Country Portfolio Dynamics∗

Michael B Devereux†and Alan Sutherland‡

November 2006

Abstract

Devereux and Sutherland (2006) describe a simple method for deriving approximate equilibrium steady-state country portfolios in open economy dynamic general equilibrium models. This paper describes an extension of the Devereux and Sutherland method to higher-order approximations. The extended method can be used to solve for the first-order dynamic behaviour of portfolios around their steady state values. The extended method is widely applicable, easy to implement, and delivers analytical solutions for the first-order behaviour of portfolio positions for any type of asset. It can be used in models with any number of assets, whether markets are complete or incomplete, and can be applied to stochastic dynamic general equilibrium models of any dimension, so long as the model is amenable to a solution using standard approximation methods.

Keywords: Country portfolios, solution methods.

JEL: E52, E58, F41
1 Introduction

The phenomenon of financial globalization has seen a substantial increase in the size and complexity of gross financial assets and liabilities among countries. As pointed out by Lane and Milesi-Ferretti (2005), these portfolio positions may have significant implications for understanding the international transmission mechanism, the resolution of external imbalances, and the effects of macroeconomic policy. Until very recently however, open economy macroeconomics has abstracted almost entirely from the analysis of the composition of country portfolios, focusing instead on net foreign assets as a measure of a country’s external position. The main reason for this has been the technical difficulty in solving portfolio problems in general equilibrium models with incomplete markets.1

In a recent paper (Devereux and Sutherland, 2006) we described a simple approximation method which allows the calculation of equilibrium steady-state country portfolios in open economy dynamic general equilibrium models. The method can be applied to any standard open economy model with any number of assets, any number of state variables and complete or incomplete markets. The method provides a general formula for asset holdings which fits naturally into the standard solution approach for DSGE models.2

In the present paper we show that the solution approach described in Devereux and

1Engel and Matsumoto (2005) and Kollmann (2006) show how portfolio allocation problems can be analysed in open economy models with complete international financial markets. While this provides a valuable starting point for analysis, it is not a fully satisfactory approach, given the extensive evidence of incompleteness in international financial markets.

2In the existing literature, a number of alternative approaches have been developed for analysing incomplete-markets models. Judd et al (2002) and Evans and Hnatkovska (2005) present numerical algorithms for solving dynamic portfolio problems in general equilibrium. These methods are, however, very complex compared to our approach and represent a significant departure from standard DSGE solution methods. Devereux and Saito (2005) use a continuous time framework which allows some analytical solutions to be derived in a restricted class of models. In the existing literature our method is most closely related to the work of Samuelson (1970), Judd (1998) and Judd and Guu (2001). Samuelson shows how a mean-variance approximation is sufficient to identify the optimal portfolio in a near-non-stochastic world. Judd and Guu show how the problem of portfolio indeterminacy in the non-stochastic steady state can be overcome by using a Bifurcation theorem in conjunction with the Implicit Function Theorem. The solution approach presented in Devereux and Sutherland (2006) relies on first-order and second-order approximations of the model, rather than the Implicit Function and Bifurcation Theorems, but the steady-state gross portfolio holdings derived using our technique correspond to the approximation point derived by the Judd and Guu method.
Sutherland (2006) can easily be extended to higher-order approximations and can thus also generate a simple closed-form solution for the dynamic behaviour of portfolios around the steady state. Just as in our earlier paper, we provide a simple formula which can be applied to any dynamic general equilibrium model. In many cases, it can be used to generate analytical solutions. Or, for more complex models, it provides a simple and computationally efficient approach to generating numerical results.

Our solution for portfolio dynamics is potentially very useful if one is studying the response of portfolio allocations and capital flows to shocks and business cycles. For instance, some aspects of the debate about ‘valuation effects’ and their role in the adjustment of current account deficits requires consideration of the dynamic adjustment of portfolios.\(^3\)

In a closely related paper, Tille and van Wincoop (2006) also propose an algorithm for solving for country portfolios in open economy models, both for steady state portfolios and for portfolio dynamics around steady state. Rather than focusing on an analytical approach, Tille and van Wincoop (2006) describe an iterative numerical algorithm which can be used to solve for the coefficients of a Taylor-series approximation for portfolio behaviour. It is straightforward to show that the steady-state and dynamic portfolio behaviour generated using the Tille and van Wincoop approach is identical to the analytical solution supplied by our approach.

