their citizens, in recent years scholars have noted that elections are increasingly conducted on the international stage, which may both empower and
constrain governments (see Kayser 2007). In recent years, scholars have focused particularly on the extent to which voters distinguish and account for domestic and international sources of their countries’ economic performance in their voting behavior (e.g. Hellwig 2001; Hellwig and Samuels 2007; Kayser and Peress 2012). However, as this article demonstrates, it is not only voters that face increased challenges in a globalized world. Governments seeking re-election risk playing with fire if they engage in pre-electoral fiscal manipulation too aggressively; they risk being burned by a speculative attack on their currency in the global financial markets.

Argument

Previous research has found that pre-electoral fiscal manipulation is widely employed prior to democratically contested elections in developing countries. Explanations for why incumbents are so likely to engage in fiscal electioneering focus on domestic characteristics, and scholars have shown that fiscal manipulation is more likely the less consolidated the democracy (Gonzalez 2002), the less transparent the political system (Alt and Lassen 2006), the less independent the media (Brender 2003), the less aware the voters (Brender and Drazen 2005), the larger the benefits from holding office (Shi and Svensson 2006), and the poorer the country (Schuknecht 2000). These studies suggest that the high cost of losing office coupled with low levels of oversight create an environment in which fiscal manipulation is a highly-demanded, relatively effective, low-risk strategy for increasing governments’ chances for reelection in developing countries.

This economic literature comports well with comparative politics studies of political systems in developing countries. Developing countries tend to have weak,
volatile party systems in which neither voters nor politicians exhibit strong party affiliations (Mainwaring 1999). Low partisan attachment increases electoral volatility, increasing governments’ uncertainty about their reelection chances. This uncertainty is exacerbated by governments’ inability to rely on parties or parties’ platforms to attract voters (Keefer 2007). As a result, governments in developing countries are dependent on voters’ retrospective judgments to win reelection, and have a strong demand to engage in fiscal electioneering (Lewis-Beck and Stegmaier 2008). Governments’ desire to engage in fiscal manipulation is coupled with their low probability of getting ‘caught’ manipulating the economy, as democracies in developing countries tend to be weakly institutionalized with low levels of transparency, making it difficult to observe economic manipulation (Rose and Shin 2001). Even if manipulation were observed, it is less likely that voters would find out. As Djankov et al (2003) find, media are highly likely to be controlled by the state in developing countries, and hence, are unlikely to expose government electioneering. Thus, the domestic political environment in which democratically contested elections are held in developing countries increases governments’ desire and capacity to engage in fiscal manipulation. However, governments in developing countries are subject not only to domestic political pressures, but to international economic pressures as well.

Analyses of pre-electoral fiscal manipulation in developed countries have examined how countries’ exchange rate ties affect governments’ decision to engage in fiscal electioneering. Clark and Hallerberg (2000) argue that governments only engage in fiscal expansion under a fixed exchange rate. In contrast, O’Mahony (2011) finds evidence of fiscal manipulation in developed countries under both fixed and flexible
exchange rate regimes, but argues that governments’ decision to engage in fiscal
electioneering depends on their trade openness. For both studies, governments’ decision
to engage in fiscal manipulation reflects the efficacy of fiscal electioneering in increasing
governments’ likelihood of reelection. Their analyses do not consider whether fiscal
manipulation undermines the perceived sustainability of a country’s exchange rate peg.
This omission may reflect developed countries’ room for maneuver, at least in the short
term. However, as Wibbels (2006) notes, “developing nations are much more constrained
by global markets than their wealthy counterparts.”

We argue that in developing countries, governments must consider whether fiscal
manipulation will trigger a speculative attack on their country’s currency. Countries that
maintain fixed exchange rates are vulnerable to speculative currency attacks. Speculative
attacks occur when market actors believe that governments cannot or will not
successfully defend the fixed value of their currency (as modeled in Krugman 1979),
something that may be called into question by expansionary fiscal policy, which typically
leads to a substantial appreciation in a country’s real exchange rate (Bénétrix and Lane
1997). During a speculative attack, speculators sell the country’s currency, lowering
demand for the currency and increasing pressure on the government to abandon its
exchange rate peg and devalue its exchange rate.

Abandoning an exchange rate peg can be very costly. Economically, exchange
rate devaluation increases the cost of imports, puts upward pressure on inflation,
increases countries’ foreign debt burden, and erodes economic growth. These costs occur

\[2\] Our argument may be applicable to developed countries in certain circumstances; however, given the expected differences in developed and developing countries’ room to
maneuver, we have kept the focus of this paper on developing countries.
under both fixed and flexible exchange rates. However, because an abandoned peg almost invariably results in an overshooting of the exchange rate, the magnitude and economic cost of a forced devaluation under a fixed exchange rate is much larger than generally occurs under a flexible exchange rate.

Devaluation under a fixed exchange rate entails greater political costs, as well. An abandoned peg is tantamount to a broken promise and a tacit admission of deteriorating economic conditions, and causes an erosion of public support for the government (Sattler and Walter 2010). The political costliness of abandoning an exchange rate peg becomes more acute as elections approach. All else equal, governments that devalue their exchange rate in the run-up to an election are almost twice as likely to lose office (Cooper 1971, Frankel 2005). As a result, governments attempt to postpone exchange rate devaluations until after elections (Stein and Streb 2004).

