How Is Power Shared In Africa?

Patrick Francois, Ilia Rainer, and Francesco Trebbi*

November 2012

Abstract

This paper presents new evidence on the power sharing layout of national political elites in a panel of African countries, most of them autocracies. We present a model of coalition formation across ethnic groups and structurally estimate it employing data on the ethnicity of cabinet ministers since independence. As opposed to the view of a single ethnic elite monolithically controlling power, we show that African ruling coalitions are large and that political power is allocated proportionally to population shares across ethnic groups. This holds true even restricting the analysis to the subsample of the most powerful ministerial posts. We argue that the likelihood of revolutions from outsiders and the threat of coups from insiders are major forces explaining such allocations.
1 Introduction

This paper investigates the process by which political power is shared across ethnic groups in African autocracies. Analyzing how ruling elites evolve, organize, and respond to particular shocks is central to understanding the patterns of political, economic, and social development of both established and establishing democracies. For autocratic or institutionally weak countries, many of them in Africa, it is plausible that such understanding is even more critical (Acemoglu and Robinson (2001b, 2005), Bueno de Mesquita, Smith, Siverson, and Morrow (2003), Wintrobe (1998), Besley and Persson (2011), Aghion, Alesina, and Trebbi (2004)).

Scarcity and opacity of information about the inner workings of ruling autocratic elites are pervasive. Notwithstanding the well-established theoretical importance of intra-elite bargaining (Acemoglu and Robinson (2005), Bueno de Mesquita et al. (2003)), systematic research beyond the occasional case study is rare. This is not surprising. Institutionally weak countries usually display low (or null) democratic responsiveness and hence lack reliable electoral or polling data. This makes it hard to precisely gauge the relative strength of the various factions and political currents affiliated with different groups. Tullock’s (1987) considerations on the paucity of data employable in the study of the inner workings of autocracy are, in large part, still valid.

This paper presents new data on the ethnic composition of African political elites, specifically focusing on the cabinet of ministers, helpful in furthering our understanding of the dynamics of power sharing within institutionally weak political settings. Our choice of focusing on ethnic divisions and on the executive branch are both based on their relevance within African politics and their proven importance for a vast range of socioeconomic outcomes. First, the importance of ethnic cleavages for political and economic outcomes in Africa cannot be overstated. Second, it is well understood in the African comparative poli-

1Posner (2005) offers an exception with regard to Zambian politics. Other recent studies relevant to the analysis of the inner workings of autocracies include Geddes (2003), who investigates the role of parties within autocracies, and Gandhi and Przeworski (2006), who consider how a legislature can be employed as a power-sharing tool by the leader.

2Posner and Young (2007) report that in the 1960s and 1970s the 46 sub-Saharan African countries averaged 28 elections per decade, less than one election per country per decade, 36 in the 1980s, 65 in the 1990s, and 41 elections in the 2000-05 period.

3The literature is too vast to be properly summarized here. Among the many, see Bates (1981), Berman
tics literature that positions of political leadership reside with the executive branch, usually the president and cabinet. Legislative bodies, on the other hand, have often been relegated to lesser roles and to rubber-stamping decisions of the executive branch. Arriola (2009) encapsulates the link between ethnic divisions and cabinet composition in patrimonial states: “All African leaders have used ministerial appointments to the cabinet as an instrument for managing elite relations.”

We begin by developing a model of allocation of patronage sources, i.e. the cabinet seats, across various ethnic groups by the country’s leader. We then estimate the model structurally. Our model, differently from the large literature following the classic Baron and Ferejohn (1989) legislative bargaining setting, revolves around nonlegislative incentives. This makes sense given the focus on African polities. However, similarly to Baron and Ferejohn, we maintain a purely noncooperative approach. We assume leaders wish to avoid revolutions and coups, and enjoy the benefits of power. The leader decides the size of his ruling coalition to avoid revolutions staged by groups left outside the government and allocates cabinet posts in order to dissuade insiders from staging a palace coup. To a first approximation, one can think of the revolution threat as pinning down the size of the ruling coalition (by excluding fewer groups the leader can make a revolution’s success less likely).

4 Africanists often offer detailed analysis of cabinet ethnic compositions in their commentaries. See Khapoya (1980) for the Moi transition in Kenya, Osaghae (1989) for Nigeria, Posner (2005) for Zambia. Arriola (2009) considers cabinet expansion as a tool of patronage and shows cabinet expansion’s relevance for leader’s survival in Africa. Kramon and Posner (2011) present evidence from Kenya on the large impact of having a co-ethnic minister of education on educational attainment of an ethnic group. They also explicitly state that “Scholars such as Joseph (1987), van de Walle (2007), and Arriola (2009) emphasize the extent to which presidents keep themselves in power by co-opting other powerful elites—usually elites that control ethnic or regional support bases that are distinct from the president’s—by granting them access to portions of the state (what Joseph, following Weber, calls prebends) in exchange for their loyalty and that of their followers. In practice, this is done by allocating cabinet positions, with the understanding that the holders of those cabinet positions will use their ministries to enrich themselves and shore up their own regional or ethnic support bases, and then deliver them to the president when called upon.”

6 The literature on bargaining over resource allocation in non-legislative settings is also vast. See Acemoglu, Egorov, and Sonin (2008) for a model of coalition formation in autocracies that relies on self-enforcing coalitions and the literature cited therein for additional examples. Our model shares with most of this literature a non-cooperative approach, but differs in its emphasis on the role of leaders, threats faced by the ruling coalition, and payoff structure for insiders and outsiders.

7 Throughout the paper we use the term “revolution” to indicate any type of large-scale political violence that pegs insiders to the national government against excluded groups. Civil wars or paramilitary infighting are typical examples.
and the coup threat as pinning down the shares of patronage accruing to each group (by making an elite member indifferent between supporting the current leader and attempting to become a leader himself). The empirical variation in size of the ruling coalition and post allocations allows us to recover the structural parameters of the revolution and coup technologies for each country, which in turn we employ in a set of counterfactual simulations. Methodologically, our approach is similar to that in Diermeier, Eraslan and Merlo (2003) and in Merlo (1997) in that we estimate a structural model of government formation. A marked difference however arises in the theoretical approach to government formation. This reflects the difference in the underlying forces that determine governmental stability in sub-Saharan African regimes relative to those in parliamentary democracies that were their focus.

Contrary to a view of African ethnic divisions as generating wide disproportionality in access to power, African autocracies function through an unexpectedly high degree of proportionality in the assignment of power positions, even top ministerial posts, across ethnic groups. While the leader’s ethnic group receives a substantial premium in terms of cabinet posts relative to its size (measured as the share of the population belonging to that group), such premia are comparable to formateur advantages in parliamentary democracies. Rarely are large ethnic minorities left out of government in Africa, and their size does matter in predicting the share of posts they control, even when they do not coincide with the leader’s ethnic group.\(^8\) We show how these findings are consistent with large overhanging coup threats and large private gains from leadership. Large ruling coalitions (often more than 80 percent of the population are ethnically represented in the cabinet) also suggest looming threats of revolutions for African leaders. We also show that the patterns of political inclusion follow the precise nonlinearities predicted by our model and that the data formally reject alternative models not relying on such mechanisms.

We do not take these findings to imply that proportionality in government reflects equality of political benefits trickling down to common members of all ethnicities. African societies

\(^8\)While these results are new, this observation has been occasionally made in the literature. Contrasting precisely the degree of perceived ethnic favoritism for the Bemba group in Zambia and the ethnic composition of Zambian cabinets, Posner (2005, p.127) reports “...the average proportions of cabinet ministers that are Bemba by tribe are well below the percentages of Bemba tribespeople in the country as a whole, and the proportion of Bemba-speakers in the cabinet is fairly close to this group’s share in the national population. Part of the reason for this is that President Kaunda, whose cabinets comprise twelve of the seventeen in the sample, took great care to balance his cabinet appointments across ethnic groups.”
are hugely unequal and usually deeply fragmented. Our findings imply that a certain fraction of each ethnic group’s upper echelon is able to systematically gain access to political power and the benefits that follow. The level of proportionality in ethnic representation seems to suggest that the support of critical members of a large set of ethnic groups is sought by the leader. There is no guarantee, however, that such groups’ non-elite members receive significant benefits stemming from this patronage, and they often do not. Padro-i-Miquel (2007) explains theoretically how ethnic loyalties by followers may be cultivated at extremely low cost by ethnic leaders in power. We also explore this theme theoretically in an extension to the model developed in the Appendix to the paper.

This last point highlights an important consideration. There is overwhelming empirical evidence in support of the view of a negative effect of ethnic divisions on economic and political outcomes in Africa. The question is whether at the core of these political and economic failures lays a conflict between ethnic groups in their quest for control, or whether it is the result of internal struggles between elites and non-elites that arise within ethnic enclaves. Our data show that almost all ethnic groups have access to a certain measure of political power at the elite level. This finding argues against an overly direct view of the relationship between ethnic fractionalization, state dysfunction and conflict, consistent with the interpretation of Fearon and Laitin (2003). Standing ethnic divisions and cleavages within a country are well understood by leaders, and accounted for in power allocations. As Fearon and Laitin argue, the potential for ethnic tensions to precipitate conflict exists, but these are best thought of as proximate determinants of actual break down. Similarly, we demonstrate that successful leaders are able to act in ways that defuse threats to regime coherence that would arise from underlying ethnic tensions. This finding provides indirect evidence that frictions within ethnic groups may be playing a larger role than previously assessed vis-à-vis frictions between groups.

Finally, by emphasizing the presence of non trivial intra-elite heterogeneity and redistribution, our findings support fundamental assumptions made in the theory of the selectorate (Bueno de Mesquita, et al. (2003)), the contestable political market hypothesis, and in

\footnote{See Easterly and Levine (1997), Posner (2004), Michalopoulos and Papaioannou (2011).}

\footnote{Mulligan and Tsui, (2005) in an adaptation of the original idea in product markets by Baumol et al. (1982).}
theories of autocratic inefficiency (Wittman (1995)).

The rest of the paper is organized as follows. Section 2 presents our model of coalition formation and ministerial allocations and Section 3 presents our econometric setup. Section 4 describes the data. Section 5 reports the main empirical evidence on the allocation of cabinet posts at the group level. Section 6 presents our counterfactuals. Section 7 compares our model to alternative modes of power sharing. Section 8 presents our conclusions.

2 Model

Consider an infinite horizon, discrete time economy, with per period discount rate δ. There are N ethnicities in the population. Denote the set of ethnicities $\mathcal{N} = \{1, ..., N\}$. Each ethnicity is comprised of two types of individuals: elites, denoted by e, and non-elites, denoted by n. Ethnic group j has a corresponding elite size e_j and non-elite size n_j, with $e_j = \lambda n_j$ and $\lambda \in (0, 1)$. The population of non-elites is of size P, so that $\sum_{i=1}^{N} n_i = P$. Let $\mathcal{N} = \{n_1, ..., n_N\}$. Without loss of generality we order ethnicities from largest to smallest $e_1 > e_2 > ... > e_{N-1} > e_N$. Elites decide whether non-elites support a government or not.

At time 0 a leader from ethnic group $j \in \mathcal{N}$ is selected with probability proportional to group size

$$p_j(\mathcal{N}) = \frac{\exp(\alpha e_j)}{\sum_{i=1}^{N} \exp(\alpha e_i)}.$$

Let $l \in \mathcal{N}$ indicate the ethnic identity of the selected leader and \mathcal{O} the set of subsets of \mathcal{N}. The leader chooses how to allocate leadership posts (i.e., cabinet positions or ministries), which generate patronage to post holders, across the elites of the various ethnic groups. Let us indicate by Ω^l the set of ethnic groups in the cabinet other than the leader’s group, implying the country is ruled by an ethnic coalition $(\Omega^l \cup l) \in \mathcal{O}$. Elite members included in the cabinet are supporters of the leader. This means that, in the event of a revolution against the leader, the $1/\lambda$ non-elite controlled by each one of these ‘insiders’ necessarily supports the leader against the revolutionaries11

11In the theoretical appendix we present a derivation of the elite-nonelite bargaining problem and discuss the intra-group support decision.
Let the per-member amount of patronage value the leader transfers to elite from group \(j \) in his governing coalition be denoted \(x_j^{12} \). The total value of all posts is normalized to 1 per period, and these are infinitely divisible, so total patronage transferred to elite \(j \), if all of \(j \)'s elite are in government is \(x_j e_j \in [0, 1] \). Let \(V_j(\Omega^l) \) denote the value of being in the government coalition to an elite from ethnicity \(j \), conditional on the leader being from ethnicity \(l \). Note that, by suppressing time subscripts, our notation imposes stationarity in the definition of the value function \(V_j \), as our focus will be on stationary equilibria throughout. Importantly, the assumption of stationarity, a common restriction, can be empirically assessed, a task we undertake in Section 4.

Leaders are also able to split ethnic groups in their offers of patronage and hence government inclusion, that is:

Assumption 1: Leaders can split ethnic groups in their offers of patronage. Specifically, leaders can offer patronage to a subset \(e_j' < e_j \) of group \(j \), and exclude the remaining \(e_j - e_j' \) from their governing coalition. A leader cannot exclude elites from his own ethnicity.

Ethnic ties bind leaders. Though leaders can pick and choose cabinet ministers from across the ethnic spectrum, they cannot exclude the elite from their own ethnic group from a share of the patronage that remains. Moreover, they must share this patronage equally with their co-ethnic elites. We view the necessity of such sharing between leaders and elites from their own ethnicity as a minimum cohesion requirement for an ethnic group. The leader can split and break any group, but he is bound to defer to his own. Of course, their own elite, like all other insiders, will also support the leader’s side in a revolution.

Cabinet positions not allocated to other ethnicities remain with the leader’s ethnic group, and, due to such non-exclusion, are shared equally amongst \(e_l \). Specifically, we indicate

\[
\bar{x}_l = (1 - \sum_{i \in \Omega^l} x_i e'_i(l)) / e_l,
\]

where \(e'_i(l) \leq e_i \) is the number of elite from group \(i \) chosen by a leader of ethnicity \(l \) in his optimal governing coalition.

\(^{12}\)This notation implicitly assumes elite from the same ethnicity receive an equal patronage allocation if they are included in the government. This is for notational simplicity and not a restriction of the model. In principle we allow leaders to offer elites from the same ethnicity differing allocations; an option that we shall demonstrate is generally not taken.
The leader also obtains a non-transferrable personal premium to holding office, denoted by amount F. F may be interpreted as capturing the personalistic nature of autocratic rents. Let $\bar{V}_j(\Omega)$ denote the value of being in the government coalition to an elite member from ethnicity j conditional on the leader being from ethnicity j (and the member not being the leader himself).

Leaders lose power or are deposed for different reasons. Leaders can lose power due to events partially outside their control (e.g. they may die or a friendly superpower may change its regional policy). We will refer to these events as ‘exogenous’ transitions. Alternatively, leaders can be deposed by government insiders via a coup d’état or by outsiders via a revolution; which are both events we consider endogenous to the model. In particular we will search for an equilibrium in which a leader constructs a stable government by providing patronage to elites from other ethnicities in order to head-off such endogenous challenges. Two factors guide the allocation of patronage by the leader: 1. The leader must bring in enough insiders to ensure his government dissuades revolution attempts by any subset of outsiders. 2. He must allocate enough patronage to insiders to ensure they will not stage a coup against him.

2.1 Revolutions

Revolutions are value-reducing. They lower the patronage value of the machine of government, but can yield material improvements to revolutionaries if they succeed in deposing the leader. The probability of revolution success depends on the relative sizes of government supporters versus revolutionaries fighting against them. With N_I insiders supporting the government and, for example, $N_O = P - N_I$ outsiders fighting the revolution, the revolutionaries succeed with probability $\frac{N_O}{N_I + N_O}$. This linear specification of the revolutionary contest function does imply some loss of generality. Specifically, since only aggregates matter in the composition of the fighting forces, the composition of ethnicities that comprise the aggregates is irrelevant under this specification. We can allow for a more general contest function where the fractionalization amongst ethnicities within the contesting forces may reduce their effectiveness. If the insider forces include groups $i \in \mathcal{N}_I \subset \mathcal{N}$ and outsider forces include $i \in \mathcal{N}_O \subset \mathcal{N}$, then a more general specification of the contest function is $\frac{\sum_{i \in \mathcal{N}_O} n_i}{\sum_{i \in \mathcal{N}_O} n_i + \sum_{i \in \mathcal{N}_I} n_i}$.
which corresponds with our linear specification when \(\chi = 1 \). We proceed to develop the model with the simpler linear specification for ease of exposition, but report results for the non-linear generalization in the Appendix.

A successful revolution deposes the current leader. A new leader is then drawn according to the same process used at time 0, i.e. according to (1), and this leader then chooses his optimal governing coalition. Losing a revolution leads to no change in the status of the government. Revolutionary conflicts drive away investors, lower economic activity, and reduce government coffers independently of their final outcome. Consequently, the total value of all posts – normalized to 1 already – is permanently reduced to the amount \(r < 1 \) after a revolution.

Let \(V_j^0 \) denote the value function for an elite of ethnicity \(j \) who is excluded from the current government’s stream of patronage rents, and \(V_j^{\text{transition}} \) denote the net present value of elite \(j \) in the transition state; i.e. before a new leader has been chosen according to (1). A group of potential elite revolutionaries who are excluded from the patronage benefits of the current government has incentive to incite the non-elite they control to revolt and cause a revolution if this is value increasing for them. Specifically an excluded elite of ethnicity \(j \) has incentive to instigate a revolution with \(N_O \) outsiders against a government of \(N_I \) insiders if and only if:

\[
\frac{N_O}{N_I + N_O} r V_j^{\text{transition}} + \left(1 - \frac{N_O}{N_I + N_O} \right) r V_j^0 \geq V_j^0.
\]

Leaders allocate patronage to insiders to buy their loyalty and hence reduce the impetus for outsiders to foment revolution. In deciding on whether to start a revolution, elites act non-cooperatively using Nash conjectures. That is, when an elite from an outsider group triggers a revolution, he uses Nash conjectures to determine the number of other elites that will join in (and hence the total revolutionary force and the probability of success) in the ensuing civil war. Under these conjectures, once a revolution is started and all valuations are reduced \(1 - r \) proportionately, it follows immediately that all outsiders will also have incentive to join the revolution. If the revolution succeeds, outsiders receive \(r V_j^{\text{transition}} \) which strictly exceeds \(r V_j^0 \) when the leader’s group wins. In short, outsiders can do no worse than suffering exclusion from the government, their current fate, by joining a revolution once already started.

Thus, for a revolution to not ensue, necessarily, each outsider must find it not worthwhile
to trigger a revolution. Since $N_O + N_I \equiv P$, it is necessary that:

$$(3) \quad \frac{N_O}{P} r V^{\text{transition}}_j \leq \left(1 - \left(1 - \frac{N_O}{P}\right) r\right) V^0_j, \forall j \notin \Omega^i.$$

It is immediate to see that this condition is easier to satisfy the greater is the size of the ruling coalition13.