An important advantage of our analytical approach is that it provides a formula which can be applied to a wide range of models. In many cases this formula may yield closed-form analytical solutions for equilibrium portfolios. Such solutions can provide important insights and intuitions which are not available from numerical solutions. In addition, the formula can be used to generate numerical results for more complex models without the need for iterative algorithms.

The solution procedure proposed in Devereux and Sutherland (2006), and extended here, is based on a Taylor-series approximation of a model’s equilibrium conditions. As explained in Devereux and Sutherland (2006), the standard log-linear approximation procedures used in macroeconomics can not be directly applied to portfolio problems. This is for two reasons. Firstly, the equilibrium portfolio is indeterminate in a first-order ap-

\(^3\)See Lane and Milesi-Ferretti (2001) and the subsequent work of Ghironi et al. (2005), Gourinchas and Rey (2005), and Tille (2003, 2004).
proximation of the model. And secondly, the equilibrium portfolio is indeterminate in the non-stochastic steady state - a fact which appears to rule out the most natural choice of approximation point.

The first problem can be overcome by considering higher-order approximations of the portfolio problem. This is the approach adopted by Devereux and Sutherland (2006) and Tille and van Wincoop (2006). The second problem can be overcome by treating the value of portfolio holdings at the approximation point as endogenous. The procedure described in Devereux and Sutherland (2006) solves for portfolio holdings at the approximation point by looking at the first-order optimality conditions of the portfolio problem in the (stochastic) neighbourhood of the non-stochastic steady state.

In general, a second-order approximation of the portfolio problem is sufficient to capture the different risk characteristics of assets. It is therefore sufficient to tie down a solution for steady-state portfolio holdings. However, in order to solve for the dynamic behaviour of asset holdings around the steady state, Tille and van Wincoop (2006) show that it is necessary to know how variations in state variables affect the risk characteristics of assets. This, in turn, requires consideration of a third-order approximation of the portfolio problem. A third-order approximation of the portfolio problem captures the first-order effect of state variables on second moments and thus makes it possible to understand how portfolios should be adjusted as state variables evolve. We show in this paper that a third-order approximation of the portfolio optimality conditions (used in combination with first and second-order approximations of the non-portfolio parts of the model) can be solved to yield an analytical formula which captures the dynamics of optimal country portfolios. We show that, even in its general form, this formula provides valuable insights into the fundamental factors that determine portfolio dynamics.

The paper proceeds as follows. Section 2 describes the structure of a basic two-country two-asset model. Section 3 briefly reviews the Devereux and Sutherland (2006) derivation of the steady-state portfolio for this model. Section 4 describes the solution for the first-order dynamic behaviour of portfolio holdings around this steady state. Section 5 applies the method to a simple endowment economy with trade in nominal bonds. Section 6 concludes the paper.
2 A Two-Asset Open-Economy Model

The solution procedure is developed in the context of a particular model. To make the steps as transparent as possible, the model here is restricted to a case where only two assets are internationally traded. In addition, we assume that agents in each country consume an identical composite consumption good, so that purchasing power parity holds. Generalising the analysis to the case of many assets and non-PPP cases is straightforward.\(^4\) In order to develop the solution procedure, it is not necessary to describe the whole model. Only the aspects that are necessary for portfolio choice need to be directly included. Other aspects of the model, such as the production structure and labour supply, can be neglected since they are not directly relevant for deriving the expressions for steady-state or first-order properties of portfolios.

It is assumed that the world consists of two countries, which will be referred to as the home country and the foreign country. The home country is assumed to produce a good (or a bundle of goods) with aggregate quantity denoted \(Y_H\) (which can be endogenous) and aggregate price \(P_H\). Similarly the foreign country produces quantity \(Y_F\) of a foreign good (or bundle of goods) at price \(P_F^*\). In what follows foreign currency prices are denoted with an asterisk.

Agents in the home country have a utility function of the form

\[
U_t = E_t \sum_{\tau=t}^{\infty} \beta^{\tau-t} \left[u(C_\tau) + v(.) \right]
\]

where \(C\) is a bundle of the home and foreign goods and \(u(C_\tau) = (C_\tau^{1-\rho})/(1 - \rho)\). The function \(v(.)\) captures those parts of the preference function which are not relevant for the portfolio problem.\(^5\) The consumer price index for home agents is denoted \(P\).