The argument developed in this article suggests that governments engage in pre-electoral fiscal manipulation differently under fixed and flexible exchange rates. For governments under fixed exchange rates, the attractiveness of fiscal manipulation as a tool for improving governments’ chances of reelection is offset by the increased risk of a speculative attack. When the exchange rate is fixed, governments only engage in fiscal manipulation when the risk of a speculative attack is low. In contrast, when the exchange rate is flexible, governments do not face the same risk of a speculative attack. As a result, if the only difference in governments’ decision to engage in pre-electoral fiscal manipulation is the risk of a speculative attack, then we should expect more pre-electoral fiscal manipulation under flexible exchange regimes than under fixed exchange regimes.

3 The political costs of devaluation under a flexible exchange rate are much lower because it is generally not perceived as a comparable reneging on a policy commitment.
This suggests Hypothesis 1:

Hypothesis 1: *Pre-electoral fiscal manipulation is lower under fixed exchange rates than under flexible exchange rates.*

This hypothesis is opposite the expectations of Clark and Hallerberg (2000). Based on the Mundell-Fleming model, Clark and Hallerberg (2000) argue that when capital is perfectly mobile internationally, fiscal electioneering is ineffective under a flexible exchange rate, and thus expect no fiscal manipulation under a flexible exchange rate. However, if capital is viewed as partially rather than fully mobile, exchange rate flexibility would not render fiscal manipulation fully ineffective but would reduce its effectiveness. If so, then governments in developing countries might actually engage in more manipulation under a flexible exchange rate to accomplish the same improvement in their chances for reelection. This is an alternative mechanism that would also lead to results consistent with Hypothesis 1.

The argument developed in this paper focuses on the importance of the risk of speculative attacks. This generates additional observable implications that we explore in more detail below. If the differential effectiveness of fiscal policy under fixed and flexible exchange rates explains the presence of greater fiscal manipulation under a flexible exchange rate, our subsequent hypotheses, which focus on the effect of additional factors influencing the risk of a speculative attack, should receive no support.

Not all fixed exchange rate regimes face the same risk of a speculative attack, and not all speculative attacks are successful. Governments can choose to defend their
exchange rate peg by substantially raising interest rates and selling foreign-exchange reserves. Defending an exchange rate peg entails tightening monetary policy, weakening economic growth and investment, increasing unemployment, and eroding public support for the government. As a result, governments’ chances for reelection should decline in the face of a speculative attack, even if the government successfully defends its exchange rate peg. However, for governments that can successfully defend their currency against a speculative attack, an exchange rate defense appears less costly than a devaluation prior to an election (Walter 2009; Leblang 2003). While a successful defense may be the lesser of two evils, the better option for a government seeking reelection is to avoid a speculative attack.

What increases the likelihood of a speculative attack? In an analysis of over eighty papers assessing macroeconomic indicators of financial crises, Frankel and Saravelos (2012) find that low monetary reserves and real exchange rate appreciation are the two most reliable indicators of international financial market pressure on exchange rates. These findings are corroborated in their own empirical analyses in which an appreciated real exchange rate and low reserves are consistently associated with exchange rate crises. These empirical analyses of leading indicators comport well with macroeconomic and political economic explanations for speculative attacks. Speculative attacks occur when market actors believe that governments cannot or will not maintain the fixed value of their currency. Highly appreciated real exchange rates and low monetary reserves call into question governments’ ability and desire to defend their exchange rate pegs.

When a country’s real exchange rate is highly appreciated, market actors judge
that the real value of the country’s currency is less than the currency’s nominal value. The larger the differential between real and nominal exchange rates, the greater the potential arbitrage opportunity available to speculators. Moreover, governments’ commitment to maintaining their peg is called into question as market actors’ interpret perceived inconsistencies between governments’ chosen macroeconomic policies and those required to maintain a fixed exchange rate as a signal that the government may be unwilling to bear the economic costs associated with an exchange rate defense. Market uncertainty about the government’s commitment to its exchange rate is exacerbated prior to an election as governments’ time horizons shorten.

In an analysis of speculative attacks in ninety developing countries, Leblang (2003) finds that governments are most likely to defend the value of their currency prior to an election, and argues that governments’ greater commitment to their exchange rate peg reduces the likelihood of a pre-electoral speculative attack. If so, then governments may have less reason to worry about speculative attacks prior to an election. However, this argument considers only the likelihood of defense all else equal. It does not take into account the impact of government policies that would reduce the sustainability of the exchange rate peg on the likelihood of a speculative attack. As we discuss below, for countries with a highly appreciated real exchange rate, pre-electoral fiscal manipulation constitutes a policy that may be perceived as inconsistent with maintaining an exchange rate peg. When financial markets anticipate that governments are unable or unwilling to maintain the peg, the likelihood of a pre-electoral speculative attack should increase (Krugman 1979).