We assume that the leader suffers $\psi \leq 0$ after a revolution attempt. We shall assume throughout that ψ is large enough to always make it optimal for leaders to want to dissuade revolutions. This assumption aims at capturing the extremely high cost of revolution for the rulers, in a fashion similar to Acemoglu and Robinson (2001, 2005) and will make it optimal for a leader to completely avoid revolutions.14

We also allow that insiders may start a revolution. A group of insiders from a single ethnicity can choose to leave the cabinet and mount a revolution with their own non-elite against the government. Again, group $j \in \Omega^i$ decides under Nash conjectures, with the group deviating from the ruling government unilaterally. As in all revolutions, they know that in the revolution sub-game triggered by their deviation they will be joined by all excluded outsiders against the leader. For a leader to ensure no such insider deviations from any of the included ethnicities, j, yields an additional condition:

$$(4) \quad \frac{N_O + n_j}{P} r V^{\text{transition}}_j + \left(1 - \frac{N_O + n_j}{P}\right) r V^0_j \leq V_j (\Omega^i), \forall j \in \Omega^i.$$

That is, a group that is currently an insider and receiving $V_j (\Omega^i)$ (the right hand side of the expression) does not want to join a revolution with the remaining outsiders that succeeds with probability $\frac{N_O + n_j}{P}$ and precipitates a transition of leader yielding $r V^{\text{transition}}_j$ (the left hand side of the expression). If the revolution fails, with probability $\left(1 - \frac{N_O + n_j}{P}\right)$, the previously insider group is banished and receives $r V^0_j$.

We can now define the leader’s utility from coalition Ω: $W_l(\Omega) = \psi * \mathcal{R}(\Omega) + V^{\text{leader}}_l (\Omega) * (1 - \mathcal{R}(\Omega))$ with a revolution indicator defined as:

$$(5) \quad \mathcal{R}(\Omega) = \begin{cases} 0 & \text{if both (3) and (4) hold,} \\ 1 & \text{otherwise.} \end{cases}$$

13Provided that $V^{\text{transition}}_j / V^0_j > 1$, and this ratio is unaffected by the size of the ruling coalition, which we shall demonstrate subsequently.

14As we will see when we come to the data, for our sample of 15 Sub-Saharan African countries, revolutions are rare events, validating our theoretical treatment of revolutions as arising ‘exogenously’ and not as events to be expected along the equilibrium path. Roessler (2011) reports 5 rebellions in total among these 15 countries between 1960 and 2004.
\(\mathbb{R}(\Omega)\) takes value 1 if either the opposition is large enough to gain in expectation from a revolution or there exists at least one group from within that would want to trigger a revolution by joining with the outsiders. Let \(V^\text{leader} (\Omega)\) denote the value of being the leader, if from ethnicity \(l\) and absent revolutions on the equilibrium path. The optimal coalition selected by a leader with ethnic affiliation \(l\) is then:

\[
\Omega^l = \arg \max_{(\Omega, l) \in \mathcal{O}} \{W_l(\Omega)\}.
\]

2.2 Transitions and Coups

2.2.1 Exogenous Transitions

Suppose that with probability \(\varepsilon\) something exogenous to the model happens to the leader, meaning that he cannot lead any more. We can think of any one of a number of events happening, including a negative health shock or an arrest mandate from the International Criminal Court. This will also lead to a ‘transition’ state, with value function \(V^\text{transition}_j\) as defined previously. As at time 0, not all ethnicities are necessarily equal in such a transition state as the probability having the next leader is given by \(p_j(N)\). The value of being in the transition state is

\[
V^\text{transition}_j = p_j(N) \bar{V}_j(\Omega^j_l) + \sum_{l=1, l \neq j}^N p_l(N) \left[I(j \in \Omega^l) V_j(\Omega^l) + \left(1 - I(j \in \Omega^l) \right) V^0_j \right],
\]

where \(I(.)\) is the indicator function denoting a member of \(j\) being in leader \(l\)’s optimal coalition.\(^{15}\) Notice that we ignore here the small probability event that individual \(j\) actually becomes the leader after a transition. It can be included without effect. The interpretation of equation (7) is that after an exogenous shock terminating the current leader, \(j\) can either become a member of the ruling coalition of a co-ethnic of his, with probability \(p_j(N)\), or with probability \(p_l(N)\) he obtains value \(V_j(\Omega^l)\) under leader of ethnicity \(l\) if included or \(V^0_j\) if excluded.

\(^{15}\) We slightly abuse notation by not considering that individuals of group \(j\) could potentially suffer a different destiny in case the group were split. We precisely characterize this when we explicitly represent \(V^\text{transition}_j\) below.
2.2.2 Coups

Coups do not destroy patronage value, and the success chance of a coup is independent of the size of the group of insiders (i.e. anyone can have the opportunity of slipping cyanide in the leader’s cup). Assume – in the spirit of Baron and Ferejohn’s (1989) proposer power – that each period one member of the ruling coalition has the opportunity to attempt a coup and the coup is costless. The identity of this individual is private information. If the coup is attempted, it succeeds with probability γ, and the coup leader becomes the new leader. If challenger j loses, he suffers permanent exclusion from this specific leader’s patronage allocation, getting V^0_j: $V^0_j = 0 + \delta \left((1 - \varepsilon) V^0_j + \varepsilon V^{\text{transition}}_j \right)$. Stationarity implies $V^0_j = \frac{\delta \varepsilon V^{\text{transition}}_j}{1 - \delta (1 - \varepsilon)}$.

Leaders transfer sufficient patronage to the elite they include from group j to ensure that these included elite will not exercise a coup opportunity. Since the returns from a coup are the gains from future leadership, a successful coup leader of ethnicity j also knows he will pay patronage x_i to each included elite $i \in \Omega^j$, were he to win power and become the next leader. Here, we impose sub-game perfection. This ensures that the conjectured alternative leader is also computing an optimal set of patronage transfers to his optimally chosen coalition. In computing his optimal x_i this coup leader also must dissuade his own coalition members from mounting coups against him, and so on. This leads to a recursive problem, which is relatively simple because of our focus on stationary outcomes. The current leader’s optimal transfers x_i will be the same as the optimal transfers that a coup leader would also make to an elite member of group i if he were to become leader and try to avoid coups. Hence, to ensure no coups arise, for each insider of ethnicity j, necessarily:

$$x_j + \delta \left((1 - \varepsilon) V^j_j \left(\Omega^j \right) + \varepsilon V^{\text{transition}}_j \right) \geq \gamma \left(\bar{x}_j + F + \delta \left((1 - \varepsilon) V^{\text{leader}}_j \left(\Omega^j \right) + \varepsilon V^{\text{transition}}_j \right) \right)$$

(8)

$$+ \left(1 - \gamma \right) \left(0 + \delta \left((1 - \varepsilon) V^0_j + \varepsilon V^{\text{transition}}_j \right) \right).$$

The left hand side of (8) is straightforward. As part of the ruling government an elite stays in power as before with probability $1 - \varepsilon$. With probability ε a transition occurs and then its fate is governed by equation (7). The first term on the right hand side of (8) indicates the value of a successful coup. The coup succeeds with probability γ, paying the new leader a flow value $\bar{x}_j + F$ plus the continuation value of being in the leadership position next
period, as long as nothing unforeseen realizes, which may happen with probability ε. If an ε shock hits, the newly minted leader moves into the transition state too. The second term on the right hand side of (8) indicates the value of an unsuccessful coup. The coup fails with probability $1 - \gamma$. In that case, the coup plotter gets zero while the same leader stays in power. He will likely be in jail or dead (if elites are dead, then this must be a dynastic valuation). However, the unsuccessful coup instigator may still get lucky, as the old leader may turn over with ε probability, hence moving into the transition state. In order to minimize payments to coalition members, the leader will make sure (8) binds.

Given the value functions $V_j(\Omega_l^l) = x_j + \delta ((1 - \varepsilon) V_j(\Omega_l^l) + \varepsilon V_j^{transition})$ and $V_{leader}(\Omega_l) = \bar{x}_j + F + \delta ((1 - \varepsilon) V_{leader}(\Omega_l) + \varepsilon V_j^{transition})$, we can again exploit stationarity to obtain: $V_j(\Omega_l^l) = \frac{x_j + \delta V_j^{transition}}{1 - \delta (1 - \varepsilon)}$, and $V_{leader}(\Omega_l) = \frac{\bar{x}_j + F + \delta V_j^{transition}}{1 - \delta (1 - \varepsilon)}$. Substituting these and V_j^0 defined above into equation (8) yields the binding (and hence optimal) patronage allocation for group j:

\begin{equation}
 x_j = \gamma (\bar{x}_j + F),
\end{equation}

where x_j is that level of per-person patronage that a leader from ethnicity $l \neq j$ must grant to the elite of group j to just dissuade each member of j’s elite from mounting a coup if the opportunity arises, and \bar{x}_j was defined in (2). Notice that this amount depends upon the member of j’s optimally chosen coalition, Ω_j, to be determined in the next section, but is independent of the leader’s ethnicity l. Any leader wanting to enlist an elite member from group $j \neq l$ needs to pay him at least x_j, or risk a coup from him. Additionally, the leader must have sufficient residual remaining to share with his own co-ethnics, so that none of them pursues a coup against him. Specifically, it must be the case that $x_l \leq \bar{x}_l$ where x_l is computed using (9) to ensure no coups arise from this set.

Consistent with what is known about dictator behavior, we shall analyze equilibria in which leaders do all in their power to ensure coups do not arise from members of their inner circle. Condition (9) tells us the minimal amount of patronage a leader must transfer to ensure this. When we come to the data we shall thus interpret observed coups as arising due to factors that cannot be influenced by patronage allocations to the inner circle, and these are then akin to exogenous terminations of a leader’s tenure, as modeled in Section 2.2.1.\footnote{Our interpretation of observed coups is thus as events arising from sources that are not within the}
2.3 The optimal coalition

Equation (6) defines the optimal coalition \(\Omega^l \) for a leader from group \(l \). In this section we demonstrate the existence and uniqueness of such an optimal coalition for each ethnicity.

2.3.1 Optimal Size

From equation (3), substituting for \(V_j^0 \) and rearranging, we have \(N_O \leq \frac{\delta \varepsilon (1-r)}{r(1-\delta)} P \). This implies that there exists a maximal number of individuals excluded from the government such that these outsiders are just indifferent to undertaking a revolution, that is \(N_O = \frac{\delta \varepsilon (1-r)}{r(1-\delta)} P \).

Define \(n^* \) as the minimal size of the forces mustered by the governing coalition, i.e. \(N_I + n_l \), such that a revolution will not be triggered: \(n^* = (1 - \frac{\delta \varepsilon (1-r)}{r(1-\delta)}) P \). The remaining \(P - n^* \) do not find it worthwhile to undertake a revolution. Note that \(n^* \) is independent of the leader’s ethnicity. Also let \(e^* = \lambda n^* \). \(e^* \) is the corresponding smallest number of elite (in control of \(n^* \) non-elite) such that with these \(e^* \) loyal to the government, the excluded elites will not find it worthwhile to mount a revolution. Since ethnic groups can be split in offers of patronage, it is always possible for a leader to meet this constraint precisely.

There are many different combinations of ethnic elites that could be combined to ensure this level of government supporters. For what follows it proves useful to define notation for the set of groups required to sum up to \(n^* \) if larger groups are included in that set ahead of smaller ones. To do this, use the ordering of groups by size to define \(j^* \) as:

\[
(10) \quad \sum_{i=1}^{j^*-1} n_i / P < \frac{n^*}{P} < \sum_{i=1}^{j^*} n_i / P.
\]

With all ethnicities up to and including the \(j^* \) largest included in a leader’s governing group, the remaining ethnicities would not find it worthwhile to mount a revolution.\(^{17}\)

\(^{17}\)Note that in order to rule out revolutions we have only considered the constraint coming from dissuading outsiders, i.e., equation (3). However since the constraint arising from dissuading revolutions triggered by defecting insiders, equation (4) is not necessarily weaker, and generally yields a different optimal size, it cannot be ignored. We do so here for brevity of exposition. The insider constraint is fully considered in the algorithm implementing our structural estimation, and turns out to be always weaker than the outsider one. We do not waste space considering its implications further.
2.3.2 Optimal Composition

Each leader faces a similar problem: how to ensure the loyalty of at least e^* elite. His own co-ethnic elite, e_l individuals for a leader of ethnicity l, share residual spoils proportionately with him. The remaining $e^* - e_l$ have their loyalty bought by patronage according to equation (9).

Since each leader will choose the ‘cheapest’ elite for whom loyalty can be assured, and since the patronage allocations required to ensure no coups are independent of the identity of the leader, these cheapest co-governing elite will be common across all leaders, unless there are a large number of elite receiving the same patronage transfers in an equilibrium. The following lemma shows that this cannot be the case, and the base set of included elites is in fact common across leaders.

Lemma 1. In any equilibrium in which there are no coups, there exists a ‘base’ set of governing elite which every leader includes in their governing coalition. If they are not from the leader’s own group, the leader transfers patronage according to (9). That is, $\exists C \subseteq N : j \in \Omega_l \forall j \in C$ and $\forall l$.

The proof of the lemma and all subsequent proofs are in the Appendix. The base groups are the ethnicities who are ‘cheapest’ to buy loyalty from. Since the transfers required to ensure loyalty are independent of the leader’s identity in any equilibrium, it then follows that leaders of all ethnicities will, in general, fill their government with the same ‘base’ set of ethnicities. An implication of this lemma is that, with a single exception, ethnic elites will be included *en masse* in each leader’s governing coalition. That is, if a member of elite j is in this cheapest set of size $e^* - e_l$ from leader l, then all other members of elite j will also be in this cheapest set. A leader will, at most, split the elite of a single ethnic group, and that being the ethnic group that is the most expensive (per elite) of those he chooses to include. Thus elite from this ‘marginal’ (i.e., $l’$s most expensive included) group will be the only ones not included wholly and hence denoted by a prime (‘). The notation $e'(l)$, without a subscript identifying the ethnicity of the group, thus refers to the number from the marginal group included by l, and the payments to $l’$s marginal group can similarly be denoted $x'(l)$.

14
The allocations determined in (9) thus describe a system of equations that determine a set of equilibrium ‘prices’. The base governing elites are paid these prices whenever a leader is not from their own group. The non-base governing elite may be paid this price if they are included in the government of a particular leader, and if not, then equation (9) determines a shadow price that would have to be paid by the leader if he did want to include them and ensure their loyalty. We now show that it is possible to order groups by the patronage required to ensure ethnic elites will not mount coups.

Lemma 2. Larger groups in the base set receive less patronage per member than smaller ones: for \(e_j > e_k \), \(x_j < x_k, \forall j, k \in C \).

Intuitively, members of larger groups are ‘cheaper’ to buy off than members of smaller ones because members of larger groups have less to gain from mounting a coup. The leader of a larger group must share the residual leadership spoils (i.e., the patronage left after sufficiently many other groups have been bought off to dissuade a revolution) amongst more co-ethnic elite. Consequently, smaller patronage transfers are sufficient to dissuade elites from larger groups from mounting coups.

The payments just sufficient to ensure elites of any group \(j \) do not undertake a coup depend only on the composition of \(j \)'s optimal leadership group, \(\Omega^j \), and the payments \(j \) makes to \(i \in \Omega^j, x_i \). These are thus independent of whether group \(j \) is in the base group of elite, and independent of whether the \(j \) would be split by another leader or not. This implies that equation (9) can be used to compute minimal payments required for incentive compatibility of each ethnicity. These \(N \) conditions are given by (9) for \(j = 1 \ldots N \).

We now characterize the solution to this system:

Proposition 1. In any equilibrium without coups, i.e. with patronage transfers satisfying conditions (9), if a leader includes any elite of ethnicity \(j \) in his governing coalition, then all elite of ethnicity \(i < j \) are included as well.

The proposition implies that in any equilibrium satisfying the no coup condition (9), leaders construct governing coalitions to comprise elites from larger ethnicities ahead of smaller ones. Since a leader of any ethnicity \(l \) finds it optimal to satisfy the same no coup condition for any admitted ethnic group, given by \(x_j \) satisfying (9) and they first fill their
government with elites from larger ethnicities, and since each one has to buy off $e^* - e_l$ elite from other ethnicities we have:

Lemma 3. The base group of ethnicities included whole in the optimal governing coalition of any leader $l \in \mathcal{N}$ is $\mathcal{C} \equiv \{1, ..., j^* - 2\}$.

We can characterize the remaining $e^* - \sum_{i=2}^{j^* - 2} e_i - e_l$ ethnicities for any leader l.

Proposition 2. The optimal governing coalition for leader of ethnicity l, Ω^l is as follows:

$$e \in \Omega^l \equiv \begin{cases} e_1...e_{j^*-l},...e_{j^*-1}, e_{j^*}' & \text{for } l \leq j^* - 1 \\ e_1...e_{j^*-2}, e_{j^*-1}'(l) & \text{for } l \in [j^*, j^+] \\ e_1...e_{j^*-1}, e_{j^*}'(l) & \text{for } l > j^+ \end{cases}$$

where $j^+ < N$ if $\exists j^+ : e^* < \sum_{i=1}^{j^*-1} e_i + e_{j^+}$ and $e^* > \sum_{i=1}^{j^*-1} e_i + e_{j^*+1}$, otherwise $j^+ = N$; and where $e_{j^*}' = e^* - \sum_{i=1}^{j^*-1} e_i$ of group j^*, $e_{j^*-1}'(l) = e^* - \sum_{i=1}^{j^*-2} e_i - e_l$ of group $j^* - 1$, and $e_{j^*}'(l) = e^* - \sum_{i=1}^{j^*-1} e_i - e_l$ of group j^*.

All leaders agree on the composition of their base coalition of members, but differ in how they choose to round off the remainder of their cabinet. Differences stem from the size of their own ethnic group. A leader from a small group will generally need to choose a larger split than a leader from a large group since the base members added to his own co-ethnics sum to a smaller number, leaving him to include more insiders in order to make his coalition sum up to e^*. Payments accruing under optimal coalitions also have the following general features:

Proposition 3. 1. Larger ethnicities receive more total patronage than smaller ones. That is, for $n_i > n_j$, $x_i e_i > x_j e_j$. 2. The leadership premium accruing to the elite of a leader’s own ethnic group, if in the base, is independent of that group’s size.

Point 1 of this proposition and Lemma 2 jointly imply that patronage increases with group size, but less than proportionately. We have so far described features of the optimal payments and optimal coalitions that necessarily must hold in any equilibrium satisfying stationarity, no endogenous coups, and no endogenous revolutions. We now show that if the patronage value of government is sufficiently high, an equilibrium with these features exists, and moreover generates a unique patronage transfer.
Proposition 4. Provided the patronage value of government is sufficiently high, the patronage transfers just sufficient to dissuade members of each ethnic elite from mounting a coup; i.e. for $j \in [1, j_* - 1]$

$$x_j e_j = \gamma \left[1 - x_j e'_j - \frac{\gamma F \sum_{i=1}^{j_* - 1} e_i}{1 - \gamma} \right] + \frac{\gamma F}{1 - \gamma} e_j,$$

where

$$x_j e'_j = \left(1 - \frac{e'_j}{e_{j*}} \gamma (j_* - 2 + \frac{e'_j - 1}{e_{j* - 1}}) \right)^{1-1} \times \gamma \left(1 - \frac{e'_j - 1}{e_{j* - 1}} \gamma \left[1 - \frac{\gamma F \sum_{i=1}^{j_* - 1} e_i}{1 - \gamma} \right] - \frac{\gamma F}{1 - \gamma} \left(\sum_{i=1}^{j_* - 2} e_i + e'_j - 1 \right) \right) \left(e'_j - 1 \right),$$

and

$$e'_j = \lambda P \left(1 - r - \sum_{i=1}^{j_* - 2} n_i / P - n_{j_* - 1} / P \right), e'_{j* - 1} = \lambda P \left(1 - r - \sum_{i=1}^{j_* - 2} n_i / P - n_{j_*} / P \right).$$

These leaders’ coalitions, and supporting transfers are the unique sub-game perfect stationary equilibrium of the model in which there are no endogenous coups or revolutions.

It is now also possible to explicitly specify the value function $V^{\text{transition}}_j$ defined in equation (7), details of which we leave to the Appendix. The characterization of the uniquely optimal coalition for each leader and of the patronage shares are both features extremely valuable to the structural estimation of the model, to which we now proceed.