It is assumed that there are two assets and a vector of two returns (for holdings of assets from period \(t - 1\) to \(t\)) given by

\[
r_t' = \begin{bmatrix} r_{1,t} \\ r_{2,t} \end{bmatrix}
\]

\(^4\)Devereux and Sutherland (2006) develop the procedure for solving for the steady state portfolio in a much more general environment.

\(^5\)For convenience we adopt the CRRA functional form for \(u(C)\) and assume that utility is additively separable in \(u(C)\) and \(v(.)\). Generalising our approach to deal with alternative functional forms is straightforward.
Asset payoffs and asset prices are measured in terms of the aggregate consumption good (i.e., in units of C). Returns are defined to be the sum of the payoff of the asset and capital gains expressed as percentage of the asset price. It is assumed that the vector of available assets is exogenous and predefined.

The budget constraint for home agents is given by

$$W_t = \alpha_{1,t-1} r_{1,t} + \alpha_{2,t-1} r_{2,t} + Y_t - C_t$$

where $\alpha_{1,t-1}$ and $\alpha_{2,t-1}$ are the real holdings of the two assets purchased at the end of period $t - 1$ for holding into period t. It follows that

$$\alpha_{1,t-1} + \alpha_{2,t-1} = W_{t-1}$$

where W_{t-1} is net wealth at the end of period $t - 1$. In (2) Y is the total disposable income of home agents expressed in terms of the consumption good. Thus, Y may be given by $Y_H P_H / P + T$ where T is a fiscal transfer (or tax if negative).

It is simple to show that the budget constraint can be re-written in the following form

$$W_t = \alpha_{1,t-1} r_{x,t} + r_{2,t} W_{t-1} + Y_t - C_t$$

where

$$r_{x,t} = r_{1,t} - r_{2,t}$$

Here asset 2 is used as a numeraire and $r_{x,t}$ measures the "excess returns" on asset 1.

At the end of each period agents select a portfolio of assets to hold into the following period. Thus, for instance, at the end of period t home country agents select $\alpha_{1,t}$ to hold into period $t + 1$. The first-order condition for the choice of $\alpha_{1,t}$ can be written in the following form

$$E_t [u'(C_{t+1}) r_{1,t+1}] = E_t [u'(C_{t+1}) r_{2,t+1}]$$

Foreign-country agents face a similar portfolio allocation problem with a budget constraint given by

$$W^*_t = \alpha^*_{1,t-1} r_{x,t} + r_{2,t} W^*_{t-1} + Y^*_t - C^*_t$$

Foreign agents are assumed to have preferences similar to (1) so the first-order condition for foreign-country agents’ choice of $\alpha^*_{1,t}$ is

$$E_t [u'(C_{t+1}) r_{1,t+1}] = E_t [u'(C^*_{t+1}) r_{2,t+1}]$$
To simplify notation, in what follows we will drop the subscript from α_{1,t} and simply refer to α_t. It should be understood, therefore, that α_{1,t} = α_t and α_{2,t} = W_t - α_t.

In any given general equilibrium model, there will be a set of first-order conditions relating to intertemporal choice of consumption and labour supply for the home and foreign consumers and a set of first-order conditions for price setting and factor demands for home and foreign producers. Taken as a whole, and combined with an appropriate set of equilibrium conditions for goods and factor markets, this full set of equations will define the general equilibrium of the model. As already explained, the details of these non-portfolio parts of the model are not necessary for the exposition of the solution method, so they are not shown explicitly at this stage. In what follows these omitted equations are simply referred to as the "non-portfolio equations" or the "non-portfolio equilibrium conditions" of the model.

The non-portfolio equations of the model will normally include some exogenous forcing variables. In the typical macroeconomic model these take the form of AR1 processes which are driven by zero-mean innovations. In what follows the matrix of second moments of the innovations is denoted Σ. As is the usual practice in the macroeconomic literature, the innovations are assumed to be i.i.d. Therefore, Σ is assumed to be non-time-varying. We further assume (although this is not necessary for our solution method to work) that all third moments of the vector of innovations are zero.