Increasing government expenditure is associated with real exchange rate
appreciation. Because governments disproportionately purchase goods and services produced at home, higher government expenditures increase the price of non-tradables vis-à-vis tradables, causing an appreciation of the real exchange rate. Empirical analyses of both developed and developing countries have estimated that a 1 percentage point increase in government expenditures is associated with a 1.5 to 3 percentage point appreciation in a country’s real exchange rate (Froot and Rogoff 1991; De Gregorio, Giovannini and Wolf 1994; Ricci, Milesi-Ferretti and Lee 2008; Galstyan and Lane 2009), an effect that appears to be larger in countries with fixed exchange rates (Beetsma, Giuliodori, and Klaassen 2007; Bénétrix and Lane 2009). As a result, for countries with a fixed exchange rate, pre-electoral fiscal manipulation will cause an appreciation of the real exchange rate. For countries with an already appreciated currency, this increased real exchange rate appreciation may increase the risk of a speculative attack.

Therefore, we expect that under a fixed exchange rate, the more overvalued the currency, the less likely that governments will engage in fiscal electioneering. In contrast, because flexible exchange rate regimes do not run the same risk of a speculative currency attack, when the exchange rate is flexible governments’ decision to engage in fiscal manipulation should be unrelated to the likelihood of a speculative attack, and thus unrelated to the value of the real exchange rate. This leads to Hypothesis 2.

Hypothesis 2: Under a fixed exchange rate, pre-electoral fiscal manipulation is lower

Recent studies (e.g., Roubini and Kim 2008) suggest that in some countries with flexible exchange rates increased government expenditures are associated with a real exchange rate depreciation caused by a concomitant nominal exchange rate devaluation. This finding should only strengthen the difference in fiscal electioneering under fixed and flexible exchange rates suggested in this paper.
when the real exchange is highly appreciated.

Speculative currency attacks are not simply a function of a country’s long-term macroeconomic fundamentals. Although speculative attacks are more likely when market actors believe the exchange rate peg is unsustainable, they are less likely when markets believe the government can successfully defend its currency against a speculative attack. There are two channels by which reserves can decrease the likelihood of a successful speculative attack: defence and deterrence. At the most basic level, the larger the country’s supply of foreign exchange reserves, the longer the country can withstand a speculative attack. However, larger holdings of reserves, by tying up a larger share of the country’s financial assets, are also a costly signal of the country’s commitment to maintain its fixed exchange rate. Thus, speculators are more likely to be deterred when a country’s foreign exchange reserves are large (Leblang 2002; Walter 2009). As a result, countries hold large reserves as a form of self-insurance (Aizenman and Lee 2007), and Leblang (2005) finds that democracies amass reserves as a ‘war chest’ to fend off speculative attacks.

The policy flexibility that foreign exchange reserves purchase should be particularly important for governments in the run-up to an election. By reducing the likelihood of a speculative attack, large reserves should increase governments’ ability to engage in fiscal manipulation under a fixed exchange rate. Conversely, for governments with a flexible exchange rate, pre-electoral fiscal manipulation should be unrelated to the level of reserves. This leads to Hypothesis 3.
Hypothesis 3: Under a fixed exchange rate, pre-electoral fiscal manipulation is greater when foreign exchange reserves are larger.

The preceding hypotheses treat countries’ reserves and real exchange rate as exogenously determined, however both are influenced by government policies. Foresighted governments may adopt policies to depreciate the real exchange rate or increase reserves to lower the risk that fiscal manipulation will spark a speculative attack. Alternatively, governments may adopt policies that result in an appreciated real exchange rate and low reserves because the benefits of these policies are perceived to outweigh those of fiscal electioneering. In both cases, the mechanism suggested above and the empirical tests proposed should be valid: there should be less pre-electoral fiscal manipulation under a fixed exchange rate when reserves are low and the real exchange rate is highly appreciated.

Models of speculative attacks (generally building on Krugman 1979), often demonstrate how long-term appreciation of the exchange can interact with reserve levels and the decision of governments to partially or fully commit reserves to the defense of a peg. This partially endogenous nature of the real exchange rate and reserve levels highlights the centrality of the interaction between exchange rate fixity, real exchange rate and reserves. A speculative attack is most likely when the real exchange rate is appreciated and foreign exchange reserves are low because market actors perceive both that the exchange rate peg is unsustainable and that the government is unlikely to successfully defend its exchange rate peg against a speculative attack. Conversely, when the real exchange rate is depreciated and reserves are high a speculative attack is least
likely as the exchange rate peg is perceived to be both sustainable and easily defended.

However, when the real exchange rate is perceived to be overvalued, increasing reserves may be insufficient to stave off a speculative attack. Similarly, when a country’s foreign exchange reserves are low, relatively low levels of exchange rate appreciation may trigger a speculative attack. Thus, either low foreign exchange reserves or an appreciated real exchange rate may be sufficient to increase the risk of a speculative attack. As a result, governments under a fixed exchange rate should be most likely to engage in pre-electoral fiscal manipulation when both its foreign exchange reserves are high and its real exchange rate is undervalued. Governments should be less likely to engage in fiscal manipulation when either their real exchange rate is highly appreciated or when their foreign exchange reserves are low, as pre-electoral fiscal manipulation in either case may be sufficient to substantially increase the risk of speculative attack. This leads to our central hypothesis, Hypothesis 4:

Hypothesis 4: Under a fixed exchange rate, pre-electoral fiscal manipulation is lower when either the real exchange rate is highly appreciated or foreign exchange reserves are low.