3 Econometric Specification and Estimation

To operationalize the solution in Proposition 4 additional assumptions are necessary. We assume that the allocated shares of patronage are only partially observable due to a group-specific error ν_{jt}. We imperfectly observe $\{x_i e'_i (l)\}_{i \in \Omega^l}$, the vector of the shares of patronage allocated to ethnic groups in the ruling coalition (and consequently we also imperfectly observe the leader group’s share $\bar{x}_l e_l$). Every player in the game observes such shares exactly, but not the econometrician. For excluded groups $j \notin \Omega^l$ and $j \neq l$ we also assume the possibility of error to occur. For instance, consider the case of erroneously assigning a minister to an ethnic group that is actually excluded from the ruling coalition.
At time \(t \), let us indicate \(\hat{x}_{jt} = x_j \) if \(j \in \Omega^l \) and \(\hat{x}_{jt} = 0 \) if \(j \notin \Omega^l \) and \(j \neq l \). Note that the time dimension in \(\hat{x}_{jt} \) arises from the identity of the leader \(l \) shifting over time due to transitions, as per Proposition 2. We define the latent variable \(X^*_{jt} = \hat{x}_{jt} \epsilon'_j (l) + \nu_{jt} \) and specify:

\[
X_{jt} = \begin{cases}
X^*_{jt} & \text{if } X^*_{jt} \geq 0 \\
0 & \text{if } X^*_{jt} < 0
\end{cases}
\]

where \(X_{jt} \) indicates the realized cabinet post shares to group \(j \in \mathcal{N} \), hence \(X_{jt} \in [0,1] \) with allocation vector \(X_t = \{X_{1t},...,X_{Nt}\} \). Note that (11) ignores right-censoring for \(X^*_{jt} \geq 1 \), as \(X_{jt} = 1 \) never occurs in the data.

The error term \(\nu \) is assumed mean zero and identically distributed across time and ethnic groups. The distribution of \(\nu \) with density function \(\beta(.) \) and cumulative function \(B(.) \) is limited to a bounded support \([-1,1]\) and \(\nu \sim Beta(-1,1,\xi,\xi) \) with identical shape parameters \(\xi \), a particularly suited distribution function.\(^{18}\)

As noted in Adachi and Watanabe (2007), the condition \(\Sigma_{i\in\mathcal{N}} X_{it} = 1 \) can induce \(\nu \) to be dependently distributed across groups. Generally, independence of the vector \(\{\nu_{it}\}_{i\in\mathcal{N}} \) is preserved since \(\Sigma_{i\in\mathcal{N}} X_{it} = 1 \neq \Sigma_{i\in\mathcal{N}} X^*_{it} \) due to censoring, but not for all realizations of the random shock vector \(\{\nu_{it}\}_{i\in\mathcal{N}} \). To see this, notice that if all the observations happen to be uncensored, then \(\Sigma_{i\in\mathcal{N}} X_{it} = \Sigma_{i\in\mathcal{N}} X^*_{it} = 1 \), implying that \(\Sigma_i \nu_{it} = 0 \), which would give to the vector \(\{\nu_{it}\}_{i\in\mathcal{N}} \) a correlation of \(-1\). In this instance we would only have \(N - 1 \) independent draws of \(\nu \) but \(N \) equations. A solution to this problem is to systematically employ only \(N - 1 \) independent equations for each observed cabinet. Conservatively, we always exclude the smallest group’s \((N)\) share equation from estimation.

Absent any information on \(\lambda \), the model can still be estimated and one is able to identify the product \(\lambda PF \) (but not \(\lambda \) and \(F \) separately). We follow this approach, set in the estimation \(\lambda P = 1 \), and rescale \(F \) when we discuss our results.\(^{19}\) We also calibrate \(\delta = .95 \).

Given the vector of model parameters \(\theta = (\gamma,F,r,\xi,\alpha,\varepsilon) \), conditional on the vector of

\(^{18}\)For a discussion see Merlo (1997), Diermeier, Eraslan, and Merlo (2003), and Adachi and Watanabe (2007).

\(^{19}\)Although systematic studies of African elites are rare, survey evidence in Kotzé and Steyn (2003) indicates \(\lambda \) to be possibly approximated by population shares of individuals with tertiary education in the country. Any bias introduced by employing tertiary education shares as proxies for \(\lambda \) can be, in theory, assessed by comparing estimates of the other parameters of interest relative to our baseline which operates without any assumption on the size of \(\lambda \). For space limitations we do not explore this avenue here.
exogenous characteristics $Z = (N, \lambda, \delta)$ and leader’s identity l, coalition Ω^l can be computed by the econometrician. This implies that we can partition the set of ethnic groups in a country in four groups for given vector X_t: the set of predicted coalition members that receive cabinet seats $G_1 = \{j \in \Omega^l \wedge X_{jt} > 0\}$; the set of predicted coalition members that do not receive cabinet seats $G_2 = \{j \in \Omega^l \wedge X_{jt} = 0\}$; the set of outsider groups that are misallocated posts $G_3 = \{j \notin \Omega^l \wedge X_{jt} > 0\}$; the set of outsider groups that receive no post $G_4 = \{j \notin \Omega^l \wedge X_{jt} = 0\}$. We call a partition of $N \setminus l \rho = \{G_1, G_2, G_3, G_4\}$ a regime. Given Z and l, the likelihood contribution of the observed cabinet allocation is X_t in regime ρ is:

$$L_\rho(X_t|Z,l;\theta) = \prod_{i=1}^{N-1} \beta(X_{it} - \hat{x}_{it}'e_i'(l))^{I(i \in G_1,G_3)} B(-\hat{x}_{it}'e_i'(l))^{I(i \in G_2,G_4)},$$

where $I(.)$ is the indicator function. Notice that this likelihood contribution is similar in spirit to a type I Tobit model and the estimator shares its consistency and asymptotic efficiency properties.

Define for time period τ an indicator function for $I_\tau(\rho)$ taking value 1 if observed allocation X_τ and optimal coalition Ω^l fall in regime ρ and 0 otherwise. Define a leadership spell as the period a country is ruled by a specific leader y of ethnicity l_y starting to rule at year t_y and ending at T_y. Define for each country the sequence $Y = \{l_1, t_1, T_1; \ldots l_y, t_y, T_y; \ldots; l_T, t_T, T_T\}$. Given Z and the sequence of coalitions observed in a country $\{X_\tau\}$ the sample likelihood function under a leadership y with a leadership spell of duration T_y is:

$$L\left(\{X_\tau\}_{\tau=1}^{T_y} | Z, y; \theta\right) = \prod_{\tau=t_y}^{T_y} \prod_{\rho} \left[L_\rho(X_\tau|Z,y;\theta)\right]^{I_\tau(\rho)}.$$

The likelihood function for each country in our sample is:

$$L\left(Y, \{X_\tau\}_{\tau=t_y}^{T_T} | Z; \theta\right) = \prod_{y=1}^{Y} \prod_{\ell} \left[1 - \varepsilon(T_y - t_y)\right] \varepsilon^{Y(T_y - t_y)} \left[L\left(\{X_\tau\}_{\tau=t_y}^{T_y} | Z, y; \theta\right)\right].$$

In principle, we could estimate a vector $(\gamma, F, r, \xi, \alpha, \varepsilon)$ for each country. However, the identification of the parameters (α, ε) relies on variations of leaders within countries, which are rare in some political systems (e.g., Kenya, Cameroon, etc.). The maximum likelihood estimation we employ will therefore allow for country-specific coup, revolution, and measurement parameters (γ, F, r, ξ), but employ the full sample of countries to estimate a single vector
Carlo simulations. For given parameter values we simulated country histories and made sure the estimation based on the simulated data converged on the original structural values.

Given the parsimony of our model, the likelihood function depends on a relatively small number of parameters. This allows for a fairly extensive search for global optima over the parametric space. In particular, we first employ a genetic algorithm (GA) global optimizer with a large initial population of 10,000 values and then employ a simplex search method using the GA values as initial values for the local optimizer. This approach combines the global properties of the GA optimizer with the proven theoretical convergence properties of the simplex method. Repeating the optimization procedure consistently delivers identical global optima.

4 Data and Descriptive Statistics

In order to operationalize the allocation of patronage shares we rely on data on the ethnicity of each cabinet member for fifteen African countries, sampled at yearly frequency from independence to 2004. The full data description and the construction of ethnicity and ministerial data, as well as evidence in support of the importance of this executive branch data, is available in Rainer and Trebbi (2011). Here we will illustrate briefly the process of data collection for each country. We devised a protocol involving four stages.

First, we recorded the names and positions of all government members that appear in the annual publications of Africa South of the Sahara or The Europa World Year Book between 1960 and 2004. Although their official titles vary, for simplicity we refer to all the cabinet members as “ministers” in what follows.

Second, for each minister on our list, we searched the World Biographical Information System (WBIS) database for explicit information on his/her ethnicity. Whenever we could not find explicit information on the minister’s ethnicity, we recorded his or her place of birth and any additional information that could shed light on his/her ethnic or regional origin (e.g., the cities or regions in which he or she was politically active, ethnic or regional organizations he/she was a member of, languages spoken, ethnic groups he/she wrote about, etc.).

Third, for each minister whose ethnicity was not found in the WBIS database, we conducted an online search in Google.com, Google books, and Google Scholar. Again, we pri-
arily looked for explicit information on the minister’s ethnicity, but also collected data on his/her place of birth and other information that may indicate ethnic affiliation. In addition to the online searching, we sometimes also employed country-specific library materials, local experts (mostly former African politicians and journalists with political expertise), and the LexisNexis online database as alternative data sources.

Fourth, we created a complete list of the country’s ethnic groups based on ethnic categories listed by Alesina, et al. (2003) and Fearon (2003), and attempted to assign every minister to one of these groups using the data collected in the second and third stages. When our sources explicitly mentioned the minister’s ethnicity, we simply matched that ethnicity to one of the ethnic groups on our list. Even when the explicit information on the minister’s ethnicity was missing, we could often assign the minister to an ethnic group based on his or her place of birth or other available information. Whenever we lacked sufficient evidence to determine the minister’s ethnic group after this procedure, we coded it as “missing”. The exact ethnic mappings are available in Rainer and Trebbi (2011).

This paper employs completed data since independence from colonization on Benin, Cameroon, Cote d’Ivoire, Democratic Republic of Congo, Gabon, Ghana, Guinea, Liberia, Nigeria, Republic of Congo, Sierra Leone, Tanzania, Togo, Kenya, and Uganda. In these countries we were able to identify the ethnic group of more than 90 percent of the ministers between 1960 and 2004. Our cross-sectional sample size exceeds that of most studies in government coalition bargaining for parliamentary democracies.20

Table 1 presents the basic summary statistics by country for our sample, while Table 2 presents summary statistics further disaggregated at the ethnic group level.

4.1 Stylized Facts

An informative descriptive statistic is the share of the population not represented in the cabinet for our African sample. Table 3 reports country averages. African ruling coalitions are often in the 80 percent range. Just as comparison, in parliamentary democracies typically only 50 percent of the voters find their party represented in the cabinet due to simple

majoritarian incentives (arguably not the relevant dimension for African autocracies). Given no ethnic group in our sample represents more than 39 percent of the population, and in no country in our sample does any leader’s group represent more than 30 percent of the population, Table 3 implies that at least some members of non-leader ethnic groups are always brought into the cabinet.

To further illustrate this feature, Table 4 reports a reduced-form specification with \(c \) indicating a specific country, \(j \) the ethnic group, and \(t \) the year of the likelihood of inclusion in a coalition:

\[
M_{cjt} = \alpha M_{1n}^{j} P_c^M + \gamma^M + \delta^M + \eta_{cjt}
\]

and with \(M_{cjt} \) indicator for ethnicity \(j \) at time \(t \) belonging to the cabinet. In a Probit specification in Column (1), the marginal effect on the ethnic group share of the population, \(\alpha M_{1} \), is positive and statistically significant. An extra 1 percent increase in the share of the population of a group increases its likelihood of inclusion by 6.6%. This underlines a strong relationship between size and inclusion in government. It is easy to see why. 94.5% of all group-year observations representing 10% of the population or more hold at least one position. 83.7% of those with 5% population or more hold at least one position. Column (2) adds a control for the party/group being the largest in terms of size, in order to capture additional nonlinearities, with similar results. Repeating the same exercise, but with respect to the likelihood of a group holding the leadership, reveals an important role for size as well. Table 4 Column (3) reports a marginal effect on the likelihood of leadership of 54 percent per extra 1 percent increase in the share of the population of a group. This stylized fact supports our assumption in (1).

We can also assess the overall degree of proportionality of African cabinets. The issue of disproportionality is the subject of a substantial literature in political economics and political science as a feature of electoral rules.\(^{21}\) Some Africanists have discussed the issue of cabinet disproportionality in detail (Posner, 2005), emphasizing how for countries with few reliable elections, cabinet disproportionality might be a revealing statistic. Recalling that \(X_j \) indicates the realized cabinet post shares to group \(j \), a first operational concept is

\(^{21}\)In particular seat-votes differences. Gallagher (1991) explores the issue in detail and Carey and Hix (2011) offer a recent discussion.
the degree of proportionality of the cabinet. A perfectly proportionally apportioned cabinet is one for which for every \(j \in \mathcal{N} \), \(n_j/P = X_j \). Governments, particularly in autocracies, are considered to operate under substantial overweighting (\(n_j/P < X_j \)) of certain factions and underweighting (\(n_j/P > X_j \)) of other ethnic groups. As discussed in Gallagher (1991), deviations from proportionality can be differentially weighted, with more weight given to large deviations than small ones or focusing on relative versus absolute deviations. Following Gallagher, we focus on his preferred measure of disproportionality, the least squares measure
\[
\pi_{LSq}^t = \sqrt{\frac{1}{2} \sum_{i=1}^{N} (100 \times (X_{it} - n_i/P))^2}.
\]

We report the time series for \(\pi_{LSq} \) for each country in Figure 1. The average levels of disproportionality for the elites in each country are reported in Table 3, with larger values indicating less proportionality and an average level of 16.72. As a reference, using party vote shares and party cabinet post shares in the sample of democracies of Ansolabehere et al. (2005) \(\pi_{LSq} = 33.97 \) on average. Notice that \(\pi_{LSq} \) captures well-known features of the data, for example, the political monopoly of the Liberian-American minority in Liberia until the 1980’s. Overall, African cabinet allocations tend to closely match population shares with cabinet seat shares, and disproportionality is low.

To further illustrate this feature, Table 5 reports a straightforward reduced-form regression of cabinet shares on population shares:
\[
X_{cjt} = \alpha_{1} X_{jc} P_c^{-1} + \alpha_{2} \gamma_{cjt} + \gamma_{c} X_{t} + \delta_{t} X_{cjt} + \eta_{cjt}
\]
with \(L_{cjt} \) an indicator function for the country leader belonging to ethnicity \(j \) at time \(t \). \(L_{cjt} \) captures the straightforward nonlinearity stemming from leadership premia. Column (1) in Table 5 shows two striking features. First, the coefficient on the ethnic group share of the population \(\alpha_{1} X \) is positive and statistically significant, indicating a non trivial degree of proportionality between population shares and cabinet allocations, around .77. This rejects clearly the hypothesis of cabinet posts being allocated independently of the population strength of a group and at the whim of the leader and verifies point 1 of Proposition (3). Second, the leader’s seat premium in the cabinet is precisely estimated, positive, but not excessively large: around 11 percent. Given an average cabinet size of 25 posts in our African sample, the leadership premium can be assessed as an additional 1.75 = 25 \times (0.11 - 1/25)
ministerial positions on top of the leadership itself.

A more subtle implication of our model is the combination of Proposition (3) and Lemma (2), as for two non-leader groups \(j \) and \(k \), if \(e_j > e_k \), then \(x_j e_j < x_k e_k \) but \(x_j < x_k \). Column (2) includes the square of the group size to capture the reduction in representation for larger groups. The coefficient on \((n_{jc}/P_c)^2 \) is negative and statistically precise. This reduced-form finding supports the view of larger groups gaining seats but being relatively less well represented than smaller ones; the specific type of nonlinearity implied by Lemma (2). In Column (3) we restrict the analysis to non-leader ethnicities, with more precise estimates. Figure 2 gives a graphical representation of this result fitting a nonparametric lowess of cabinet shares as function of population shares, pooled across countries and non-leader ethnicities. Note that the bandwidth of the lowess is 0.8, so the curvature at the upper extreme of the graph is not driven by a few large observations, but estimated using groups as low as 0.04. Overall, the concavity of the reduced-form relationship is a validation of this specific aspect of our model.

The allocation of top positions in African cabinets is explored in Column (4) of Table 5. We include as top ministerial posts: the Presidency/Premiership, Defense, Budget, Commerce, Finance, Treasury, Economy, Agriculture, Justice, Foreign Affairs. Both size and leadership status are positive and significant. Quantitatively, it is surprising that \(\alpha_1 X_{-1} \) remains sizable in Column (4), close to that estimated in Column (1). Notice also how the effect of leadership increases for top ministerial appointments, this is however the result of the leader representing a larger share of a smaller set of posts. Given an average top cabinet size of 9 posts, the leadership premium can be assessed as an additional 0.87 = 9 * (.208 − 1/9) ministerial positions on top of the leadership itself.

Not only do African cabinet allocations tend to mirror population shares closely, but they do so consistently over time. As an illustration, we report the time series of \((X_{it} - n_{it}/P) \) across all ethnic groups in Guinea (Figure 3) and in Kenya (Figure 4)\(^{22}\). The time series hover around zero, unless the leader is from that specific ethnicity (in which case there is a positive gap). As predicted by our model, there appear to be leadership premia. In Guinea the shift in power between Malinke and Susu in 1984 at the death of Ahmed Sékou Touré,

\(^{22}\)Similar patterns recur across the other countries.
a Malinke, produced a visible drop in overweighting of that group and a jump for the Susu, the new leader’s group. Similar dynamics are evident under Moi in Kenya. Overall, these stylized facts strongly justify our focus on stationary equilibria.

5 Results

5.1 MLE Results

Table 6 presents our maximum likelihood estimates of the model. We report the full vector of model parameters \(\theta = (\alpha, \varepsilon, \gamma, F, r, \xi) \) where we use the notation \(\gamma = (\gamma^{BEN}, \gamma^{CMR}, ..., \gamma^{UGA}) \), \(F = (F^{BEN}, F^{CMR}, ..., F^{UGA}) \), and so on, for country-specific parameters.

Beginning from the common parameters governing the leadership transitions, we find immediate support for the view that larger groups are more likely to produce leaders, i.e. \(\alpha > 0 \). In addition, \(\alpha \) is precisely estimated at \(11.5 > \exp(1) \), implying that large groups are substantially overweighted relative to small groups. This finding highlights increasing returns to scale in terms of likelihood of leadership appointment for ethnic groups. If it were possible, different ethnic groups could gain in terms of likelihood of generating a leader by merging.

Regarding the likelihood of exogenous breakdowns in power, inclusive of uninsurable coups or other shocks, we estimate an \(\varepsilon \) around 11.5\%, again very statistically significant. This indicates a fairly high likelihood of per-period breakdown and translates into an effective per period discount rate of \(\delta(1 - \varepsilon) = .95 \times .905 = 84\% \).

Concerning the country-specific parameters, let us begin from the revolution technology parameter \(r \), where \(1 - r \) is the share of value destroyed by the revolution. For virtually every country, \(r \) is precisely estimated. In a fashion completely consistent with the large ruling coalitions highlighted in Figure 1, Table 6 reports values of \(r \) generally above 80\%. Larger values of \(r \) imply cheaper, less destructive revolutions. Cheaper revolutions, in turn, imply larger threats to the leader from outsiders, pushing him toward more inclusive governments.