It is convenient, for the purposes of taking approximations, to assume that the innovations are symmetrically distributed in the interval \([-\epsilon, \epsilon]\). This ensures that any residual in an equation approximated up to order \(n\) can be captured by a term denoted \(O(\epsilon^{n+1})\).

The solution procedure is based on a Taylor-series approximation of the model. The approximation is based around a point where the vector of non-portfolio variables is given by \(\bar{X}\) and portfolio holdings are given by \(\bar{\alpha}\). In what follows a bar over a variable indicates its value at the approximation point and a hat indicates the log-deviation from the approximation point (except in the case of \(\hat{\alpha}, \hat{W}\) and \(\hat{r}_x\), which are defined below).

3 Steady-State Portfolios

This section briefly reviews our approach to solving for the steady-state portfolio, \(\bar{\alpha}\). As already explained, a second-order approximation of the portfolio problem is sufficient to
capture the different risk characteristics of assets and is therefore sufficient to tie down a solution for $\bar{\alpha}$. Our solution for $\bar{\alpha}$ is defined to be the one which ensures that the second-order approximations of the first-order optimality conditions are satisfied within a neighbourhood of \bar{X} and $\bar{\alpha}$. We use the symmetric non-stochastic steady state of the model as the approximation point for non-portfolio variables. Thus $\bar{W} = 0$, $\bar{Y} = \bar{C}$ and $\bar{r}_1 = \bar{r}_2 = 1/\beta$. Note that this implies $\bar{r}_x = 0$. Since $\bar{W} = 0$, it also follows that $\bar{\alpha}_2 = -\bar{\alpha}_1 = \bar{\alpha}$.

Taking a second-order approximation of the home-country portfolio first-order conditions yields
\[
E_t \left[\hat{r}_{x,t+1} + \frac{1}{2}(\hat{r}_{1,t+1}^2 - \hat{r}_{2,t+1}^2) - \rho \hat{C}_{t+1} \hat{r}_{x,t+1} \right] = O(\epsilon^3) \tag{8}
\]
where $\hat{r}_{x,t+1} = \hat{r}_{1,t+1} - \hat{r}_{2,t+1}$. Applying a similar procedure to the foreign first-order conditions yields
\[
E_t \left[\hat{r}_{x,t+1} + \frac{1}{2}(\hat{r}_{1,t+1}^2 - \hat{r}_{2,t+1}^2) - \rho \hat{C}^*_{t+1} \hat{r}_{x,t+1} \right] = O(\epsilon^3) \tag{9}
\]

The home and foreign optimality conditions, (8) and (9), can be combined to show that, in equilibrium, the following equations must hold
\[
E_t \left[(\hat{C}_{t+1} - \hat{C}^*_{t+1}) \hat{r}_{x,t+1} \right] = 0 + O(\epsilon^3) \tag{10}
\]
and
\[
E [\hat{r}_x] = -\frac{1}{2} E \left[\hat{r}_{1,t+1}^2 - \hat{r}_{2,t+1}^2 \right] + \rho \frac{1}{2} E_t \left[(\hat{C}_{t+1} + \hat{C}^*_{t+1}) \hat{r}_{x,t+1} \right] + O(\epsilon^3) \tag{11}
\]

These two equations express the portfolio optimality conditions in a form which is particularly convenient for deriving equilibrium portfolio holdings and excess returns. Equation (10) provides a set of equations which must be satisfied by equilibrium portfolio holdings. And equation (11) shows the corresponding set of equilibrium expected excess returns.

In order to evaluate the left hand side of equation (10) it is sufficient to derive expressions for the first-order behaviour of consumption and excess returns. This requires a first-order accurate solution for the non-portfolio parts of the model. Devereux and Sutherland (2006) show that portfolio decisions affect the first-order solution of the non-portfolio parts of the model in a particularly simple way. This is for three reasons. First, portfolio decisions only enter the non-portfolio parts of the model via budget constraints. Second, the only aspect of the portfolio decision that enters a first-order approximation...
of the budget constraints is \(\bar{\alpha} \), the steady-state portfolio. And third, to a first-order approximation, the portfolio excess return is a zero mean i.i.d. random variable.