Empirical Analysis

This section explores the hypotheses presented above with a quantitative analysis of fiscal manipulation in 97 developing countries, 1975-2005. The results support the argument that governments are more likely to engage in pre-electoral fiscal manipulation when the risk of a speculative attack is low. Under a fixed exchange rate, pre-electoral
fiscal manipulation is greatest when the real exchange rate is depreciated and foreign exchange reserves are high. When the risk of a speculative attack increases, either because the real exchange rate is highly appreciated or reserves are low, there is less evidence of pre-electoral fiscal manipulation. Under a flexible exchange rate, regimes do not run the same risk of a speculative currency attack and we observe significant amounts of pre-electoral fiscal manipulation. Pre-electoral fiscal manipulation under a flexible exchange rate does not appear to be associated with a country’s real exchange rate value or its level of foreign exchange reserves.

The baseline model adopted here is similar to Brender and Drazen’s (2005) analysis of fiscal manipulation. This model was chosen for two reasons. First, findings from Brender and Drazen (2005) and Shi and Svennson (2006) represent the alternative hypothesis—that developing countries engage in pre-electoral fiscal manipulation regardless of the risk of a speculative attack. Second, Brender and Drazen adopt a well-accepted array of controls for fiscal policy analyses in developing countries. The estimation technique used is ordinary least squares regression with country and year fixed effects, which limits the analysis to short-term, within-country variation.\(^5\)

The dependent variable, Government Balance, represents the central government’s fiscal balance as a percent of GDP. It is positive (negative) when the current year’s budget is in surplus (deficit). Fiscal manipulation should be inversely related to Government Balance—the more manipulation, the larger the government’s budget deficit or the smaller the government’s budget surplus will be. Data for Government Balance come from two sources—the International Monetary Fund (2007)’s International

\(^5\) Results are almost identical when an Arellano-Bond model is used.

Election data are from Hyde and Marinov’s (2010) database on elections for national office in developing countries. The theory developed in this article presupposes that holding an election implies some risk that the incumbent will give up power. In some elections, however, opposition is banned or otherwise restricted. To exclude elections that are a priori uncompetitive, Election is coded from three questions in Hyde and Marinov (2010): Was opposition allowed? Was more than one party legal? Was there a choice of candidates on the ballot? Election is coded 1 if the answer to all three questions is “yes” and 0 otherwise, generating a set of 426 elections in which competition is possible.

Exchange rate data are taken from Reinhart and Rogoff (2004). Reinhart and Rogoff code exchange rate regimes based both on how flexible countries say their exchange rate is and how flexible it is in reality. Based on their categorization, Fixed Exchange Rate is coded 1 if exchange rate fixity ranges from ‘no separate legal tender’ to ‘de facto crawling band that is narrower than or equal to +/-2%’. All regimes that exhibit

6 Not all countries’ government balance data are included in the International Financial Statistics. Brender and Drazen (2005) augment these data based on other IMF publications. As reported in the Online Appendix, there appears to be no systematic bias caused by splicing the two data sources. Furthermore, in some countries, the fiscal year and calendar year differ, complicating analyses. However, the results are robust to excluding countries that have different fiscal years.

7 The sample of countries included in the analyses is determined by countries’ inclusion in Hyde and Marinov 2010. These countries are defined as developing countries that hold elections but that are not already considered to be consolidated democracies.

8 This analysis focuses on electoral competition, rather than quality of democracy. This raises the concern that the results may be driven by the inclusion of elections held in non-democratic countries. To examine this, we re-ran the analysis excluding all observations in which the country received a POLITY score below zero on a -10 to 10 scale (Marshall and Jaggers 2002). These results also provide support for the hypotheses.

9 An IMF de jure exchange rate measure and an alternative de facto measure from Shambaugh (2004) yield similar results, reported in the Online Appendix.
more flexibility are coded 0.10

Following Rodrik (2008), we use the variable ‘p’ from Penn World Tables (Heston, Summers and Aten 2009), to capture the \textit{Real Exchange Rate}.11 This reflects the value of the domestic currency vis-à-vis foreign currency at the current nominal exchange rate. A value of one means that the nominal exchange rate is in line with relative prices. Lower (higher) values of \textit{Real Exchange Rate} capture greater real exchange rate appreciation (depreciation).

To capture \textit{Reserves}, we use foreign exchange reserve data from the IMF divided by money supply (M1). Results are comparable when data from the World Bank is used, and when \textit{Reserves in Months of Imports} or \textit{Reserves as a Percent of GDP} are used as alternative measures.

The analyses include a series of economic and demographic control variables.12 Richer countries, countries with strong economic growth, and countries with high levels of trade tend to run smaller budget deficits; thus, we expect \textit{GDP per capita}, \textit{GDP Growth} and \textit{Trade} will be positive. \textit{Population between 15 and 64} represents the fraction of the population presumed to be of working age. The greater the working age

10 60% of observations are coded fixed. Results are similar when ‘managed floating’ regimes are coded fixed rather than flexible, or if a trichotomous coding (fixed, managed floating, flexible) or if observations in which a country’s exchange rate regime differs from the previous or subsequent year are excluded.