It is not surprising, then, that we estimate \(r = 0.99 \) for Guinea, a country with average

\[23\] Note also that our assumption about i.i.d. \(\varepsilon \) transitions is valid. A diagnostic Breusch and Pagan (1980) LM test for cross-country dependence of \(\varepsilon \) cannot reject independence with a p-value of .84 and an Arellano-Bond panel model of a leader transition on its lag cannot reject serial independence with a p-value of .95.

\[24\] It should also be clear from this calculation why we calibrate \(\delta = .95 \), as it cannot be separately identified from \(\varepsilon \).
observed coalitions around 92% of the population (the highest of all 15 countries). There are only 9 ethnicities in Guinea and the top 7 by size all have nontrivial observed cabinet shares, while the bottom two groups are only 1% of the population each. So, one could imagine the estimator trying to include at least the top 7.

The precision parameter ξ governing the Beta distribution of the error terms is generally quite high. Larger values of ξ imply tighter distributions of the ν’s in (11) and underline a good fit of the model (further explored below). The country with the lowest precision is Liberia, with a fit $\xi = 24.5$.

Indeed Liberia requires a short diversion. One can recall that the stylized facts reported in Figure 1 present Liberia as a clear outlier during the 1960-1980 period; a period of American-Liberian rule. During the Americo-Liberian era, the country was essentially ruled by a small minority of freed American slaves repatriated to this particular area since the 1820s under the auspices of the United States government. On average the Americo-Liberian regime concentrated around 50% of cabinet seats into a 4% population minority. The international economic and political support for the Americo-Liberians sustained their central rule, but waned over time. With a coup ending the regime in 1980. The Americo-Liberian period clearly clashes with our model’s assumptions as we are ignoring the vast military-economic advantage and international support with which the Americo-Liberians were endowed. We consider Liberia in much of the discussion below as a useful falsification case.

The coup technology parameter, γ, and the private returns to leadership F (expressed as share of total transferable patronage) are of particular interest for understanding the allocation of seats. Increasing γ for given F makes coups more threatening for a leader because of their higher success rate, and induces a more proportional allocation of government posts. Increasing F for given γ makes coups more threatening for a leader as well, because of the higher value of taking over if the coup is successful, and this again induces a more proportional allocation of posts in order to avoid coups. Both parameters are generally precisely estimated in Table 6. For Benin, Cameroon, and Gabon the model does not pin down γ and F precisely, pushing γ toward a corner of 0 and F toward very large valuations. Uganda instead displays an imprecise, low γ. As we will show below, the model fit for these countries is not particularly poor even though estimates do not allow us to precisely assess
the role of γ and F independently. Only Liberia, and for the reasons stated before, seems to reject the model.

Averaging the estimates of γ in the ten countries for which we have interior estimates and excluding Liberia, one can notice the importance of the coup threat in driving the allocation of cabinet posts. The average likelihood of coup success γ is fairly large, about 35%. The quantitative interpretation of the reported F, which averages at 2.5, is harder. First of all, we need to scale by λP the estimates of F reported in Table 6. This delivers private rents to the leader as a share of total value of patronage in the country. Using as benchmark for the elite share of the population $1/1000$ gives us a scaling factor $1/\lambda P = (0.001 * P)^{-1}$. Averaging the estimates of the rescaled F, implies that yearly private rents as share of total patronage allocated in a country of 20 million people are around $2.5/(0.001 * 20M)$, probably not an unrealistic figure when multiplied by total value of government patronage in the country.25

Table 7 reports two additional statistics and their standard errors. First we compute the structural slope of cabinet allocations as function of size of the ethnic group $\gamma F/(1 - \gamma)$. These estimates are positive and statistically significant with the exception of Liberia, which is negative, implying over-representation of small groups (an unsurprising fact given the pre-1980 era). Positive slopes imply that a larger group size predicts a larger share of posts (and patronage), as implied by point 1 of Proposition (3). For the ten countries for which we have interior estimates of γ and F and excluding Liberia, the slope is also statistically smaller than 1 implying under-representation of non-leader groups and positive leadership premia, which we verify in the second column of Table 7. For Benin, Cameroon, Gabon, and Uganda point 1 of Proposition (3) is also verified, as the estimated slope is positive and significant. Concerning the estimated leadership premia accruing to a member of the base coalition, typically the estimates are precise and positive, consistent with our theoretical setup. We find average leadership premia across our countries around 9 – 12 percent share of the cabinet seats. Notice also that a leadership premium of about 12 percent is a figure similar to that which was estimated in Section 3 in the reduced-form relationship.

25As an hypothetical benchmark one can consider a country with a GDP of 30 Billion and government spending/GDP of 30% (similar to current Kenya or Cameroon in our sample). This would deliver yearly private rents from office around 1.4 million. Such estimates, however, have to be considered with extreme caution, as it is particularly complex to exactly quantify the absolute size of both ethnic elites and government patronage.
An important check comes from the analysis of top cabinet positions, like defense or finance. Our results are not just an artifact of the leadership allocating minor cabinet roles to ethnicities different from the leader’s own. The results hold true even when restricting the analysis to the subsample of the most powerful ministerial posts. In Tables 8-9 we report ML estimates for a model that gives weight 1 to the top posts and 0 to all other cabinet appointments. Proportionality and leadership premia appear remarkably stable across the top position model and the full sample model, although the estimated precision parameters ξ governing the Beta distribution are now lower, a natural consequence of the coarser nature of the allocated top shares. Given the precision of our ML estimates, we can typically reject equality of the estimates across the two models, but the magnitudes appear economically similar. Given the crucial strategic role of some of these cabinet positions within autocratic regimes (e.g. ministry of defense), it appears natural to infer that some real power is actually allocated from the leadership to other ethnic factions.

Finally, in Appendix Table A1 we report the results for the full model under the more general revolution contest function
\[
\sum_{i \in N_0} n_i \chi \frac{\sum_{i \in N_0} n_i^\chi}{\sum_{i \in N_0} n_i^\chi + \sum_{i \in N_I} n_i^\chi},
\]
which nests our specification and allows for ethnic fractionalization within contesting groups in a revolution to alter effectiveness due to coordination costs χ. The baseline model in Table 6 imposes $\chi = 1$, while Table A1 shows that a model with a χ slightly below 1 fits the data better in a majority of countries. This suggests another reason for leaders to prefer elites from larger groups in their governing coalitions – in addition to their being ‘cheaper’ via the model’s coup constraint. A positive χ value lower than 1 implies that reducing fractionalization increases the effectiveness of given government forces in the contest function. The other parameter estimates are largely unaltered and we focus on the simpler $\chi = 1$ specification from here on.

5.2 In-Sample and Out-of-Sample Goodness of Fit

Our model predicts that ruling coalitions should include first and foremost large groups, that the share allocated to such groups should be stable over time, and that cabinet posts should be allocated proportionally to group size but at diminishing rates. Failing to match any of these moments in the data will deliver poor fit of the model. We now illustrate the
goodness of fit of our model by focusing on a set of characteristics of African coalitions.\footnote{In the appendix we also report the fit obtained under a generalization of the model that allows fractionalization to influence the effectiveness of coalitions under the contest function. That model embeds the linear contest functions here as a special case, and by allowing non-linearities, does an even better job in matching characteristics of the data.}

In Sample

We begin by checking the in-sample fit over the entire 1960-2004 period using the estimates of Table 6 and the implied optimal coalitions. Figure 5 reports the observed coalition sizes in terms of share of population represented by each group in government. This means that an observed average coalition of .7 in Ghana indicates that summing up the ethnic shares of the population of every ethnicity with at least one minister covers 70% of the population on average each year over the 1960-2004 period. Our model predicts a very similar coalition size, about 73%. With the exception of Liberia and Tanzania our model fares very well in predicting the size of the coalitions as fractions of the population. On average we are able to correctly predict around 80% of the population based on the assignment to government insiders or outsiders, as reported in Figure 6. This means that our model accurately predicts the membership of the cabinet in terms of relevant groups in the population. Even considering simple counts of groups correctly predicted in or out of government, i.e. equally weighing very large and very tiny ethnicities, we observe a high success rate, often correctly assigning more than 2/3 of the ethnic groups in our sample. Excluding Liberia, the observed coalitions cover on average 79.4% of the population based on ministerial ethnic affiliations, while our in-sample prediction is 84.4%.

Concerning how we fit government shares, and not just government participation, it would be cumbersome to report shares for every ethnicity across 15 countries. Instead, we focus on two specific typologies of groups which are of paramount relevance. We fit the cabinet shares of the ethnic group of the leader in Figure 7 and the cabinet shares of the largest ethnic group in the country in Figure 8. These two ethnic groups do not overlap substantially (78% of the leader’s group observations are not from the largest ethnicity). Once again, inspection of the figures reveals a very good match of the theoretical allocations and the allocations observed in the data. Excluding Liberia, observed cabinet post shares to leaders are 20.2% on average, while our model predicts 22%. Excluding Liberia, observed
cabinet post shares to the largest ethnicity are 21.6% on average, while our model predicts 23.8%.

Out of Sample

So far the analysis has focused on the in-sample fit of the model. In structural estimation a good in-sample fit may be occasionally achieved through parameter proliferation in the model. Sufficiently many degrees of freedom can fit almost any type of data generating process. Our model is extremely parsimonious in its parametric choices, so this should not appear a major concern, but still we wish to push this assessment further with a demanding set of checks.

We present in Figures 9-12 the out-of-sample fit of our model based on the following design. We begin by restricting the estimation of the model to the 1960-1980 sample and then try to match, based on the ML estimates from this early period, the coalition size, coalition membership, and seat share allocations of cabinets for the 1980-2004 period. With the exception of Liberia, which is clearly even more penalized by the focus on its Americo-Liberian phase, the out-of-sample fit is precise. Our model correctly predicts the share of the population with and without representation in the government and the overall population share of the included ethnic groups with a very high success rate (Figures 9-10). Excluding Liberia, the observed coalitions cover on average 82.5% of the population based on ministerial ethnic affiliations, while our out-of-sample prediction is 76.3%. Predicted leadership shares from the model are generally accurate as well (see Figure 11). Excluding Liberia, observed cabinet post shares to leaders are 19.1% on average, while our model predicts 24.1%. Note that this is true even if almost systematically the ethnicities ruling these African countries in the 1980-2004 differ from those ruling in 1960-80. Shares of cabinet seats to the largest ethnicity are also correctly predicted out of sample. Excluding Liberia, observed cabinet posts shares to the largest ethnicity are 21.1% on average, while our model predicts 23.5%. Overall, this precise out-of-sample goodness of fit not only reinforces the empirical value of our analysis, but also strongly supports our assumption on the stationarity of the coalition formation equilibrium.28

27 These estimates are available from the authors upon request.

28 The same quality of fit is also displayed in the top cabinet positions sample as well, as produced by Tables 8 and 9. We do not report the figures for brevity, but are available upon request.
5.3 Fit Along Additional Dimensions

By considering the relative fit of the model over different subsamples, some of the country institutional and political details, deliberately omitted from the model, can be assessed. Were the model missing relevant institutional dimensions, the fit would drastically deteriorate in that specific subsample.

Informally, we can observe in Table 6 that fit and precision of our estimates are consistent across English and French colonial origin countries and East and West African countries. Our model seems to capture allocation mechanisms of historically different regimes, occasionally even delivering quantitatively similar outcomes (e.g. Guinea and Kenya in Table 6).

More formally, we can evaluate different subsamples separately, assessing whether the main results are driven by any specific dimension of the data and whether the fit is consistently accurate across samples. We chose two important dimensions: military nature of the regime and form of government. For military versus civilian rule, about 58% of our country-year observations fall in the latter category based on a classification that incorporates both Archigos and the Europa Year Book (Rainer and Trebbi, 2011). Military regimes are often considered organizationally different than civilian structures, as more hierarchical in nature. With regard to autocratic versus democratic forms of government, about 14% of our country-year observations fall in the latter category based on the Polity2 score of the country (we define a democracy as Polity2 score > 5, as standard in the literature). We do not report the ML estimates for all the separate subsamples\(^{29}\), but only focus on the predictions of our model for coalition size and leader group’s share.

The fit is consistently good across subsamples. For military regimes, the predicted average coalition size pooling all countries and time periods is .83 versus an actual size of .78 and the predicted leader’s share is .20 versus an actual share of .19. For civilian regimes, the predicted average coalition size is .88 versus an actual size of .77, while the predicted leader’s share is .26 versus an actual share of .24. For autocratic regimes, the predicted average coalition size is .83 versus an actual size of .77, while the predicted leader’s share is .24 versus an actual share of .22. For democratic periods, the predicted average coalition size is .77 versus an actual size of .80, while the predicted leader’s share is .25 versus an actual share of .22.

\(^{29}\)All results available from the authors upon request.
Surprisingly, even though there are few democratic regimes and our model is clearly not apt to describe modern democratic power sharing, the model’s fit is still accurate. A conjecture would be that democratic transitions do not completely make *tabula rasa* of the power structure in place during autocratic periods.

6 Counterfactuals

We now investigate a set of counterfactual experiments based on our structural estimates. Concerning the role of the revolution and coup technologies in the allocation of ministerial posts in Africa, we focus on three counterfactuals: i) an increase in the cost of the revolution parameter, $1 - r$; ii) a reduction in the likelihood of success of coups, γ; and iii) a reduction of the size of the private benefits from leadership, F. Lowering r produces more exclusive coalitions by increasing the cost of revolt against the leader and hence makes revolutions less threatening. Drops in γ and F make coups less threatening for the leader as well. As leadership becomes safer to maintain, lower γ and F induce a less proportional allocation of seats relative to group size and more rents for the leader’s ethnic group. Large coalitions and close-to-proportional patronage allocations are a result of the fragility of the institutional structure of Sub-Saharan countries. As fourth counterfactual, we explore the effects of counterfactual ethnic group distributions within countries. We show how an increase in ethnic fractionalization translates into larger coalitions and seats losses to the leadership.

We begin by estimating the model for the 1960-1980 sample. We then modify only one parameter at a time and observe how the model predictions change in the 1980-2004 sample. One could potentially simulate the counterfactuals using the entire 1960-2004 sample as well. We opt for the former approach in order to show how different the out-of-sample predictions would be in presence of structural breaks in each of the main parameters of the model.

A. Reducing the Threat of Revolutions

Figures 13-15 present the counterfactual coalitions in presence of a 10% drop in r vis-à-vis the baseline predicted coalition, shares allocated to leaders, and shares allocated to the largest group. In Figure 13 the population share with at least one minister represented in the coalition falls substantially when lowering r. The threat of revolutions is so reduced by the increase in their cost that coalitions drop in size from 76.3% in the baseline to 48.3%
of the population in the counterfactual (on average across all countries, excluding Liberia). Concerning allocated shares within these smaller coalitions, we notice that the leader’s groups now enjoy substantially higher shares of cabinet seats, going from 24.1% to 56.2% on average across all countries (Figure 14). In Figure 15 the largest group also gains seat shares, moving from 23.5% to 37.8%.

B. Reducing the Threat of Coups

Figures 16-18 present the counterfactual coalitions and allocations in presence of a 25% relative drop in γ. Similarly, Figures 19-21 present the same counterfactuals in presence of a 25% relative reduction in F. Notice that changing γ and F does not necessarily affect the optimal coalition unless the insider revolt constraint (4) starts binding. However, changing γ and F always affects how much a member of the coalition is paid.

The difference between modifying the coup technology and modifying the revolution technology is substantial. In both Figure 16 and Figure 19 we notice that even a drastic drop in γ or F does not affect the optimal coalition, leaving the insider constraint (4) slack. Insiders are paid less when they are less dangerous (as they have lower incentives to stage a coup), but they do not appear to have incentive to abandon the ruling coalition and hence the leader does not change the composition of Ω^i. Counterfactual coalitions under the new γ and F have the same membership as the baseline in Figures 16 and 19. Notice that this is true even if in relative terms the drops in γ or F are much higher than the relative drop in r we have considered above.

Reducing the threat of coups does have an effect on allocations within the coalition. When reducing γ, the leader’s group gets to enjoy a higher seat share, going from 24.1% to 34% on average across all countries excluding Liberia (Figure 17). Interestingly, the largest group is less of a threat now and therefore the leader assures its loyalty more cheaply. In Figure 18 the largest group loses seat shares, moving from 23.5% to 21.6% when γ drops. In the counterfactual reducing F, the leader’s group again enjoys higher shares of seats, up from 24.1% to 30% on average across all countries excluding Liberia (Figure 20). In Figure 21 the largest group again loses seat shares, moving down from 23.5% to 21.5%.

C. Increasing Ethnic Fractionalization

A standard index of ethnic fractionalization considered here is the Herfindahl concentra-
tion $^{30} ELF = 1 - \Sigma_{i=1}^{N} (n_i/P)^2$. Typically an increase in ELF will require a shift towards a more equal distribution of population across groups. Insider groups, the large ones according to our model, should lose clout vis-à-vis outsiders, which are typically small.31

As an example, let us impose a reduction of 1 percent of the population to any group above the median group size, while adding 1 percent to any group below the median (the median group is left unchanged). This modification essentially tilts the distribution towards equal shares of $1/N$, which maximizes ELF. It also unambiguously strengthens small groups on the outside of the government and weakens government insiders. The endogenous response predicted by our model is a more inclusive coalition, which is what we observe across the board in the counterfactuals of Figure 22. The increase in ethnic fractionalization has the effect of increasing the average coalition size from 75.5 percent of the population to 76.9 percent. Interestingly, both the allocations to the leader’s own group and to the largest group in the country decrease in Figures 23-24. By reducing the inequality in group size, an increase in ELF makes challengers to the leadership more threatening and induces more redistribution of the leadership and insiders’ spoils. The average share to the leader’s group across the countries in our sample drops from 25.9 to 24.1 percent, while the largest group’s share drops from 22.3 to 20 percent. The latter is a more than proportional reduction given the 1 percent fall in the largest group population shares.

7 Alternative Models of Allocation

We now assess the relative performance of our model versus two relevant alternative hypotheses. A first model of allocation, which could challenge our theoretical interpretation, is one of pure window dressing on the part of the leader. One could reasonably conjecture a proportional mechanism of cabinet allocation simply based on random sampling from the

30See Alesina et al. (2003); Fearon (2003), but also Posner (2004) for a criticism and an alternative measure. For an analysis of the determinants of ethnolinguistic diversity see Michalopoulos (2012).

31This intuition is generally correct. However, the specific effect of ELF on post allocations needs to be studied on an case-by-case basis within our framework. The reason is that there are multiple ways an ethnic group distribution $\mathbf{N} = \{n_1, \ldots, n_N\}$ can be modified to increase ELF. Carefully shifting mass across groups may produce no change in the balance of strength between insiders and outsiders, while still increasing ELF. This ambiguity is the result of the large amount of degrees of freedom allowed when the full vector of group sizes \mathbf{N} is modified. The following example clarifies how our model captures distributional changes in a straightforward case.
population of elites. Were the leader only concerned with giving an appearance of fair representation of ethnic interests, he could just pick political pawns at random (plus or minus a statistical error ν). Censoring should be allowed in such alternative setup as well, but only due to the coarseness of the cabinet allocation process (e.g. a group with $1/30$ of the population can not be proportionally represented in a cabinet of 20 seats) and not because of revolution constraints. Formally, this would imply:

$$\hat{x}_{jt}e_j = e_j \text{ for any } j$$

and latent shares equal to:

$$X^*_jt = \hat{x}_{jt}e_j + \nu_{jt}.$$

Although relying on somewhat arbitrary assumptions about the lack of rationality of non-elites (systematically fooled by such window dressing), this alternative model would appear a strong challenger to our baseline. It embeds an assumption of proportionality of seat allocation and has the ability to accommodate censoring.