The fact that only the steady-state portfolio enters the first-order model can be illustrated by considering a first-order approximation of the home budget constraint. For period \(t + 1 \) this is given by

\[
\hat{W}_{t+1} = \frac{1}{\beta} \hat{W}_t + \hat{Y}_{t+1} - \hat{C}_{t+1} + \frac{\bar{\alpha}}{\beta Y} \hat{r}_{x,t+1} + O(\epsilon^2)
\]

(12)

where \(\hat{W}_t = (W_t - \bar{W})/\bar{C} \). Notice that the deviation of \(\alpha \) from its steady-state value does not enter this equation because excess returns are zero in the steady state, i.e. \(\bar{r}_x = 0 \).

The fact that the portfolio excess return, \(\bar{\alpha} \hat{r}_{x,t+1} \), is an zero-mean i.i.d. random variable follows from equation (11). This shows that the equilibrium expected excess return contains only second-order terms. So, up to a first order approximation, \(E[\hat{r}_x] \) is zero.

These properties can now be used to derive a solution for \(\bar{\alpha} \). In what follows, it proves convenient to define \(\bar{\alpha} \equiv \bar{\alpha}/(\beta \bar{Y}) \) and to describe the solution procedure in terms of the solution for \(\bar{\alpha} \). The corresponding solution for \(\bar{\alpha} \) is simply given by \(\bar{\alpha} = \bar{\alpha}/\beta \bar{Y} \).

To derive a solution for \(\bar{\alpha} \) it is useful initially to treat the realised excess return on the portfolio as an exogenous independent mean-zero i.i.d. random variable denoted \(\xi_t \). The home-country budget constraint in period \(t \) can therefore be written in the form

\[
\hat{W}_t = \frac{1}{\beta} \hat{W}_{t-1} + \hat{Y}_t - \hat{C}_t + \xi_t + O(\epsilon^2)
\]

(13)

and the entire first-order approximation of the non-portfolio equations of the model can be summarised in a matrix equation of the form

\[
A_1 \begin{bmatrix} s_{t+1} \\ E_t [c_{t+1}] \end{bmatrix} = A_2 \begin{bmatrix} s_t \\ c_t \end{bmatrix} + A_3 x_t + B \xi_t + O(\epsilon^2)
\]

(14)

\[x_t = N x_{t-1} + \varepsilon_t \]

where \(s \) is a vector of predetermined variables, \(c \) is a vector of jump variables, \(x \) is a vector of exogenous forcing processes, \(\varepsilon \) is a vector of i.i.d. shocks and \(B \) is a column vector with unity in the row corresponding to the equation for the evolution of net wealth (13) and zero in all other rows. The state-space solution to (14) can be derived using any standard
solution method for linear rational expectations models and can be written as follows

\[s_{t+1} = F_1 x_t + F_2 s_t + F_3 \xi_t + O(\epsilon^2) \]
\[c_t = P_1 x_t + P_2 s_t + P_3 \xi_t + O(\epsilon^2) \]

(15)

This form of the solution shows explicitly, via the F_3 and P_3 matrices, how the first-order accurate behaviour of all the model’s variables depend on exogenous i.i.d. innovations to net wealth.

By extracting the appropriate rows from (15) it is possible to write the following expression for the first-order accurate relationship between excess returns, $\hat{r}_{x,t+1}$, and ε_{t+1} and ξ_{t+1}

\[\hat{r}_{x,t+1} = [R_1] \xi_{t+1} + [R_2] \varepsilon_{t+1} + O(\epsilon^2) \]

(16)

where the matrices R_1 and R_2 are formed from the appropriate rows of (15). Similarly extracting the appropriate rows from (15) yields the following expression for the first-order behaviour of $\left(\hat{C}_{t+1} - \hat{C}^*_{t+1} \right)$

\[\left(\hat{C}_{t+1} - \hat{C}^*_{t+1} \right) = [D_1] \xi_{t+1} + [D_2] \varepsilon_{t+1} + [D_3] [z_{t+1}]^k + O(\epsilon^2) \]

(17)

where $z'_{t+1} = [x_t \ s_{t+1}]$ is a vector formed from the exogenous driving processes and the endogenous state variables. Expressions (16) and (17) are written using tensor notation (in the form described, for instance, by Juilliard (2003)).\(^7\) This notation will prove particularly useful in the next section, where higher-order approximations are considered.