11 Two concerns arise from using this measure. First, the data are not normally distributed. To account for this, we re-ran the analyses with \textit{Real Exchange Rate (ln)}. Second, based on the Balassa-Samuelson effect, \textit{Real Exchange Rate} may produce systematically biased estimates of real exchange rate appreciation in poor countries. Rodrik (2008) proposes an alternative measure that corrects for this effect by regressing \textit{Real Exchange Rate (ln)} on \textit{GDP per capita}, and coding \textit{Undervaluation} as the difference between \textit{Real Exchange Rate (ln)} and the predicted values from the regression. These alternative specifications also do not substantially alter the results.

population, the greater the tax base, all else equal. In contrast, the greater the Population 65 and above, the greater the demand for government expenditures. Finally, Government Balance (lagged) is included to control for temporal dependence in the dependent variable. Descriptive statistics for these variables, as well as description of further data used for robustness analyses, including data on capital mobility from Chinn and Ito (2008) and debt default data from Laeven and Valencia (2008), can be found in the online appendix.

[Table 1 about here]

Table 1 presents our main results. Model 1 shows that on average elections are associated with a 0.5 percentage point decline in Government Balance, which is consistent with the conventional wisdom that pre-electoral fiscal manipulation is pervasive in developing countries. Government Balance is also positively associated with economic growth, trade openness, and the previous year’s budget balance. In contrast, Government Balance does not appear to be significantly associated with a country’s GDP per capita or demographics.

In Model 2, we test Hypothesis 1 by bifurcating Election by exchange rate regime. There is statistically significant evidence of fiscal electioneering under both types of exchange rate regime. However, under a flexible exchange rate an election is associated with a one percentage point fall in Government Balance, which is more than twice the size of the 0.4 percentage point decline in Government Balance under a fixed exchange rate. Moreover, the difference between these two effects is significant (p<.07). Based on these results, governments appear to engage in less fiscal electioneering under a fixed exchange rate than under a flexible exchange rate.
To test Hypothesis 2, that under a fixed exchange rate, pre-electoral fiscal manipulation is lower when the real exchange rate is highly appreciated, Model 3 includes two-way interactions between Real Exchange Rate and both election variables.

Real Exchange Rate is a measure of exchange rate undervaluation. Thus if Hypothesis 2 is correct, fiscal electioneering should increase (*Government Balance* should decline) as *Real Exchange Rate* increases. To better gauge support for Hypothesis 2, Figure 1 Panel A graphically displays the marginal effect of an election on *Government Balance* as *Real Exchange Rate* varies from its 10th to its 90th percentile under fixed and flexible exchange rates.

[Figure 1 about here]

Based on the results reported in Model 3, the value of a country’s exchange rate is not significantly correlated with governments’ decision to engage in fiscal electioneering under either a fixed or a flexible exchange rate. Under a flexible exchange rate, governments appear to engage in pre-electoral fiscal manipulation regardless of the value of the real exchange rate. In keeping with Hypothesis 2, under a fixed exchange rate, there is no evidence of fiscal electioneering when a country’s real exchange rate is highly appreciated (at its 10th percentile). When the real exchange rate is depreciated (at its 90th percentile), governments do appear to engage in pre-electoral fiscal manipulation. However, the difference between these two effects is not statistically significant. If Hypothesis 4 is correct, then the weak support for Hypothesis 2 in Model 3 may reflect the exclusion of a country’s reserves from the model.

Model 4 includes two-way interactions between *Reserves* and both election variables to test Hypothesis 3. If Hypothesis 3 is correct, then pre-electoral fiscal
manipulation under a fixed exchange rate should be greater when Reserves are larger. Figure 1 Panel B graphically displays the marginal effect of an election under fixed and flexible exchange rates on Government Balance as Reserves varies from its 10th to its 90th percentile.

As Figure 1 Panel B depicts, Hypothesis 3 receives support. When the exchange rate is fixed and Reserves are low (at their 10th percentile), there is no significant evidence of pre-electoral fiscal manipulation. Conversely, when Reserves are high (at their 90th percentile), governments do appear to engage in fiscal electioneering. Moreover, this difference is statistically significant (p<.03). In contrast, under a flexible exchange rate, governments appear to engage in pre-electoral fiscal manipulation without regard to the level of their foreign exchange reserves. Taken together, these results suggest that when the risk of a speculative attack is high, as captured by low foreign exchange reserves under a fixed exchange rate regime, governments do not engage in pre-electoral fiscal manipulation. When the risk of a speculative attack is low—when the exchange rate is flexible, or, if the exchange rate is fixed, when reserves are high—governments do appear to engage in fiscal electioneering.