A second alternative model of allocation that we explore here is a strong version of the “big man” autocratic model. We wish to reject starkly a pure interpretation of ethnic favoritism on the part of the ruler, a winner-take-all specification of the form:

$$\hat{x}_{jt}e_j = \begin{cases}
0 & \text{for any } j \neq l \\
1 & \text{for } l
\end{cases}$$

and latent shares equal to:

$$X^*_jt = \hat{x}_{jt}e_j + \nu_{jt}.$$

We already have a sense that such degree of disproportionality might be rejected by the data in light of the evidence above. However, one should consider that the alternative models presented here are much more parametrically parsimonious than the model of Section 2, by 45 parameters, a factor which weighs against our baseline in formal model selection tests.

Since all models are non-nested, a standard econometric approach is to run generalized likelihood ratio tests of model selection. We employ both the Vuong (1989) and Clarke (2003) model selection tests. The null hypothesis for both the Vuong and Clarke tests is that the baseline and the alternative model are both true against a two-sided alternative that only one of the two models is true. The former test has better power properties when
the density of the likelihood ratios of the baseline and the alternative is normal, while the latter is a more powerful test when this condition is violated. The baseline specification is always our main model from Table 6, and it is tested against the random allocation model, first, and the “big man” model, next. Table 10 reports all test statistics and p-values.

Our model fares substantially better than the proposed alternatives according to the Vuong test for non-nested models.32 The test statistic of the baseline against the random allocation model is 19 and we reject the null of equivalent fit with a p-value of < 0.001 based on a difference of 45 degrees of freedom (r, F, γ for 15 countries)33. Our model appears closer to the actual data generating process. The rejection of the the “big man” autocratic model is even starker, with a test statistic of 60.1 in favor of the baseline. Employing the Clarke (2003) test we reject the null of equal fit for the random coalition model with a p-value of 0. We reject the null of equal fit for the “big man” model with a p-value of 0.0002. Interestingly the “big man” model fares slightly better using the Clarke test, as the statistic is based on the number of positive differences between individual loglikelihoods, independently on the actual size of those differences.

Table 10 reports the Vuong and Clarke tests for four subsamples considered in Section 5.3 (military, civilian, autocracies, democracies). In all subsamples the baseline model trumps both alternative models, indicating that our theoretical setup is not dominated by alternative mechanisms that may be at work within these specific subsets. The only exception is the case of democratic regimes for the random allocation model. Here we see that, although the loglikelihood for the baseline model is higher than the loglikelihood for the random allocation model, the tests reject the baseline in favor of the random model. The reason is the relative lack of parsimony of the baseline model relative to the random model. Both Vuong and Clarke statistics penalize lack of parsimony, especially with small samples like for this case (only 722 out of 11749 group-country-year observations). Due to the small sample of democratic regimes, we would not venture in asserting that democratic periods present radical breaks from our baseline allocation model.

32In the appendix we show that the generalization of the model including non-linearities in the contest function fits better still.

33The Vuong test statistic is asymptotically distributed as a standard normal.
8 Conclusions

This paper presents a model of the allocation of power within African polities and estimates it employing a novel data set of the ethnic composition of African ministerial cabinets since independence. Our data offer new insight into the internal mechanics of autocracies, otherwise particularly opaque government forms, and their diverse upper echelons.

The data reject strongly the view of African autocracies as being run as “one man shows” by a single leader and his ethnic group, with the sole exception of Liberia. The data display inclusive coalitions and a positive and highly statistically significant degree of proportionality of ministerial positions to ethnic group size in the population, suggesting a substantial degree of political bargaining occurring within these polities. These findings are confirmed when limiting the analysis to top cabinet posts alone.

Through the lens of our model these empirical regularities conform to a view of large threats from revolutions and internal coups, which push African leaders towards inclusiveness. Our parsimonious model displays an excellent fit of the data in and out of sample and can be considered a useful stepping stone for the analysis of African politico-economic dynamics. We also perform new counterfactual experiments by modifying the revolution and coup technologies in each country.

Future research should address the determinants of relative power among ethnic groups besides sheer population size, the consequences of shocks to specific ethnic groups, including climatic or terms of trade shocks to local resources, and should employ group-level information for non-elites to further analyze the process of within-group political bargaining. In the Appendix of this paper we extend our model to highlight the connection between within-ethnic group frictions and between-ethnic group tensions that will also form the basis of future work with this data. The data employed in this paper will also aid future research on the internal organization of autocracies, especially with regard to the dynamics of ministerial and inner circle turnover (Francois, Rainer, and Trebbi, 2012).
9 Appendix

9.1 Proofs

Proof of Lemma 1:

Consider a hypothetical equilibrium that does not have a base coalition \(C \). Denote the equilibrium payments to elites of ethnicity \(j \) by \(x_j^e \) in such an equilibrium. Moreover, assume that \(x_k^e = \inf \{ x_1^e \ldots x_N^e \} \) and suppose this infimum is unique. Since there are no base ethnicities in this equilibrium, for any such ethnicity \(k \), there exists at least one leader \(l \neq j \) who optimally chooses not to include \(k \) in his governing coalition. But this implies that \(l \) cannot be optimally choosing his coalition, as he is excluding support from the elite of an ethnicity who will provide it at a price lower than those in his chosen coalition. So \(\inf \{ x_1^e \ldots x_N^e \} \) being unique is inconsistent with the non-existence of a base coalition.

It now remains to show what happens if \(\inf \{ x_1^e \ldots x_N^e \} \) is not unique. There must now be at least two infima, and denote these two \(k \) and \(j \) with \(x_k^e = x_j^e \). Since there is no base coalition, there exists at least one leader \(l \neq k, j \) who optimally chooses not to include \(k \) and/or \(j \) in his governing coalition. If not, either \(k \) or \(j \) would constitute a ‘base’ set of ethnicities \(C \), violating the supposition. But for both \(k, j \) to not be included in all other leaders’ optimal coalitions, i.e. for a base group of ethnicities not to exist, this must imply that there exists at least one more group \(m \) for whom \(x_m^e = x_j^e = x_k^e \). Without at least one alternative group \(m \), it would be impossible for leaders to not choose either \(k \) or \(j \) when choosing their optimal coalition. Applying the same reasoning to group \(m \), the only way that there cannot exist a base group of ethnicities is if there exists a set of groups whose elites sum to a number strictly larger than \(e^* \) in total and whose equilibrium \(x^e \) values are all equal to the lowest equilibrium payment \(\inf \{ x_1^e \ldots x_N^e \} \). Without this, different leaders would be forced to choose at least some members of the same ethnicities when constructing optimal coalitions. Only if there exist an amount strictly greater than \(e^* \) of ethnicities all equally receiving the lowest values of \(x \) can a leader from \(m \) choose an ethnicity not included in a leader from \(l \)'s optimal coalition, so that a base coalition may not exist.

So it remains possible that the per-elite member cost of buying support is identical for all leaders, but comprised of differing sets of elite. Denote such per elite member costs \(x^e \). The total payment of patronage required to buy support is thus \((e^* - e_l) x^e \), for a leader of ethnicity \(l \), implying per period returns of \(\frac{1 - (e^* - e_l) x^e}{e_l} + F \). But for this to be consistent with equivalent values \((x^e) \) for each leader, necessarily for two leaders \(m \) and \(l \), where \(m \) denotes the larger of the two so that \(e_m = w e_l \) and \(w > 1 \), we have:

\[
\begin{align*}
x^e \equiv x_l &= \gamma \left(\frac{1 - (e^* - e_l) x^e}{e_l} + F \right) = \gamma \left(\frac{1 - (e^* - e_m) x^e}{e_m} + F \right) = x_m \equiv x^e \\
\Rightarrow \quad \frac{1 - (e^* - e_l) x^e}{e_l} &= \frac{1 - (e^* - w e_l) x^e}{w e_l} \\
\Rightarrow \quad (1 - (e^* - e_l) x^e) w &= 1 - (e^* - w e_l) x^e \\
\Rightarrow \quad w (1 - e^* x^e) &= 1 - e^* x^e \\
\Rightarrow \quad w &= 1.
\end{align*}
\]

But this is a contradiction, so it is not possible that the amount required to buy support
of ethnicities of different sizes is equivalent. Given this, necessarily there must exist a base group of ethnicities included in all leaders’ coalitions. ■

Proof of Lemma 2: Consider the payments required for members of two distinct elites, \(j \) and \(k \) in the base group that are being bought off by the coalition being formed by a leader from group \(l \), denoted \(\Omega^l \), and suppose that \(e_j > e_k \). Using (9) and (2) and the fact that at most there is a unique included ethnicity that will be split, these are given by:

\[
\begin{align*}
 x_j e_j &= \gamma \left(1 - \sum_{i \neq k, i \in \Omega^j} x_i e_i - x'(j)e'(j) - x_k e_k + e_j F \right) \\
 x_k e_k &= \gamma \left(1 - \sum_{i \neq j, i \in \Omega^k} x_i e_i - x'(k)e'(k) - x_j e_j + e_k F \right).
\end{align*}
\]

We explicitly denote the split group separately with a \(' \). Since both \(j \) and \(k \) are in the base coalition they both have identically comprised governing coalitions: when a \(j \) is leader, all elites from \(k \) are included and paid \(x_k \) when a \(k \) is leader, all elites from \(j \) are included and paid \(x_j \). This implies that for the remainder, there is equivalence: \(\sum_{i \neq k, i \in \Omega^j} x_i e_i = \sum_{i \neq j, i \in \Omega^k} x_i e_i \). Also both types of leader will have identically sized split groups, comprising the cheapest non-base elites available so that \(x'(j)e'(j) = x'(k)e'(k) \). Consequently, subtracting the second from the first equation above leaves:

\[
\begin{align*}
 x_j e_j - x_k e_k &= \gamma (x_j e_j - x_k e_k) + (e_j - e_k) \gamma F \\
 \therefore \frac{(x_j e_j - x_k e_k)}{(e_j - e_k)} &= \frac{\gamma F}{1 - \gamma}.
\end{align*}
\]

Let \(w > 1 \) denote the ratio of elite sizes, \(j \) and \(k \) so that \(e_j = w e_k \). Rewriting (13) using this notation yields:

\[
\begin{align*}
 w x_j - x_k &= \frac{\gamma F}{1 - \gamma} \\
 \therefore x_k &= w x_j + \frac{(1 - w) \gamma F}{1 - \gamma}.
\end{align*}
\]

To prove the claim it is necessary to show that since \(e_j > e_k \) necessarily \(x_k > x_j \). Using (14), \(x_k > x_j \) if and only if:

\[
\begin{align*}
 w x_j + \frac{(1 - w) \gamma F}{1 - \gamma} &> x_j \\
 x_j &> \frac{\gamma F}{1 - \gamma} \\
 \text{or } x_k &< x_j - \gamma F.
\end{align*}
\]

But we know from (12) that,

\[
x_j - \gamma F = \frac{\gamma \left(1 - \sum_{i \neq k, i \in \Omega^j} x_i e_i - x'(j)e'(j) - x_k e_k \right)}{e_j} \equiv \gamma \bar{x}_j.
\]
So we need to show that:

\[\gamma x_j < \gamma \bar{x}_j \]

\[\Leftrightarrow \]

\[x_j < \bar{x}_j. \]

Since we only consider equilibria without coups or revolutions, a necessary condition is that elite from any governing ethnicity, including the leader’s own, have no incentive to mount a coup. Thus, necessarily for an equilibrium of this form to exist \(x_j < \bar{x}_j \), we ignore the zero measure parameter configuration where the residual left after paying off all other ethnicities just equals the incentive compatible amount for co-ethnics (i.e., ignoring \(x_j e_j = \bar{x}_j e_j \)). If this condition were violated leader \(j \)'s co-ethnic elite would have incentive to mount a coup. Which thus proves the claim.

Proof of Proposition 1: Since any candidate equilibrium has payments determined by (9) we know that, for an elite of group \(j \) the payment is \(x_j = \gamma \left(\left(1 - \sum_{i \in \Omega} x_i e_i - x'(j)e'(j) \right)/e_j + F \right) \) and for elite \(j + 1 \) it is \(x_{j+1} = \gamma \left(\left(1 - \sum_{i \in \Omega} x_i e_i - x'(j+1)e'(j+1) \right)/e_{j+1} + F \right) \). The difference \(x_j - x_{j+1} \) can be expressed as:

\[
\frac{\gamma}{e_j e_{j+1}} \left[\left(1 - \sum_{i \in \Omega} x_i e_i - x'(j)e'(j) \right) e_{j+1} - \left(1 - \sum_{i \in \Omega} x_i e_i - x'(j+1)e'(j+1) \right) e_j \right]
\]

(15)

where \(x'(j+1) \) is the per elite payment to the highest paid group for leader \(j + 1 \). Now note that since \(e_j > e_{j+1} \) a leader of ethnicity \(j + 1 \) must buy the support of a strictly larger number of elite than does a leader of \(j \) and therefore includes all elite included by \(j \) and some additional ones to whom he pays \(x'(j+1)(e_j - e_{j+1}) \). Consequently, since all included elite other than the split group are common so that \(\sum_{i \in \Omega} x_i e_i = \sum_{i \in \Omega \setminus \{j\}} x_i e_i \) and for the split groups: \(x'(j+1)e'(j+1) = x'(j)e'(j) + (e'(j+1) - e'(j)) x'(j+1) \). Substituting these into (15) we have \(x_j - x_{j+1} \):

\[
\equiv \frac{\gamma}{e_j e_{j+1}} \left[\left(1 - \sum_{i \in \Omega} x_i e_i \right) (e_{j+1} - e_j) - x'(j)e'(j)e_{j+1} + x'(j+1)e'(j+1)e_j \right]
\]

\[
\equiv \frac{\gamma}{e_j e_{j+1}} \left[\left(1 - \sum_{i \in \Omega} x_i e_i \right) (e_{j+1} - e_j) - x'(j)e'(j)e_{j+1} + x'(j+1)e'(j)e_j \right]
\]

\[
\equiv \frac{\gamma}{e_j e_{j+1}} \left[\left(1 - \sum_{i \in \Omega} x_i e_i \right) (e_{j+1} - e_j) - x'(j)e'(j)e_{j+1} + x'(j+1)e'(j)e_j \right]
\]

\[
\equiv \frac{\gamma}{e_j e_{j+1}} \left[\left(1 - \sum_{i \in \Omega} x_i e_i \right) (e_{j+1} - e_j) - x'(j)e'(j)e_{j+1} + x'(j+1)e'(j)e_j \right]
\]

Since for the group \(e'(j) \), \(x'(j)e'(j) = x'(j+1)e'(j) \)

\[
\equiv \frac{\gamma}{e_j e_{j+1}} \left[\left(1 - \sum_{i \in \Omega} x_i e_i \right) (e_{j+1} - e_j) + x'(j)e'(j)(e_j - e_{j+1}) + x'(j+1)(e'(j+1) - e'(j)) e_j \right]
\]

and since \(e'(j+1) - e'(j) = e_j - e_{j+1} \), we have

\[
\equiv \frac{\gamma}{e_j e_{j+1}} \left[(x'(j+1)e_j - (1 - \sum_{i \in \Omega} x_i e_i - x'(j)e'(j))) (e_j - e_{j+1}) \right].
\]
The term \((1 - \sum_{i \in \Omega_j} x_i e_i - x'(j)e'(j))/e_j \equiv \bar{x}_j\), i.e. the share of patronage received by a member \(j\)'s own ethnicity if \(j\) is leader.

\begin{equation}
\bar{x}_j \equiv \frac{\gamma}{e_j e_{j+1}}(e_j - e_{j+1})e_j [x'(j + 1) - \bar{x}_j].
\end{equation}

Necessarily, \(\bar{x}_j \geq x_j\) or else \(j\)'s own elite would mount a coup against him, violating our supposition. So provided \(\bar{x}_j > x'(j+1)\) then it follows immediately from (16) that \(x_{j+1} > x_j\). Suppose the contrary: \(\bar{x}_j \leq x'(j+1)\). Then since \(x_j < \bar{x}_j\) necessarily \(x_j < x'(j+1)\). But since \(x'(j+1)\) are the highest payments \(j+1\) makes, necessarily \(j \in \Omega^{j+1}\). But if \(j \in \Omega^{j+1}\) then \(j \in \Omega^{j+2}\) as \(j + 2\) must include a strictly larger number of elite from other ethnicities to attain \(e^*\). Consequently, if there exist two groups \(j\) and \(j+1\) such that \(x_j > x_{j+1}\) necessarily the elite of \(j\) are included in the government of a leader of any ethnicity \(i > j\).

Now consider any \(z < j\), so that \(e_z > e_j\). The same reasoning implies that either \(x_z < x_j\) or \(x_z > x_j\) in which case since \(j\) is included by leaders of all ethnicities \(j+1\ldots N\), i.e., \(z \in \Omega^j \forall i > j\). Or if \(x_z \geq x_j\) then as in the comparison between \(j\) and \(j+1\), it follows from the analog of (16) for \(z\) that \(\bar{x}_z < x'(j)\) and therefore that \(x_z < x'(j)\) so that \(z \in \Omega^j\) which also implies that \(z \in \Omega^j \forall i > j\).

So, if there exist two groups for which \(x_j > x_{j+1}\) then \(j\) and all groups \(i < j\) must also be included in the government of all groups \(j + 1\) to \(N\). But if \(j + 1\) is such that \(\sum_{i=1}^j e_i > e^*\) then we have a contradiction, since including all groups from \(1\) to \(j + 1\) yields a coalition size exceeding \(e^*\), which can never be optimal. So it is only possible that if there exists \(j: x_j > x_{j+1}\) that \(j\) is such that \(\sum_{i=1}^j e_i \leq e^*\) implying that \(j\) is in the base group. Thus any leader’s optimal coalition includes \(j\) and all groups larger than \(j\), i.e., \(1\ldots j - 1\). It also follows that for all ethnicities \(z > j + 1\) then \(x_z < x_{z+1}\). Because either these are in the base group, and they are ordered from Lemma 2, or if they are not in the base group they cannot violate this ordering without including all groups above them in the base group, in which case base groups would exceed \(e^*\) in size.

Consequently, either the ordering is \(x_j < x_{j+1}\) \(\forall j\) implying that larger groups are preferred in the governing coalition as they are uniformly cheaper. Or if there exists a \(j\) for which \(x_j > x_{j+1}\) then \(j\) and \(j + 1\) are in the base group, as are all \(i < j\), and for all \(z > j + 1\), \(x_z < x_{z+1}\). This also implies that larger groups are preferred in the governing coalition.

Proof of Lemma 3: It is optimal for any leader to ensure that there are no revolutions. The cheapest way for any leader to ensure no revolutions is to have a total of \(e^* = n^* / \lambda\) elite members in their government – including their own elite \(e_l\). Since \(e_1 + \sum_{i=2}^{j^* - 2} e_i < e^*\), and since \(e_1\) is the largest ethnicity, it then follows that \(e_l + \sum_{i=1}^{j^* - 2} e_i < e^*\). Moreover, since for any leader \(x_j < x_{j+1}\), all leaders will find it optimal to include groups \(1\) to \(j^* - 2\) in their governing coalition.