The previous two models examine the constraining effect of an appreciated real exchange rate and low foreign exchange reserves separately. However, Hypothesis 4 suggests that under a fixed exchange rate pre-electoral fiscal manipulation will be lower when either the real exchange rate is highly appreciated or foreign exchange reserves are low. To test Hypothesis 4, Model 5 includes a three-way interaction between Real Exchange Rate, Reserves, and Election under a Fixed Exchange Rate. These results are presented graphically in Figure 2.
Figure 2 provides clear support for Hypothesis 4. Under a fixed exchange rate, governments only appear to engage in pre-electoral fiscal manipulation when reserves are high and the real exchange rate is not highly appreciated. When Reserves are low (10th percentile), there is no significant relationship between elections and Government Balance, regardless of the level of Real Exchange Rate. Similarly, when Real Exchange Rate is highly appreciated (10th percentile), there is no evidence of a significant relationship between elections and Government Balance, regardless of the level of Reserves.

In contrast, when countries hold large foreign exchange reserves (at their 90th percentile), pre-electoral fiscal manipulation is greater when the real exchange rate is depreciated. In particular, when the real exchange rate is highly appreciated (at its 10th percentile), there is no evidence of fiscal electioneering (the predicted effect of an election on Government Balance is zero). When the real exchange rate is depreciated (at its 90th percentile), an election is associated with a statistically significant 1.2 percentage point decline in Government Balance (p<.01).13

Similarly, when the real exchange rate is depreciated (at its 90th percentile), fiscal electioneering is greater when reserves are larger. In particular, when reserves are low (at their 10th percentile), there is no evidence of fiscal manipulation (an election is associated with a statistically insignificant 0.1 percentage point decline in Government Balance). When reserves are high (at their 90th percentile), an election is associated with a

13 The difference in fiscal balance moving from the 10th to the 90th percentile of real exchange rate is 1.2 percentage points (p<.15)
statistically significant 1.2 percentage point decline in Government Balance (p<.01).14

One concern with the comparisons presented in Figure 2 is that they are ‘snapshots’ that are limited to only high and low values of Real Exchange Rate and Reserves. To provide a better understanding of when pre-electoral fiscal manipulation is likely under a fixed exchange rate, Figure 3 presents a two-way scatterplot of Real Exchange Rate and Reserves for the country-year observations under a fixed exchange rate analyzed in Model 5. Based on this sample, only 26 percent of observations fall within the range of Real Exchange Rate and Reserves in which an election is statistically significantly associated with a decline in Government Balance. These results suggest that when governments are concerned about the risk of a speculative attack, either due to an appreciated real exchange rate or a low level of reserves, governments are less likely to engage in pre-electoral fiscal manipulation. Taken together, these results present a very different picture than that depicted in previous research. Far from governments in developing countries engaging unconditionally in fiscal electioneering, these results suggest that for developing countries under a fixed exchange rate, pre-electoral fiscal manipulation may be a tool that governments use relatively infrequently.

[Figure 3 about here]

After controlling for the effect of Real Exchange Rate and Reserves, the difference between fiscal electioneering under fixed and flexible exchange rates found in Model 2 disappears. This can be seen in Figure 4 Panel A, which compares the marginal effect of an election on Government Balance under a flexible exchange rate with the marginal effect of an election under a fixed exchange rate when Real Exchange Rate and Reserves

14 The difference in fiscal balance moving from the 10th to the 90th percentile of reserves is 1.1 percentage points (p<.01)
are set at their 10th and 90th percentiles. Under a fixed exchange rate, when \textit{Real Exchange Rate} and \textit{Reserves} are both at their 90th percentiles (when the risk of a speculative attack is low), an election is associated with a 1.2 percentage point decline in \textit{Government Balance}. This effect is not significantly different from the 0.9 percentage point decline associated with an election under a flexible exchange rate.

[Figure 4 about here]

The results from Model 5 support the argument that governments engage in pre-electoral fiscal manipulation only when the risk of a speculative attack is low. Alternatively, these results could reflect variation in demand for fiscal electioneering, other international economic constraints, or political conditions rather than the risk of a speculative currency attack. Below, we discuss a series of robustness tests to evaluate these competing explanations. Due to space constraints, a limited number of these models are included in Figure 4. All models are included in the online appendix.

First, the absence of pre-electoral fiscal manipulation under a fixed exchange rate when the real exchange rate is appreciated and reserves are low may reflect low demand for fiscal electioneering rather than a high risk of a speculative attack. Demand for pre-electoral fiscal manipulation may be lower in economic good times. To assess this argument, we re-ran Model 5, including an interaction between \textit{GDP Growth} and \textit{Election under a Fixed Exchange Rate}. If this alternative explanation is correct, then the negative effect of an election on \textit{Government Balance} should decrease as \textit{GDP Growth} increases, and the relationship between elections, real exchange rate value and reserves should disappear. As can be seen in Figure 4 Panel B, this is not the case. \textit{GDP Growth} does not appear to affect pre-electoral fiscal manipulation, and fiscal electioneering
remains largest under a depreciated real exchange rate and high foreign exchange reserves.

Conversely, demand for fiscal electioneering may be greater when trade openness is high to offset potentially negative trade shocks. To assess this argument, we report the results of an interaction between Trade and Election under a Fixed Exchange Rate in Figure 4 Panel C. Based on these results, trade openness does not appear to affect demand for pre-electoral fiscal manipulation in developing countries, nor does it affect the negative relationship between the risk of a speculative attack and fiscal electioneering. The results reported in Model 5 are also robust to the inclusion of other factors that might influence demand for pre-electoral fiscal manipulation such as government partisanship, export dependence, and inflation.