Proof of Proposition 2: It is already shown that any leader from ethnicity \(l\) optimally includes \(\sum_{i=1}^{j^* - 2} e_i\) in \(\Omega^l\). Since any leader must reach \(e^*\) ethnic elites in total in his government, for leader \(l\) the remaining number to be included is given by:

\[e_{\text{gap}}(l) = e^* - \sum_{i=1, i \neq l}^{j^* - 2} e_i - e_l. \]
Consider leader \(l \leq j^* - 1 \). For such a leader \(e^{\text{gap}} (l) = e^* - \sum_{i=1}^{j^*-1} e_i \). Since \(x_j < x_k \) for \(k > j \) and \(e_{j^*} > e^{\text{gap}} (l) \) from the definition of \(j^* \). It then follows immediately that the cheapest \(e^{\text{gap}} (l) \) elites to include are from group \(j \), thus \(e^{\text{gap}} (l) = e'_j = e^* - \sum_{i=1}^{j^*-1} e_i \), for \(l < j^* - 1 \).

Consider a leader \(l > j^* - 1 \). For such a leader, either: \(e^{\text{gap}} (l) = e^* - \sum_{i=1}^{j^*-1} e_i + e_l < 0 \) or \(e^* - \sum_{i=1}^{j^*-1} e_i + e_l \geq 0 \). Consider the former first, this corresponds to an \(l < j^* \), as defined in the statement of the proposition. For such an \(l \):

\[
e^{\text{gap}} (l) = e^* - \sum_{i=1}^{j^*-2} e_i - e_l,
\]

since including all of the elite from \(j - 1 \) would exceed \(e^* \) and ethnicity \(j - 1 \) is the cheapest remaining ethnicity not included in the coalition, the leader optimally sets \(e^{\text{gap}} (l) = e'_{j-1} (l) \equiv e^* - \sum_{i=1}^{j^*-1} e_i + e_l \). Now consider the latter, i.e., \(l \geq j^* \): \(e^{\text{gap}} (l) = e^* - \sum_{i=1}^{j^*-1} e_i + e_l \geq 0 \). By definition, for such a leader, only including ethnicities up to and including \(j^* - 1 \) in \(\Omega^l \) is insufficient to achieve \(e^* \) elite. So for such an \(l \):

\[
e^{\text{gap}} (l) = e^* - \sum_{i=1}^{j^*-1} e_i - e_l.
\]

Clearly, from the definition of \(j^* \) in equation \((10)\), \(e_{j^*} > e^{\text{gap}} (l) = e^* - \sum_{i=1}^{j^*-1} e_i - e_l \), and since \(j^* \) is the cheapest remaining ethnicity not in the included coalition, leader \(l \) sets \(e'_j = e^{\text{gap}} (l) = e^* - \sum_{i=1}^{j^*-1} e_i - e_l \).

Finally, note that \(j^* \leq j^+ \). However, if the smallest ethnicity, \(e_N \) is sufficiently large that \(e^* < \sum_{i=1}^{j^*-1} e_i + e_N \), then set \(j^* = N \).

Proof of Proposition 3: Statement 1. Since \(\gamma \) denotes the probability of a coup being successful, \(\gamma < 1 \), and \(F > 0 \) is the non-divisible office rent, the RHS of \((13)\) > 0. Since \(e_j > e_k \) it then follows directly that \((x_j e_j - x_k e_k) > 0 \), thus proving statement 1 in the proposition.

Statement 2. Consider the leadership premia accruing to members of two distinct elites, \(j \) and \(k \in \mathcal{C} \) in case the leader belongs to their groups respectively and suppose that \(e_j > e_k \):

\[
(1 - \sum_{i \in \Omega \setminus j} x_i e_i - x'(j)e'(j)) - x_j e_j = \text{premium}_j \\
(1 - \sum_{i \in \Omega \setminus k} x_i e_i - x'(k)e'(k)) - x_k e_k = \text{premium}_k.
\]

We can rewrite \((17)\):

\[
(1 - \sum_{i \neq k, i \in \Omega} x_i e_i - x_k e_k - x'(j)e'(j)) - x_j e_j = \text{premium}_j \\
(1 - \sum_{i \neq j, i \in \Omega} x_i e_i - x_j e_j - x'(k)e'(k)) - x_k e_k = \text{premium}_k
\]

and noticing that \(\sum_{i \neq k, i \in \Omega} x_i e_i - x'(j)e'(j) = \sum_{i \neq j, i \in \Omega} x_i e_i - x'(k)e'(k) \), as both are in the base group, this implies \(\text{premium}_j = \text{premium}_k \). This further implies the leadership premium per elite member is higher in small groups \(\text{premium}_k/e_k > \text{premium}_j/e_j \).

Proof of Proposition 4:
Define $\tilde{x}_j \equiv e_j x_j$, so that the system for all groups j in the base coalition is:

\begin{equation}
\tilde{x}_j = \gamma \left(1 - \sum_{i=1, i \neq j}^{j-1} \tilde{x}_i - x_j e_j' + e_j F \right),
\end{equation}

where e_j' is defined in proposition 2. From (13) we know $\tilde{x}_i = \tilde{x}_j + \frac{\gamma F}{(1 - \gamma)} (e_i - e_j)$. Repeatedly substituting for each i in (18) yields:

\begin{align*}
\tilde{x}_j & = \gamma \left(1 - \sum_{i=1, i \neq j}^{j-1} \left[\tilde{x}_j + \frac{\gamma F}{(1 - \gamma)} (e_i - e_j) \right] - x_j e_j' + e_j F \right) \\
(19) & = \gamma \left(1 - (j - 2)\tilde{x}_j - \frac{\gamma F}{(1 - \gamma)} \left[\sum_{i=1, i \neq j}^{j-1} e_i - (j - 2)e_j \right] - x_j e_j' + e_j F \right) \\
& = \frac{\gamma}{(1 - \gamma)} \left[1 - \gamma - (1 - \gamma) (j - 2)\tilde{x}_j - \gamma F \left[\sum_{i=1}^{j-1} e_i - (j - 1)e_j \right] + (1 - \gamma) \left(e_j F - x_j e_j' \right) \right] \\
& = \gamma \left[(1 - \gamma) (1 - x_j e_j') - F \left(\sum_{i=1}^{j-1} e_i \right) (1 + \gamma (j - 2)) \right] \\
& = \frac{\gamma F}{(1 - \gamma) [1 + \gamma (j_s - 2)]} + \frac{\gamma F}{(1 - \gamma) e_j}.
\end{align*}

These are the optimal payments to any nonleader group $j = 1, \ldots, j_s - 2$ of the base coalition independently from the identity of the leader. It also identifies the payment to group $j = j_s - 1$ whenever part of the optimal coalition. Also notice that per capita cost is determined by:

\begin{equation}
x_j = \frac{\gamma \left[(1 - x_j e_j') - \frac{\gamma F}{(1 - \gamma)} e_j \right]}{[1 + \gamma (j_s - 2)]} + \frac{\gamma F}{(1 - \gamma)}.
\end{equation}

For group j_s, we have:

\begin{align*}
x_{j_s} & = \gamma \left((1 - \sum_{i \in U_s} x_i e_i) / e_{j_s} + F \right) \\
& = \gamma \left((1 - \sum_{i=1}^{j_s-2} x_i e_i - e_{j_s-1}'(j_s) x_{j_s-1}) / e_{j_s} + F \right) \\
\text{with } e_{j_s-1}'(j_s) & = \lambda P \left(1 - r - \sum_{i=1}^{j_s-2} n_i / P - n_{j_s} / P \right) \\
\text{and } e_{j_s}'(j_s - 1) & = \lambda P \left(1 - r - \sum_{i=1}^{j_s-2} n_i / P - n_{j_s-1} / P \right) \\
\text{and } x_{j_s-1} & = \gamma \left((1 - \sum_{i=1}^{j_s-2} x_i e_i - e_{j_s-1}'(j_s - 1) x_{j_s}) / e_{j_s-1} + F \right),
\end{align*}

which jointly imply

\begin{align*}
x_{j_s} & = \gamma \left((1 - \sum_{i=1}^{j_s-2} x_i e_i - e_{j_s-1}'(j_s) x_{j_s-1}) / e_{j_s} + F \right) \\
& = \gamma \left((1 - \sum_{i=1}^{j_s-2} x_i e_i - e_{j_s-1}'(j_s) \gamma \left((1 - \sum_{i=1}^{j_s-2} x_i e_i - e_{j_s} x_{j_s}) / e_{j_s-1} + F \right) / e_{j_s} + F \right)
\end{align*}

or simplifying:
\[x_j = \frac{\gamma}{1 - \gamma^2 \frac{\sum_{i=1}^{j-2} x_i e_i}{e_j e_{j-1}}} \left(1 - \frac{\sum_{i=1}^{j-2} x_i e_i}{e_j} \right) (1 - \gamma e'_{j-1}(j_*)/e_{j-1}) + F \left(1 - \gamma e'_{j-1}(j_*)/e_j \right). \]

We can compute \(\sum_{i=1}^{j-2} x_i e_i \) from (19) and it is a linear function of \(x_j \):

\[\sum_{i=1}^{j-2} x_i e_i = \frac{\gamma \left[1 - x_j e'_{j-1}(j_*) - \frac{\gamma F \sum_{i=1}^{j-1} e_i}{1 - \gamma (j_* - 2)} \sum_{i=1}^{j-2} e_i \right]}{1 + \gamma (j_* - 2)} + \frac{\gamma F (j_* - 2)}{1 - \gamma}. \]

This implies:

\[x_j = \left(1 - \frac{\gamma (1 - \gamma e'_{j-1}(j_*)/e_{j-1}) 1 + \gamma e'_{j-1}(j_*) \sum_{i=1}^{j-2} e_i}{1 - \gamma^2 \frac{\sum_{i=1}^{j-2} x_i e_i}{e_{j-1} e_{j-1}}} \right)^{-1} \]

\[= \frac{\gamma}{1 - \gamma^2 \frac{\sum_{i=1}^{j-2} x_i e_i}{e_{j-1} e_{j-1}}} \left(1 - \frac{\gamma (1 - \gamma e'_{j-1}(j_*)/e_{j-1}) 1 + \gamma e'_{j-1}(j_*) \sum_{i=1}^{j-2} e_i}{1 - \gamma^2 \frac{\sum_{i=1}^{j-2} x_i e_i}{e_{j-1} e_{j-1}}} \right) \left(1 - \gamma e'_{j-1}(j_*)/e_{j-1} \right) + F \left(1 - \gamma e'_{j-1}(j_*)/e_j \right). \]

For existence of an equilibrium without coups or revolutions it is necessary that for a leader randomly drawn from any group the value of patronage is large enough to ensure that after incentive compatible payments are made to elites required to ensure no revolutions, there still remains sufficient residual patronage for elites from the leader’s own ethnic group to dissuade them mounting coups. A sufficient condition is that:

\[x_1 = \frac{\gamma \left[(1 - x_j e'_{j_*)} - \frac{\gamma F}{(1 - \gamma)} \left(\sum_{i=1}^{j-1} e_i \right) \right]}{[1 + \gamma (j_* - 2)]} \frac{1}{e_1} + \frac{\gamma F}{(1 - \gamma)} > 0. \]

This condition is sufficient, because if this holds for group 1 then it necessarily holds for all other groups as well since \(x_1 < x_i \) for all \(i > 1 \).

To prove uniqueness, we know that our equilibrium set of optimal transfers must satisfy \(x_j e_j = \gamma (1 - \sum_{i \in \Omega} x_i e_i - x'(j) e'(j) + e_j F) \). Consider an alternative equilibrium denoted by " for which \(x_{j''} > x_j \). It follows from the equality two sentences previous that there must exist at least one coalition member, \(k \in \Omega_j \) for which \(x_{j''} < x_k \) in this alternative equilibrium. But this immediately violates equation (14) above.

Since the solution to the set of equations (9) is unique, and these equations determine the payments in equilibria consisting of a base set of ethnicities chosen by any leader, the optimal coalitions defined in Proposition (2) will also apply whenever there exists a base set of ethnicities included in all governing coalitions. An alternative equilibrium set of payments and optimal coalition can only arise were there to be equilibria where there does not exist a ‘base’ set of ethnicities chosen by all leaders. We have already shown in Lemma 1 that this cannot occur. \(\blacksquare \)
No revolutions along the equilibrium path condition

If (3) or (4) fails, then the indicator variable, $\mathcal{R}(\Omega) = 1$ always so that the government faces a constant revolution. We thus have:

$$W_t(\Omega) = \psi \sum_{i \in \Omega} n_i P * + V^\text{leader}_t(\Omega) * \left(1 - \frac{\sum_{i \in \Omega} n_i P}{P}\right).$$

Note that we do not have to consider a leader constructing a coalition that included an insider mounting revolutions against the government each period. If such a group would revolt as insiders, they would also, at worse, revolt as outsiders, and they do not cost the leader patronage in that case, so they would not be included. A sufficient condition to rule out constant revolutions is that it is not worthwhile for the leader to tolerate such revolutions from even the smallest group of outsiders, n_N. This group represents the lowest chance of revolution success, so a leader unwilling to bear this risk, will not bear it from any larger excluded group. Let Ω' denote the coalition formed by including all groups $i \neq N$. Thus we have as a sufficient condition for no revolutions along the equilibrium path:

$$\psi \frac{n_N}{P} * + V^\text{leader}_t(\Omega') * \left(1 - \frac{n_N}{P}\right) < V^\text{leader}_t(\Omega),$$

This is satisfied for sufficiently low ψ, and we assume that ψ is sufficiently low so that this condition never binds.

No coups along the equilibrium path condition.

We will now derive and discuss a sufficient condition for the leader’s choice of completely ensuring against coups from any group $j \in \Omega'$.

Under x_j solving (8) it is never worthwhile for an elite included in the coalition to exercise his coup option. We now show the condition under which the leader will choose to give transfers solving (8). What is the alternative to solving this condition? It may be better for a leader to include a group so that it will not be willing to walk out and join a revolution against the leader, but that it would still exercise a coup option if one arose. Under this condition, the x_j given to it can be lower, denote it x_j'. This x_j' has to be high enough that the group j does not simply walk straight out and start a revolution, but not high enough so that j will be loyal if he has a coup chance. This is solved as follows. Let $V'_j(\Omega)$ denote the value to a member of group j in leader l''s coalition if he is receiving $x'_j < x_j$. The amount that is just sufficient to stop a member of j forming a coalition against him is given by:

$$\left(\frac{\sum_{i \in \Omega} n_i + n_j}{P}\right) r V^\text{transition}_j + \left(1 - \frac{\sum_{i \in \Omega} n_i + n_j}{P}\right) r V^0_j = V'_j(\Omega').$$

Since $V'_j(\Omega') = \frac{x_j' + \delta V^\text{transition}}{1-\delta(1-\varepsilon)}$, $V^0_j = \frac{0 + \delta V^\text{transition}}{1-\delta(1-\varepsilon)}$ and this implies

$$x_j' = V^\text{transition}_j \left(1 - \delta (1 - \varepsilon)\right) \left(\frac{\sum_{i \in \Omega} n_i + n_j}{P}\right) r + \left(1 - \frac{\sum_{i \in \Omega} n_i + n_j}{P}\right) r \delta \varepsilon - \delta \varepsilon.$$

The trade off faced by the leader is between personally saving $(x_j - x_j') \frac{\theta_j}{\theta}$ and facing a possible coup if the opportunity arises for any member of group j. Notice that the trade off
is in theory ambiguous with respect to which size group should be paid below x_j. A large group allows large savings, but it is also a very likely source of coups.

Similarly to the case of revolutions, we assume there is a personal cost $\omega > 0$ associated with the leader falling victim of a coup (independently of winning or losing, as for revolutions). A sufficiently high loss ω will rule out any willingness by the leader of taking chances with coups. The condition for the leader to exclude coups from group j is:

$$\bar{x}_l + \delta \left((1 - \varepsilon) V^l_{leader} (\Omega^l) + \varepsilon V^l_{transition} \right) \geq \left(1 - \gamma \sum_{i \in \Omega^l} \frac{e_j}{e_i} \right) \left(\frac{e_j}{e_l} (x_l - x_j') + F + \delta \left((1 - \varepsilon) V^l_{leader} (\Omega^l) + \varepsilon V^l_{transition} \right) \right)$$

$$+ \gamma \sum_{i \in \Omega^l} \frac{e_j}{e_i} \left(-\omega + \delta \left((1 - \varepsilon) V^l_{loss} + \varepsilon V^l_{transition} \right) \right).$$

Notice that this condition is monotonic in the loss ω, hence there is always a sufficiently high cost of a coup so that the leader chooses to fully insure against it.

The rationale behind this sufficient condition is parsimony in the number of model parameters to be estimated from the data. The advantage of this treatment is that since cost ω is not incurred on the equilibrium path, and we assume it is large enough so that the leader’s no coup condition never binds, ω will not enter into the estimating equations.

A final comment is in order. If a leader is victim of a coup, then he suffers a large one period cost $\omega > 0$. This is asymmetric in that such cost is not also incurred by the failed coup leader, who only gets 0 upon failure in (8). We think of ω as the counterpart of the leadership premium F that the leader also receives asymmetrically. Leaders are different from other elites: when you become a leader you obtain personal rents, but you also face a risk of a large negative cost if you are deposed.

Explicit form of $V^l_{transition}$. Recall that this value function depends on the probability of an elite in j being selected into a governing coalition by a new leader which we can, using Proposition 2, define.

$V^l_{transition}$ varies depending on whether an ethnicity is in the base group of larger ethnicities (and thus always included in leader’s optimal coalitions), or a smaller group (whose inclusion in government only arises when one of their own is the leader), or one of the groups j^* and $j^* - 1$ (whose inclusion in government depends on the size of the particular leader’s ethnicity at the time). Specifically, from Proposition 2 it follows that:

For $j < j^* - 1$:

$$V^j_{transition} = p_j(N) V^j_j (\Omega^j) + (1 - p_j(N)) V^j_j (\Omega^l).$$

For $j = j^* - 1$:

$$V^{j^* - 1}_{transition} = p_{j^* - 1}(N) V^{j^* - 1}_{j^* - 1} (\Omega^{j^* - 1}) + \sum_{l=1, l \neq j^*, j^*+}^N p_l(N) V^{j^* - 1}_{j^* - 1} (\Omega^l) + \sum_{l=j^*}^{j^*+} p_l(N) \left(\frac{e^l_{j^* - 1}(l)}{e^l_{j^* - 1}} V^{j^* - 1}_{j^* - 1} (\Omega^l) + \left(1 - \frac{e^l_{j^* - 1}(l)}{e^l_{j^* - 1}} \right) V^0_{j^* - 1} \right).$$
For $j = j^*$:

$$V_{j^*}^{\text{transition}} = p_{j^*} (N) \bar{V}_{j^*} (\Omega^j) + \sum_{l=1}^{j^*-1} p_l (N) \left(\frac{e_j}{e_j^*} V_{j^*} (\Omega^j) + \left(1 - \frac{e_j}{e_j^*} \right) V_{j^*}^0 \right) + \sum_{l=j^*+1}^{j^*+1} p_l (N) V_{j^*}^0.$$

For $j > j^*$:

$$V_j^{\text{transition}} = p_j (N) \bar{V}_j (\Omega^j) + (1 - p_j (N)) V_j^0.$$

9.2 Theory Extensions: Elite – Non-Elite Divisions

A final issue worth addressing concerns the clientelistic microfoundations of the within-ethnic group organization34. In this section we answer the following questions: Why do non-elites support a leader who allocates a patronage position to their representative elite? How much of the value generated by such a patronage position does an elite keep, and how much does he have to share with his non-elite? Why do elites have incentives to organize their non-elites in support of a leader?