Second, the results reported in Model 5 may reflect variation in other international economic conditions that might constrain governments’ ability to engage in fiscal manipulation. Returning to Clark and Hallerberg’s (2000) argument that governments will not engage in fiscal electioneering when capital is mobile internationally, countries facing high capital mobility might be more likely to have a fixed exchange rate, an appreciated real exchange rate and low reserves. Based on the results in Figure 4 Panel D, capital mobility does not appear to affect fiscal electioneering, while the negative effect of a speculative attack risk remains significant. Alternatively, countries with a history of debt default may engage in less fiscal electioneering because their ability to borrow internationally is constrained. However, the results in Figure 4 Panel E do not support this argument. Model 5’s results are also robust to controlling for external debt, current account deficits, budget deficit history, and the presence of an IMF agreement.
Finally, given the existing literature on fiscal electioneering in developing countries, the results reported in Model 5 may capture differences in countries’ quality of and experience with democracy. For example, Brender and Drazen (2005) find that pre-electoral fiscal manipulation is more prevalent among new democracies in their first four elections, and find no statistically significant manipulation in subsequent elections. Figure 4 Panel F, includes an interaction with a dichotomous variable capturing whether an election is one of the first four elections under the current regime in a country. Based on these results, there is no support for Brender and Drazen’s argument and the main results reported in the paper are robust. The results are also robust to controlling for the effect of regime age, level of democracy and election endogeneity.

Conclusion

As international capital mobility has increased, so too has the risk of speculative currency attacks. For developing countries, the heightened risk of a speculative attack may cause governments considering fiscal manipulation as a tool to increase their chances of reelection to reconsider their options. Governments increase their chances of reelection by engineering a strong economy, and when the exchange rate is fixed, by maintaining their exchange rate peg. Our research suggests that when these two goals come into conflict, governments often forgo pre-electoral fiscal manipulation in an effort to stave off the risk of an attack on their exchange rate.

Speculative attacks occur when market actors believe that governments cannot or will not maintain the fixed value of their currency. However, countries’ real exchange

15 Election number coded from Hyde and Marinov (2010).
rates and foreign exchange reserves are not the only factors that influence markets’ perceptions. Other factors may also influence the likelihood of a speculative attack, and thus are candidates for further research in this area. For example, Chiu and Willett (2009) find that weak governments (in particular governments with short time horizons) and fixed but adjustable exchange rates (the ‘unstable middle’ in which a government’s commitment to its peg is suspect) can both strengthen market actors’ perceptions that a speculative attack will be successful. Similarly, transparency of governments’ fiscal behavior may vary greatly across developing countries. Market actors that cannot clearly observe government actions may be less likely to update their beliefs about the value of a currency, or perhaps may be more prone to herding behavior and thus over-react to small pieces of information.

Ultimately, this research suggests that in the developing world, governments are often severely constrained in their pre-electoral fiscal behavior. In the current globalized financial system, governments’ concerns about the risk of a currency crisis (and its likely adverse electoral consequences) are likely to trump a desire to provide a temporary boost to the economy through fiscal policy. This finding stands in contrast to previous research that argues that fiscal electioneering is pervasive in developing countries, instead highlighting how developing countries may be quite sensitive to their countries’ international economic ties. Even in the short period of time prior to an election, developing countries’ vulnerability to speculative currency attacks appears to constrain governments’ fiscal electioneering.

Just as governments’ conduct of elections has become of international concern with the rise of international election monitoring in the developing world (Hyde 2011; Hyde
and O’Mahony 2010; Kelley 2008), governments’ conduct of fiscal policy is of interest to international economic actors. Governments run serious risks if they are perceived by market actors as engaging in behavior that undermines the credibility of their exchange rate peg. Although governments in developing countries may have a strong desire to engage in pre-electoral fiscal manipulation, in many cases the constraints created by developing countries’ international economic ties are even stronger.
References

KAYSER, MARK A. AND MICHAEL PERESS. (2012) Benchmarking across Borders:

<table>
<thead>
<tr>
<th>Model</th>
<th>Election</th>
<th>Model 1</th>
<th>Model 2</th>
<th>Model 3</th>
<th>Model 4</th>
<th>Model 5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-0.52</td>
<td>-0.41</td>
<td>-0.11</td>
<td>-0.18</td>
<td>-0.67</td>
<td></td>
</tr>
<tr>
<td>Election under Fixed ER</td>
<td></td>
<td>(0.19)</td>
<td>(0.20)</td>
<td>(0.51)</td>
<td>(0.22)</td>
<td>(1.05)</td>
</tr>
<tr>
<td>Election under Fixed ER x RER</td>
<td>-1.26</td>
<td>(1.17)</td>
<td></td>
<td></td>
<td></td>
<td>0.86</td>
</tr>
<tr>
<td>Election under Fixed ER x Reserves</td>
<td>-0.23</td>
<td>(0.10)</td>
<td>0.68</td>
<td>(0.90)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Election under Fixed ER x RER x Reserves</td>
<td>-1.86</td>
<td>(1.67)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Election under Flexible ER</td>
<td>-1.01</td>
<td>(0.32)</td>
<td>-0.54</td>
<td>-1.16</td>
<td>-0.94</td>
<td>(0.34)</td>
</tr>
<tr>
<td>Election under Flexible ER x RER</td>
<td>-0.95</td>
<td>(0.87)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Election under Flexible ER x Reserves</td>
<td></td>
<td>0.19</td>
<td>(0.33)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fixed Exchange Rate (ER)</td>
<td></td>
<td>-0.09</td>
<td>1.31</td>
<td>-0.80</td>
<td>1.65</td>
<td>(1.58)</td>
</tr>
<tr>
<td>Real Exchange Rate (RER)</td>
<td></td>
<td>0.37</td>
<td>(0.49)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reserves</td>
<td></td>
<td>-0.37</td>
<td>0.26</td>
<td>-0.23</td>
<td>0.92</td>
<td></td>
</tr>
<tr>
<td>RER x Reserves</td>
<td></td>
<td>-0.24</td>
<td>(2.34)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fixed ER x RER</td>
<td></td>
<td>-3.26</td>
<td>(2.72)</td>
<td></td>
<td></td>
<td>-5.66</td>
</tr>
<tr>
<td>Fixed ER x Reserves</td>
<td></td>
<td>0.63</td>
<td>(0.24)</td>
<td>-0.08</td>
<td>1.05</td>
<td>(1.05)</td>
</tr>
<tr>
<td>Fixed ER x RER x Reserves</td>
<td></td>
<td>1.43</td>
<td>(2.36)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Government Balance (lagged)</td>
<td>0.39</td>
<td>(0.10)</td>
<td>0.37</td>
<td>0.37</td>
<td>0.37</td>
<td>0.37</td>
</tr>
<tr>
<td>GDP Growth</td>
<td>0.06</td>
<td>(0.03)</td>
<td>0.05</td>
<td>0.06</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>GDP per capita</td>
<td>-0.41</td>
<td>(0.90)</td>
<td>-0.19</td>
<td>-0.11</td>
<td>0.07</td>
<td>0.27</td>
</tr>
<tr>
<td>Trade</td>
<td>0.04</td>
<td>(0.01)</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td>Population between 15 and 64</td>
<td>0.15</td>
<td>(0.10)</td>
<td>0.12</td>
<td>0.13</td>
<td>0.11</td>
<td>0.11</td>
</tr>
<tr>
<td>Population 65 and above</td>
<td>-0.49</td>
<td>(0.30)</td>
<td>-0.37</td>
<td>-0.21</td>
<td>-0.30</td>
<td>-0.30</td>
</tr>
<tr>
<td>Constant</td>
<td>-6.73</td>
<td>(5.57)</td>
<td>-6.70</td>
<td>-7.60</td>
<td>-6.90</td>
<td>-8.39</td>
</tr>
<tr>
<td>R2</td>
<td>0.52</td>
<td>0.51</td>
<td>0.51</td>
<td>0.52</td>
<td>0.53</td>
<td></td>
</tr>
<tr>
<td>Observations</td>
<td>1850</td>
<td>1648</td>
<td>1647</td>
<td>1521</td>
<td>1521</td>
<td></td>
</tr>
</tbody>
</table>

* p<0.05. Standard errors in parentheses.
Predicted marginal effect of an election; —— 90% Confidence intervals

Fig 1. Marginal Effect of an Election on Government Balance (Models 3 and 4)
Real Exchange Rate varies, Reserves at 10th percentile

Reserves vary, Real Exchange Rate at 10th percentile

Real Exchange Rate varies, Reserves at 90th percentile

Reserves vary, Real Exchange Rate at 90th percentile

Predicted marginal effect of an election; 90% Confidence intervals

Fig 2. Marginal Effect of an Election on Government Balance as Real Exchange Rate and Reserves Vary, Fixed Exchange Rate
Marginal effect of an election on Government Balance is significant (p < .1).
Marginal effect of an election on Government Balance is not significant (p ≥ .1).
Observations in figure range from 10th to 90th percentiles of Real Exchange Rate and Reserves.

FIG 3. Scatterplot of Observations by Significance of Marginal Effect of an Election on Government Balance, as Real Exchange Rate & Reserves vary, Fixed Exchange Rate
Markers indicate point predictions of the marginal effect of an election on Government Balance for the following variables of interest:

A-F:
- ■ Low Real Exchange Rate (RER), Low Reserves
- ▲ Flexible Exchange Rate
- □ Low RER, High Reserves
- ● High RER, Low Reserves
- ○ High RER, High Reserves

A:
- ▲ Low Real Exchange Rate (RER), Low Reserves
- ● Flexible Exchange Rate
- B-F:
- □ Low Real Exchange Rate (RER), Low Reserves
- ○ Low value of specified variable
- High Real Exchange Rate (RER), High Reserves
- ● High value of specified variable

Notes:
- Low values: 10th Percentile
- High values: 90th Percentile
- 90\% Confidence Interval

FIG 4. Marginal Effects of an Election on Government Balance