We define the patronage value of a government post (i.e., the dollar amount that a minister gets from controlling appointments, apportionment, acquisitions in his ministry) as V. V was normalized to 1 in Section 2, but we will keep it unnormalized here to focus on its explicit division between elite and non-elite. An elite member controlling x government posts controls a flow of resources xV. We still assume x is continuous and abstract from the discreteness of post allocations.

Assume the use value of a government post to a member of the non-elite is U in total if it is controlled by their own elite. If my group controls a ministry, I benefit by being more likely to be able to get benefits from this ministry. If it is education, for instance, my children will be more likely to access good schools. If it is public works, our people will be more likely to get jobs in the sector and the benefits of good infrastructure. If it is the army, our men will be more likely to get commands. An empirical illustration of this logic for road building in Kenya is given by Burgess et al. (2010).

The use value of a post to the non-elite if it is controlled by someone else is ϕU. Let $\phi \leq 1$ be related to the degree of ethnic harmony. If $\phi = 1$ non-elites do not care about the identity of the minister, they get as much out of the ministry no matter who controls it. If $\phi = 0$, society is extremely ethnically polarized. A ministry controlled by someone else is of no use to me.

34We follow the intuition in Jackson and Roseberg (1982, p.40): “The arrangements by which regimes of personal rule are able to secure a modicum of stability and predictability have come to be spoken of as "clientilism".....The image of clientilism is one of extensive patron-client ties. The substance and the conditions of such ties can be conceived of as the intermingling of two factors: first, the resources of patronage (and the interests in such resources, which can be used to satisfy wants and needs) may be regarded as the motivation for the personal contracts and agreements of which patron-client ties consist; and second the loyalty which transcends mere interests and is the social ‘cement’ that permits such ties to endure in the face of resource fluctuations. Both of these factors are important as an explanation for some of the stable elements in African personal rule.”
9.3 Nash Bargaining

The elite obtains posts in return for delivering support. The non-elites give support in return for having the control of posts in the hands of their own ethnic elites. We assume that these two parties bargain over the allocation of the patronage value of the posts that the elite receive from the leader, xV. We also assume that they can commit to agreements ex ante. That is, if the non-elites withdraw support, a post will revert to some other ethnic elite member, with the consequent loss of value $(1 - \phi)xU$ for them. If the elite loses the patronage value of the post, he loses xV. This implies a Nash bargain, with κ denoting the share of V going to the elite, as follows:

$$
\max_{\kappa} \left\{ \left(\frac{\kappa xV - 0}{1} \right) \left(\frac{(1 - \kappa)xV + (1 - \phi)xU}{1/\lambda} \right) \right\}
$$

and implying that $\kappa = \frac{1 + (1 - \phi)U}{2xV}$. So that the value to an elite of controlling x posts is:

$$
\kappa V x = \frac{1 + (1 - \phi)U}{2} x.
$$

This result has several important implications. First of all, the greater the degree of ethnic tension in a country (i.e. the lower ϕ), the greater the share of the value going to the elite of each group is. Clearly, ethnic group leaders have incentive to incite ethnic tensions in this setting in a fashion similar to Padro-i-Miquel (2007). High levels of ethnic tensions can produce substantial inequality between the elite and the non-elite of ethnic groups. Secondly, the larger the use value of a government post to a member of the non-elite, U, the greater the share of the value going to the elite of each group.

Finally, suppose that the cost to an elite of organizing his $1/\lambda$ non-elite in support of the leader are $c \geq 0$. For an elite from ethnicity j receiving x_j posts for participating in the government to be willing to participate in the government we have the following individual rationality constraint:

$$
\kappa V x_j = \frac{1 + (1 - \phi)U}{2} x_j \geq c.
$$

This must be satisfied for all groups in government. Let $x^{IR}_j \equiv c/\frac{1 + (1 - \phi)U}{2}$. Since x_j is smaller for larger groups, it implies that if there exists some groups for whom $x_j < x^{IR}_j$ then these will be paid x^{IR}_j. This does not upset the ordering determined in Section 2, but does require a re-calculation of the equilibrium patronage values. More interestingly, κ does affect the share of post values accruing to the elite members, but does not affect the total number of posts elites must receive from the leader, unless the participation constraint binds. Hence, particularly if ϕ affects ε adversely, country leaders will have strictly lower incentives to incite ethnic tension than ethnic group elites have. It is important to underscore the asymmetry between the incentives of leaders and ethnic group elites along this dimension.
REFERENCES

Table 1: African Cabinets - Summary Statistics by Country

<table>
<thead>
<tr>
<th>Country</th>
<th>Time Period</th>
<th>Years Covered</th>
<th>Years Missing</th>
<th>Number of Governments</th>
<th>Number of Leaders in Power</th>
<th>Number of Government-Period Ministers</th>
<th>Average Size of Government (# posts)</th>
<th>Total Number of Unique Ministers</th>
<th>Average Number of Ministers per Minister</th>
<th>Number of Governments in Power with Missing Ministers</th>
<th>Average Number of Ethnic Groups</th>
<th>Number of Ethnicity with Missing Ethnicity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cameroon</td>
<td>1960-2004</td>
<td>1960-2004</td>
<td>1969, 1975</td>
<td>44</td>
<td>2</td>
<td>1445</td>
<td>32.84</td>
<td>262</td>
<td>5.52</td>
<td>21</td>
<td>43</td>
<td>2.98%</td>
</tr>
<tr>
<td>Cote d'Ivoire</td>
<td>1960-2004</td>
<td>1960-2004</td>
<td>1975</td>
<td>45</td>
<td>4</td>
<td>1256</td>
<td>27.91</td>
<td>233</td>
<td>5.39</td>
<td>17</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>Gabon</td>
<td>1960-2004</td>
<td>1975</td>
<td>1970</td>
<td>44</td>
<td>2</td>
<td>1173</td>
<td>26.66</td>
<td>185</td>
<td>6.34</td>
<td>10</td>
<td>6</td>
<td>0.51%</td>
</tr>
<tr>
<td>Ghana</td>
<td>1960-2004</td>
<td>1975</td>
<td>1970</td>
<td>45</td>
<td>9</td>
<td>1140</td>
<td>25.33</td>
<td>362</td>
<td>3.15</td>
<td>22</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>Guinea</td>
<td>1960-2004</td>
<td>1975</td>
<td>1969</td>
<td>45</td>
<td>2</td>
<td>1213</td>
<td>26.96</td>
<td>244</td>
<td>4.97</td>
<td>9</td>
<td>4</td>
<td>0.33%</td>
</tr>
<tr>
<td>Kenya</td>
<td>1964-2004</td>
<td>1975</td>
<td>1970</td>
<td>41</td>
<td>3</td>
<td>1010</td>
<td>24.63</td>
<td>155</td>
<td>6.52</td>
<td>16</td>
<td>2</td>
<td>0.20%</td>
</tr>
<tr>
<td>Liberia</td>
<td>1960-2004</td>
<td>1975</td>
<td>1970</td>
<td>45</td>
<td>10</td>
<td>938</td>
<td>20.84</td>
<td>272</td>
<td>3.45</td>
<td>15</td>
<td>9</td>
<td>0.96%</td>
</tr>
<tr>
<td>Nigeria</td>
<td>1961-2004</td>
<td>1975</td>
<td>1970</td>
<td>44</td>
<td>11</td>
<td>1499</td>
<td>34.07</td>
<td>473</td>
<td>3.17</td>
<td>17</td>
<td>13</td>
<td>0.87%</td>
</tr>
<tr>
<td>Togo</td>
<td>1960-2004</td>
<td>1975</td>
<td>1970</td>
<td>45</td>
<td>3</td>
<td>757</td>
<td>16.82</td>
<td>199</td>
<td>3.80</td>
<td>20</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>Uganda</td>
<td>1963-2004</td>
<td>1972, 1974</td>
<td>1970, 1973</td>
<td>42</td>
<td>6</td>
<td>1037</td>
<td>24.69</td>
<td>205</td>
<td>5.06</td>
<td>26</td>
<td>3</td>
<td>0.29%</td>
</tr>
</tbody>
</table>

Notes: In the "Number of Leaders in Power" column, we count a new nonconsecutive term in office of the same leader as a new leader. Source: Rainer and Trebbi (2011).
Table 2: Summary Statistics by Group

<table>
<thead>
<tr>
<th>Variable</th>
<th>Obs</th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group's Share of Cabinet Posts</td>
<td>11749</td>
<td>0.054</td>
<td>0.083</td>
<td>0</td>
<td>0.882</td>
</tr>
<tr>
<td>Group's Share of Population</td>
<td>11749</td>
<td>0.054</td>
<td>0.062</td>
<td>0.004</td>
<td>0.39</td>
</tr>
<tr>
<td>Leader’s Ethnic Group Indicator</td>
<td>11749</td>
<td>0.061</td>
<td>0.24</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Largest Ethnic Group Indicator</td>
<td>11749</td>
<td>0.058</td>
<td>0.234</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Coalition Member Indicator</td>
<td>11749</td>
<td>0.552</td>
<td>0.497</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 3: Elite Inclusiveness and Disproportionality in Africa.

<table>
<thead>
<tr>
<th>Country</th>
<th>Average Share of the Population Not Represented in Government</th>
<th>Disproportionality Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benin</td>
<td>28.23</td>
<td>16.59</td>
</tr>
<tr>
<td>Cameroon</td>
<td>17.64</td>
<td>11.35</td>
</tr>
<tr>
<td>Cote d'Ivoire</td>
<td>13.93</td>
<td>13.48</td>
</tr>
<tr>
<td>Gabon</td>
<td>13.72</td>
<td>15.64</td>
</tr>
<tr>
<td>Ghana</td>
<td>29.84</td>
<td>16.39</td>
</tr>
<tr>
<td>Guinea</td>
<td>7.54</td>
<td>16.60</td>
</tr>
<tr>
<td>Kenya</td>
<td>9.21</td>
<td>11.06</td>
</tr>
<tr>
<td>Liberia</td>
<td>50.38</td>
<td>38.01</td>
</tr>
<tr>
<td>Nigeria</td>
<td>12.02</td>
<td>14.24</td>
</tr>
<tr>
<td>Rep. of Congo</td>
<td>11.13</td>
<td>19.62</td>
</tr>
<tr>
<td>Sierra Leone</td>
<td>15.92</td>
<td>17.03</td>
</tr>
<tr>
<td>Tanzania</td>
<td>42.87</td>
<td>16.06</td>
</tr>
<tr>
<td>Togo</td>
<td>31.95</td>
<td>17.43</td>
</tr>
<tr>
<td>Uganda</td>
<td>27.91</td>
<td>14.32</td>
</tr>
<tr>
<td>Average</td>
<td>22.70</td>
<td>16.72</td>
</tr>
</tbody>
</table>

Table 4: Group Size, Leadership, and Cabinet Membership, 1960-2004.

All Ethnic Groups

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
</tr>
<tr>
<td>Group Size</td>
<td>6.5887</td>
<td>8.0741</td>
<td>0.5353</td>
<td>0.5807</td>
</tr>
<tr>
<td></td>
<td>(1.0925)</td>
<td>(0.6245)</td>
<td>(0.0871)</td>
<td>(0.1540)</td>
</tr>
<tr>
<td>Largest Group</td>
<td>-0.5702</td>
<td>-0.0125</td>
<td>-</td>
<td>-0.0125</td>
</tr>
<tr>
<td></td>
<td>(0.0593)</td>
<td>(0.0356)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Country FE Yes Yes Yes Yes Yes Yes

Year FE Yes Yes Yes Yes Yes Yes

N 11,749 11,749 11,749 11,749 11,749 11,749

Table 5: Leadership in Cabinet Formation, Group Size, and Allocation of Cabinet Seats, 1960-2004. All Ethnic Groups

<table>
<thead>
<tr>
<th></th>
<th>Share of All Cabinet Seats</th>
<th>Share of All Cabinet Seats</th>
<th>Share of All Cabinet Seats</th>
<th>Share of Top Cabinet Seats</th>
<th>Share of Top Cabinet Seats</th>
<th>Share of Top Cabinet Seats</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
<td>(6)</td>
</tr>
<tr>
<td>Group Size</td>
<td>0.7740</td>
<td>1.0118</td>
<td>1.0198</td>
<td>0.7649</td>
<td>0.9033</td>
<td>0.8869</td>
</tr>
<tr>
<td></td>
<td>(0.0755)</td>
<td>(0.1482)</td>
<td>(0.1228)</td>
<td>(0.0713)</td>
<td>(0.1667)</td>
<td>(0.1398)</td>
</tr>
<tr>
<td>Group Size^2</td>
<td>-0.924</td>
<td>-0.945</td>
<td>-0.945</td>
<td>-0.538</td>
<td>-0.538</td>
<td>-0.560</td>
</tr>
<tr>
<td></td>
<td>(0.445)</td>
<td>(0.405)</td>
<td>(0.405)</td>
<td>(0.613)</td>
<td>(0.613)</td>
<td>(0.517)</td>
</tr>
<tr>
<td>Leader Group</td>
<td>0.1126</td>
<td>0.1108</td>
<td>0.2084</td>
<td>0.2073</td>
<td>0.2073</td>
<td>0.2073</td>
</tr>
<tr>
<td></td>
<td>(0.0270)</td>
<td>(0.0271)</td>
<td>(0.0257)</td>
<td>(0.0257)</td>
<td>(0.0257)</td>
<td>(0.0257)</td>
</tr>
</tbody>
</table>

Country FE Yes Yes Yes Yes Yes Yes

Year FE Yes Yes Yes Yes Yes Yes

R^2 0.55 0.55 0.50 0.49 0.49 0.30

N 11,749 11,749 11,029 11,749 11,749 11,029

Table 6: Full Cabinet - Maximum Likelihood Estimates

<table>
<thead>
<tr>
<th>Country</th>
<th>(\xi)</th>
<th>(r)</th>
<th>(\gamma)</th>
<th>(F)</th>
<th>(\log LL)</th>
<th>Insider IC constraint violated?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benin</td>
<td>63.5</td>
<td>0.893</td>
<td>1.0e-13</td>
<td>1.2e+13</td>
<td>106.8494</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td>(5.0)</td>
<td>(0.011)</td>
<td>(0.018)</td>
<td>(2.1e24)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cameroon</td>
<td>254.5</td>
<td>0.9692</td>
<td>3.8e-13</td>
<td>2.6e+12</td>
<td>589.6414</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td>(15.3)</td>
<td>(0.0047)</td>
<td>(0.0083)</td>
<td>(5.5e+23)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Congo, D. Rep.</td>
<td>178.8</td>
<td>0.886</td>
<td>0.200</td>
<td>3.99</td>
<td>514.6169</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td>(10.3)</td>
<td>(0.011)</td>
<td>(0.034)</td>
<td>(0.95)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cote d'Ivoire</td>
<td>172.7</td>
<td>0.9209</td>
<td>0.381</td>
<td>0.33</td>
<td>418.7874</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td>(11.8)</td>
<td>(0.0076)</td>
<td>(0.016)</td>
<td>(0.12)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gabon</td>
<td>72.9</td>
<td>0.9847</td>
<td>3.8e-11</td>
<td>2.5e+10</td>
<td>201.4787</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td>(6.8)</td>
<td>(0.0092)</td>
<td>(0.081)</td>
<td>(5.3e+19)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ghana</td>
<td>79.6</td>
<td>0.854</td>
<td>0.77</td>
<td>0.41</td>
<td>150.2744</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td>(4.8)</td>
<td>(0.013)</td>
<td>(0.38)</td>
<td>(0.89)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guinea</td>
<td>126.7</td>
<td>0.9909</td>
<td>0.089</td>
<td>6.9</td>
<td>270.5889</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td>(10.5)</td>
<td>(0.0035)</td>
<td>(0.021)</td>
<td>(2.1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kenya</td>
<td>250.9</td>
<td>0.9667</td>
<td>0.107</td>
<td>6.9</td>
<td>562.5347</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td>(14.5)</td>
<td>(0.0042)</td>
<td>(0.025)</td>
<td>(2.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liberia</td>
<td>24.5</td>
<td>0.894</td>
<td>0.233</td>
<td>-2.26</td>
<td>-67.6506</td>
<td>yes</td>
</tr>
<tr>
<td></td>
<td>(2.0)</td>
<td>(0.014)</td>
<td>(0.056)</td>
<td>(0.23)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nigeria</td>
<td>139.9</td>
<td>0.9577</td>
<td>0.385</td>
<td>1.03</td>
<td>521.5482</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td>(7.3)</td>
<td>(0.0046)</td>
<td>(0.045)</td>
<td>(0.22)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rep. of Congo</td>
<td>76.0</td>
<td>0.9317</td>
<td>0.498</td>
<td>0.000</td>
<td>261.4404</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td>(5.2)</td>
<td>(0.0071)</td>
<td>(0.033)</td>
<td>(0.086)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sierra Leone</td>
<td>69.8</td>
<td>0.9010</td>
<td>0.574</td>
<td>0.262</td>
<td>180.2609</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td>(5.2)</td>
<td>(0.0092)</td>
<td>(0.034)</td>
<td>(0.051)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tanzania</td>
<td>142.8</td>
<td>1.0000</td>
<td>0.112</td>
<td>4.84</td>
<td>337.3617</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td>(7.2)</td>
<td>(0.0058)</td>
<td>(0.040)</td>
<td>(2.56)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Togo</td>
<td>53.6</td>
<td>0.840</td>
<td>0.582</td>
<td>0.34</td>
<td>45.4974</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td>(4.2)</td>
<td>(0.014)</td>
<td>(0.060)</td>
<td>(0.17)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uganda</td>
<td>134.3</td>
<td>0.929</td>
<td>1.0000</td>
<td>1.5e-12</td>
<td>273.8432</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td>(8.5)</td>
<td>(0.016)</td>
<td>(8.1e-8)</td>
<td>(1.4e-7)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes: Asymptotic Standard Errors in Parentheses. The \(\log LL \) reported is specific to the contribution of each country. The insider constraint of a unilateral deviation of a coalition member is checked ex post in the last column. This is constraint (4) in the text.
<table>
<thead>
<tr>
<th>Country</th>
<th>Slope: (F_{\gamma/(1-\gamma)})</th>
<th>Leadership Premium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benin</td>
<td>1.26</td>
<td>0.120</td>
</tr>
<tr>
<td></td>
<td>(0.034)</td>
<td>(0.025)</td>
</tr>
<tr>
<td>Cameroon</td>
<td>0.98</td>
<td>0.086</td>
</tr>
<tr>
<td></td>
<td>(0.016)</td>
<td>(0.008)</td>
</tr>
<tr>
<td>Congo, D. Rep.</td>
<td>1.00</td>
<td>0.074</td>
</tr>
<tr>
<td></td>
<td>(0.040)</td>
<td>(0.009)</td>
</tr>
<tr>
<td>Cote d'Ivoire</td>
<td>0.20</td>
<td>0.148</td>
</tr>
<tr>
<td></td>
<td>(0.066)</td>
<td>(0.008)</td>
</tr>
<tr>
<td>Gabon</td>
<td>0.93</td>
<td>0.100</td>
</tr>
<tr>
<td></td>
<td>(0.058)</td>
<td>(0.020)</td>
</tr>
<tr>
<td>Ghana</td>
<td>1.36</td>
<td>0.016</td>
</tr>
<tr>
<td></td>
<td>(0.120)</td>
<td>(0.021)</td>
</tr>
<tr>
<td>Guinea</td>
<td>0.67</td>
<td>0.199</td>
</tr>
<tr>
<td></td>
<td>(0.032)</td>
<td>(0.010)</td>
</tr>
<tr>
<td>Kenya</td>
<td>0.82</td>
<td>0.105</td>
</tr>
<tr>
<td></td>
<td>(0.029)</td>
<td>(0.006)</td>
</tr>
<tr>
<td>Liberia</td>
<td>-0.69</td>
<td>0.430</td>
</tr>
<tr>
<td></td>
<td>(0.260)</td>
<td>(0.041)</td>
</tr>
<tr>
<td>Nigeria</td>
<td>0.64</td>
<td>0.058</td>
</tr>
<tr>
<td></td>
<td>(0.035)</td>
<td>(0.008)</td>
</tr>
<tr>
<td>Rep. of Congo</td>
<td>0.00</td>
<td>0.270</td>
</tr>
<tr>
<td></td>
<td>(0.085)</td>
<td>(0.009)</td>
</tr>
<tr>
<td>Sierra Leone</td>
<td>0.35</td>
<td>0.198</td>
</tr>
<tr>
<td></td>
<td>(0.055)</td>
<td>(0.016)</td>
</tr>
<tr>
<td>Tanzania</td>
<td>0.60</td>
<td>0.070</td>
</tr>
<tr>
<td></td>
<td>(0.095)</td>
<td>(0.015)</td>
</tr>
<tr>
<td>Togo</td>
<td>0.48</td>
<td>0.234</td>
</tr>
<tr>
<td></td>
<td>(0.140)</td>
<td>(0.013)</td>
</tr>
<tr>
<td>Uganda</td>
<td>1.68</td>
<td>-2.7e-14</td>
</tr>
<tr>
<td></td>
<td>(0.053)</td>
<td>(2.1e-9)</td>
</tr>
</tbody>
</table>

Average (excluding LIB) 0.78 0.12

Notes: Asymptotic Standard Errors in Parentheses.
Table 8: Top Cabinet Posts Only - Maximum Likelihood Estimates

<table>
<thead>
<tr>
<th>Country</th>
<th>ξ</th>
<th>r</th>
<th>γ</th>
<th>F</th>
<th>logLL</th>
<th>Insider IC constraint violated?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benin</td>
<td>18.6</td>
<td>0.821</td>
<td>0.35</td>
<td>2.0</td>
<td>209.9855</td>
<td>no</td>
</tr>
<tr>
<td>Cameroon</td>
<td>40.1</td>
<td>0.837</td>
<td>0.443</td>
<td>0.27</td>
<td>259.4370</td>
<td>no</td>
</tr>
<tr>
<td>Congo, D. Rep.</td>
<td>29.3</td>
<td>0.853</td>
<td>0.053</td>
<td>20.4</td>
<td>485.2384</td>
<td>no</td>
</tr>
<tr>
<td>Cote d'Ivoire</td>
<td>22.9</td>
<td>0.910</td>
<td>0.116</td>
<td>1.59</td>
<td>281.0537</td>
<td>no</td>
</tr>
<tr>
<td>Gabon</td>
<td>18.9</td>
<td>0.815</td>
<td>5.6e-13</td>
<td>2.5e+12</td>
<td>57.2651</td>
<td>no</td>
</tr>
<tr>
<td>Ghana</td>
<td>10.4</td>
<td>0.816</td>
<td>0.29</td>
<td>1.36</td>
<td>488.0237</td>
<td>no</td>
</tr>
<tr>
<td>Guinea</td>
<td>25.9</td>
<td>0.919</td>
<td>0.405</td>
<td>0.43</td>
<td>19.3376</td>
<td>no</td>
</tr>
<tr>
<td>Kenya</td>
<td>23.4</td>
<td>0.907</td>
<td>6.2e-15</td>
<td>6.0e+14</td>
<td>152.3001</td>
<td>no</td>
</tr>
<tr>
<td>Liberia</td>
<td>10.8</td>
<td>1.000</td>
<td>0.071</td>
<td>-3.0121</td>
<td>282.3815</td>
<td>yes</td>
</tr>
<tr>
<td>Nigeria</td>
<td>27.6</td>
<td>0.9218</td>
<td>0.275</td>
<td>1.47</td>
<td>180.0479</td>
<td>no</td>
</tr>
<tr>
<td>Rep. of Congo</td>
<td>19.7</td>
<td>0.9057</td>
<td>0.583</td>
<td>-0.48</td>
<td>75.7406</td>
<td>no</td>
</tr>
<tr>
<td>Sierra Leone</td>
<td>16.6</td>
<td>0.897</td>
<td>0.36</td>
<td>1.35</td>
<td>205.9451</td>
<td>no</td>
</tr>
<tr>
<td>Tanzania</td>
<td>43.0</td>
<td>0.876</td>
<td>0.249</td>
<td>0.18</td>
<td>403.8598</td>
<td>no</td>
</tr>
<tr>
<td>Togo</td>
<td>15.8</td>
<td>0.836</td>
<td>0.411</td>
<td>0.36</td>
<td>382.4744</td>
<td>no</td>
</tr>
<tr>
<td>Uganda</td>
<td>24.5</td>
<td>0.832</td>
<td>9.8e-14</td>
<td>1.5e+13</td>
<td>439.4047</td>
<td>no</td>
</tr>
</tbody>
</table>

Notes: Asymptotic Standard Errors in Parentheses. The logLL reported is specific to the contribution of each country. The insider constraint of a unilateral deviation of a coalition member is checked ex post in the last column. This is constraint (4) in the text.
Table 9: Top Cabinet Posts Only - Slopes and Leadership Premia

<table>
<thead>
<tr>
<th>Country</th>
<th>Slope: (\frac{F(1-\gamma)}{\gamma})</th>
<th>Leadership Premium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benin</td>
<td>1.06</td>
<td>0.282</td>
</tr>
<tr>
<td>Cameroon</td>
<td>0.22</td>
<td>0.312</td>
</tr>
<tr>
<td>Congo, D. Rep.</td>
<td>1.13</td>
<td>0.207</td>
</tr>
<tr>
<td>Cote d'Ivoire</td>
<td>0.21</td>
<td>0.436</td>
</tr>
<tr>
<td>Gabon</td>
<td>1.44</td>
<td>0.347</td>
</tr>
<tr>
<td>Ghana</td>
<td>0.57</td>
<td>0.346</td>
</tr>
<tr>
<td>Guinea</td>
<td>0.30</td>
<td>0.293</td>
</tr>
<tr>
<td>Kenya</td>
<td>0.989</td>
<td>0.282</td>
</tr>
<tr>
<td>Liberia</td>
<td>-0.23</td>
<td>0.572</td>
</tr>
<tr>
<td>Nigeria</td>
<td>0.56</td>
<td>0.209</td>
</tr>
<tr>
<td>Rep. of Congo</td>
<td>-0.67</td>
<td>0.319</td>
</tr>
<tr>
<td>Sierra Leone</td>
<td>0.68</td>
<td>0.223</td>
</tr>
<tr>
<td>Tanzania</td>
<td>0.06</td>
<td>0.152</td>
</tr>
<tr>
<td>Togo</td>
<td>0.25</td>
<td>0.341</td>
</tr>
<tr>
<td>Uganda</td>
<td>1.483</td>
<td>0.243</td>
</tr>
<tr>
<td>Average (excluding LIB)</td>
<td>0.59</td>
<td>0.28</td>
</tr>
</tbody>
</table>

Notes: Asymptotic Standard Errors in Parentheses.
Table 10: Specification Tests

Full Sample. Generalized likelihood ratio tests: Null is equivalent fit between the specified model and the Baseline model

<table>
<thead>
<tr>
<th>Model</th>
<th>Log-likelihood</th>
<th>Vuong test statistic</th>
<th>p-value</th>
<th>Clarke test statistic</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>4367.1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Random Allocation</td>
<td>3136.7</td>
<td>19.0</td>
<td>0.000</td>
<td>7478</td>
<td>0.000</td>
</tr>
<tr>
<td>Big Man Allocation</td>
<td>-5134.2</td>
<td>60.1</td>
<td>0.000</td>
<td>6070</td>
<td>0.000</td>
</tr>
<tr>
<td>Observations</td>
<td>11749</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Clarke statistic corresponds to number of positive differences between log likelihoods. The null corresponds to Observations/2=5875 positive differences. Vuong test statistic is distributed N(0,1).

Military Regimes Only. Generalized likelihood ratio tests: Null is equivalent fit between the specified model and the Baseline model

<table>
<thead>
<tr>
<th>Model</th>
<th>Log-likelihood</th>
<th>Vuong test statistic</th>
<th>p-value</th>
<th>Clarke test statistic</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>2099.2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Random Allocation</td>
<td>1400.1</td>
<td>13.7</td>
<td>0.000</td>
<td>3270</td>
<td>0.000</td>
</tr>
<tr>
<td>Big Man Allocation</td>
<td>-2282.1</td>
<td>40.1</td>
<td>0.000</td>
<td>2699</td>
<td>0.000</td>
</tr>
<tr>
<td>Observations</td>
<td>5156</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Clarke statistic corresponds to number of positive differences between log likelihoods. The null corresponds to Observations/2=2578 positive differences. Vuong test statistic is distributed N(0,1).

Civilian Regimes Only. Generalized likelihood ratio tests: Null is equivalent fit between the specified model and the Baseline model

<table>
<thead>
<tr>
<th>Model</th>
<th>Log-likelihood</th>
<th>Vuong test statistic</th>
<th>p-value</th>
<th>Clarke test statistic</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>2552.7</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Random Allocation</td>
<td>1880.1</td>
<td>12.4</td>
<td>0.000</td>
<td>3976</td>
<td>0.000</td>
</tr>
<tr>
<td>Big Man Allocation</td>
<td>-2832.2</td>
<td>44.5</td>
<td>0.000</td>
<td>3381</td>
<td>0.036</td>
</tr>
<tr>
<td>Observations</td>
<td>6593</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Clarke statistic corresponds to number of positive differences between log likelihoods. The null corresponds to Observations/2=3297 positive differences. Vuong test statistic is distributed N(0,1).
Autocratic Regimes Only. Generalized likelihood ratio tests: Null is equivalent fit between the specified model and the Baseline model

<table>
<thead>
<tr>
<th>Model</th>
<th>Log-likelihood</th>
<th>Vuong test statistic</th>
<th>p-value</th>
<th>Clarke test statistic</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>4173.6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Random Allocation</td>
<td>2986.3</td>
<td>18.8</td>
<td>0.000</td>
<td>6910</td>
<td>0.000</td>
</tr>
<tr>
<td>Big Man Allocation</td>
<td>-4799.0</td>
<td>58.2</td>
<td>0.000</td>
<td>5699</td>
<td>0.000</td>
</tr>
<tr>
<td>Observations</td>
<td>11013</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Clarke statistic corresponds to number of positive differences between log likelihoods. The null corresponds to Observations/2=5507 positive differences. Vuong test statistic is distributed N(0,1).

Democratic Regimes Only. Generalized likelihood ratio tests: Null is equivalent fit between the specified model and the Baseline model

<table>
<thead>
<tr>
<th>Model</th>
<th>Log-likelihood</th>
<th>Vuong test statistic</th>
<th>p-value</th>
<th>Clarke test statistic</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline Model</td>
<td>278.8</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Random Allocation</td>
<td>183.1</td>
<td>-3.5</td>
<td>0.000</td>
<td>234</td>
<td>0.000</td>
</tr>
<tr>
<td>Big Man Allocation</td>
<td>-318.9</td>
<td>12.7</td>
<td>0.000</td>
<td>366</td>
<td>0.682</td>
</tr>
<tr>
<td>Observations</td>
<td>722</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Clarke statistic corresponds to number of positive differences between log likelihoods. The null corresponds to Observations/2=361 positive differences. Vuong test statistic is distributed N(0,1).

Note: Values in bold indicate the test rejects equal fit of the models in favor of the main baseline model against the alternative model. Positive log-likelihood values are a natural occurrence in censored models.
Figure 1: Disproportionality in Cabinet Allocation, African Sample, 1960-2004
Figure 2: Allocation of Cabinet Shares and Population Shares. 1960-2004
Figure 3: Difference between Cabinet Shares and Population Shares. Guinea, 1960-2004

Figure 4: Difference between Cabinet Shares and Population Shares. Kenya, 1960-2004
Figure 5: In-Sample Fit of Coalition Size

Coalition size (fraction of population)

- Benin
- Cameroon
- Congo
- Cote d'Ivoire
- Gabon
- Ghana
- Guinea
- Kenya
- Liberia
- Nigeria
- Rep. of Congo
- Sierra Leone
- Tanzania
- Togo
- Uganda

Predicted vs Observed

Figure 6: In-Sample Successfully Predicted Groups in % of Population

Correct predictions (fraction of population)

- Benin
- Cameroon
- Congo
- Cote d'Ivoire
- Gabon
- Ghana
- Guinea
- Kenya
- Liberia
- Nigeria
- Rep. of Congo
- Sierra Leone
- Tanzania
- Togo
- Uganda

Predicted out vs Predicted in
Figure 7: In-Sample Leadership Shares

Figure 8: In-Sample Shares to Largest Group
Figure 9: Out-of-Sample Fit of Coalition Size (1980-2004 predicted based on estimation of 1960-80 sample)

Figure 10: Out-of-Sample Fit, Successfully Predicted Groups in % of Population (1980-2004 predicted based on estimation of 1960-80 sample)
Figure 11: Out-of-Sample Fit of Leadership Shares (1980-2004 predicted based on estimation of 1960-80 sample)

Figure 12: Out-of-Sample Fit, Shares to Largest Group (1980-2004 predicted based on estimation of 1960-80 sample)
Figure 13: Counterfactual Coalition Size (1980-2004 predicted based on estimation of 1960-80 sample). $\Delta r/r = -.1$

![Coalition size (fraction of population)](image)

Figure 14: Counterfactual Shares to Leader’s Group (1980-2004 predicted based on estimation of 1960-80 sample). $\Delta r/r = -.1$

![Leadership share](image)
Figure 15: Counterfactual Shares to Largest Group (1980-2004 predicted based on estimation of 1960-80 sample). $\Delta r/r = -1$

Figure 16: Counterfactual Coalition Size (1980-2004 predicted based on estimation of 1960-80 sample). $\Delta \gamma /\gamma = -0.25$
Figure 17: Counterfactual Shares to Leader’s Group (1980-2004 predicted based on estimation of 1960-80 sample). $\Delta \gamma / \gamma = -.25$

![Leadership share graph](image1)

Figure 18: Counterfactual Shares to Largest Group (1980-2004 predicted based on estimation of 1960-80 sample). $\Delta \gamma / \gamma = -.25$

![Largest ethnicity share graph](image2)
Figure 19: Counterfactual Coalition Size (1980-2004 predicted based on estimation of 1960-80 sample). $\Delta F/F = -.25$

![Coalition size (fraction of population)](image1)

Figure 20: Counterfactual Shares to Leader’s Group (1980-2004 predicted based on estimation of 1960-80 sample). $\Delta F/F = -.25$

![Leadership share](image2)
Figure 21: Counterfactual Shares to Largest Group (1980-2004 predicted based on estimation of 1960-80 sample). $\Delta F/F = -0.25$

Figure 22: Counterfactual Coalition Size (1980-04 predicted based on estimation of 1960-80 sample). Counterfactual distribution $n_i = n_i - 1\%$ for $i = 1, \ldots, N/2 - 1; n_i = n_i + 1\%$ for $i = N/2 + 1, \ldots, N$.
Figure 23: Counterfactual Shares to Leader’s Group (1980-04 predict. based on estimation of 1960-80 sample). Counterfactual \(n_i = n_i - 1\% \) for \(i=1,\ldots,N/2-1 \); \(n_i = n_i + 1\% \) for \(i=N/2+1,\ldots,N \).

Figure 24: Counterfactual Shares to Largest Group (1980-04 predict. based on estimation of 1960-80 sample). Counterfactual \(n_i = n_i - 1\% \) for \(i=1,\ldots,N/2-1 \); \(n_i = n_i + 1\% \) for \(i=N/2+1,\ldots,N \).
Table A1: Full Cabinet with Coordination Costs χ
- Maximum Likelihood Estimates

<table>
<thead>
<tr>
<th>Country</th>
<th>ξ</th>
<th>r</th>
<th>χ</th>
<th>γ</th>
<th>F</th>
<th>$\log LL$</th>
<th>Insider IC constraint violated?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benin</td>
<td>63.0</td>
<td>0.688</td>
<td>0.99</td>
<td>0.98</td>
<td>0.04</td>
<td>110.2642</td>
<td>no</td>
</tr>
<tr>
<td>Cameroon</td>
<td>261.2</td>
<td>0.690</td>
<td>0.9793</td>
<td>1.0e-12</td>
<td>9.1e+11</td>
<td>596.5894</td>
<td>no</td>
</tr>
<tr>
<td>Congo D. Rep.</td>
<td>179.0</td>
<td>0.688</td>
<td>0.9914</td>
<td>0.196</td>
<td>4.13</td>
<td>514.6929</td>
<td>no</td>
</tr>
<tr>
<td>Cote d'Ivoire</td>
<td>167.1</td>
<td>0.699</td>
<td>0.9422</td>
<td>0.322</td>
<td>0.93</td>
<td>417.0135</td>
<td>no</td>
</tr>
<tr>
<td>Gabon</td>
<td>103.4</td>
<td>0.692</td>
<td>0.9703</td>
<td>0.625</td>
<td>0.69</td>
<td>258.2892</td>
<td>no</td>
</tr>
<tr>
<td>Ghana</td>
<td>95.7</td>
<td>0.711</td>
<td>0.8887</td>
<td>1.00</td>
<td>1.3e-09</td>
<td>180.2492</td>
<td>no</td>
</tr>
<tr>
<td>Guinea</td>
<td>127.7</td>
<td>0.6940</td>
<td>0.966</td>
<td>0.064</td>
<td>10.2</td>
<td>272.2668</td>
<td>no</td>
</tr>
<tr>
<td>Kenya</td>
<td>249.2</td>
<td>0.690</td>
<td>0.9851</td>
<td>0.074</td>
<td>10.9</td>
<td>563.5996</td>
<td>no</td>
</tr>
<tr>
<td>Liberia</td>
<td>24.2</td>
<td>0.696</td>
<td>0.9539</td>
<td>0.083</td>
<td>-1.1</td>
<td>-73.5255</td>
<td>yes</td>
</tr>
<tr>
<td>Nigeria</td>
<td>140.0</td>
<td>0.686</td>
<td>0.9996</td>
<td>0.385</td>
<td>1.03</td>
<td>521.5482</td>
<td>no</td>
</tr>
<tr>
<td>Rep. of Congo</td>
<td>76.0</td>
<td>0.684</td>
<td>1.0104</td>
<td>0.498</td>
<td>-1.5e-04</td>
<td>261.4404</td>
<td>no</td>
</tr>
<tr>
<td>Sierra Leone</td>
<td>70.1</td>
<td>0.712</td>
<td>0.884</td>
<td>0.454</td>
<td>0.64</td>
<td>186.1629</td>
<td>no</td>
</tr>
<tr>
<td>Tanzania</td>
<td>147.5</td>
<td>0.688</td>
<td>0.9911</td>
<td>0.120</td>
<td>4.4</td>
<td>347.6090</td>
<td>no</td>
</tr>
<tr>
<td>Togo</td>
<td>58.7</td>
<td>0.706</td>
<td>0.9103</td>
<td>0.537</td>
<td>0.36</td>
<td>63.0554</td>
<td>no</td>
</tr>
<tr>
<td>Uganda</td>
<td>135.7</td>
<td>0.692</td>
<td>0.9706</td>
<td>1.00</td>
<td>1.2e-10</td>
<td>276.7344</td>
<td>no</td>
</tr>
</tbody>
</table>

Notes: Asymptotic Standard Errors in Parentheses. The $\log LL$ reported is specific to the contribution of each country. The insider constraint of a unilateral deviation of a coalition member is checked ex post in the last column. This is constraint (4) in the text.