Now recognise that the return on the portfolio depends on asset holdings and excess returns, i.e.

\[\xi_{t+1} = \hat{\alpha} \hat{r}_{x,t+1} \]

so

\[\hat{r}_{x,t+1} = [\tilde{R}_2] \xi_{t+1} + O(\epsilon^2) \]

(18)

\[\left(\hat{C}_{t+1} - \hat{C}^*_{t+1} \right) = [\tilde{D}_2] \xi_{t+1} + [D_3] [z_{t+1}]^k + O(\epsilon^2) \]

(19)

where

\[[\tilde{R}_2]_i = \frac{1}{1 - [R_1] \hat{\alpha}_i} [R_2]_i \]

(20)

\(^7\)For instance, a subscript or superscript i refers to the ith element of vector. When a letter appears in a term, first as a subscript on one vector, and then as a superscript on another vector, it denotes the sum of the products of the respective terms in the two vectors. Thus $[A]_i [B]^i$ denotes the inner product of vectors A and B.

9
Equations (18) and (19) now show how consumption and excess returns depend on the vector of exogenous innovations, \(\varepsilon \). These expressions can now be used to evaluate the left-hand side of (10) and thus to derive an expression for \(\tilde{\alpha} \).

Note that, as shown in Devereux and Sutherland (2006), the second-order approximation of the portfolio problem is time invariant. Thus the time subscripts can be dropped (10), (18) and (19). Substituting the (18) and (19) into (10) implies

\[
[D_2]_i = \left(\frac{[D_1]_i \tilde{\alpha}}{1 - [R_1]_i \tilde{\alpha}} [R_2]_i + [D_2]_i \right)
\]

(21)

Finally substituting for \([\tilde{D}_2]_i \) and \([\tilde{R}_2]_j \) using (20) and (21) and solving for \(\tilde{\alpha} \) yields

\[
\tilde{\alpha} = \frac{[D_2]_i [R_2]_j [\Sigma]^{i,j}}{([R_1][D_2]_i [R_2]_j - [D_1][R_2]_i [R_2]_j) [\Sigma]^{i,j}}
\]

(23)

This is the tensor-notation equivalent of the expression for \(\tilde{\alpha} \) derived in Devereux and Sutherland (2006).

4 First-Order Time-Variation in Portfolios

The portfolio solution given in (23) is non time-varying. As argued in the previous section, time variation in the true portfolio \(\alpha_t \) has no affect on the properties of consumption, excess returns, or any other aspect of the model when evaluated up to a first-order. But because we are modelling a dynamic environment where the portfolio choice decision is not identical in every period, the true portfolio will in general vary across periods. Thus, \(\alpha_t \) will in general vary around \(\bar{\alpha} \). In order to solve for the behaviour of asset holdings around \(\bar{\alpha} \) it is necessary to know how the risk characteristics of assets are affected by the evolution of state variables such as wealth, or persistent movements in output. In order to capture these effects, it is necessary to determine how state variables affect the second moments that govern the optimal portfolio choice. This in turn requires consideration of a third-order approximation of the portfolio problem. A third-order approximation of the portfolio problem captures the first-order effect of state variables on second moments and

8Here the tensor notation \([\tilde{D}_2]_i [\tilde{R}_2]_j [\Sigma]^{i,j}\) denotes the sum across all \(i \) and \(j \) of the product of the \(i \)th element of \(\tilde{D}_2 \), the \(j \)th element of \(\tilde{R}_2 \) and the \((i,j)\)th element of \(\Sigma \).
thus makes it possible to understand how portfolios should be adjusted as state variables evolve.

Taking a third-order approximation of the home and foreign country portfolio first-order conditions yields

\[E_t \left[\hat{r}_{x,t+1} + \frac{1}{2}(\hat{r}_{1,t+1}^{2} - \hat{r}_{2,t+1}^{2}) + \frac{1}{6}(\hat{r}_{1,t+1}^{3} - \hat{r}_{2,t+1}^{3})
ight] = 0 + O(\epsilon^4) \]

(24)

\[E_t \left[\hat{r}_{x,t+1} + \frac{1}{2}(\hat{r}_{1,t+1}^{2} - \hat{r}_{2,t+1}^{2}) + \frac{1}{6}(\hat{r}_{1,t+1}^{3} - \hat{r}_{2,t+1}^{3})
ight] = 0 + O(\epsilon^4) \]

(25)

Combining these two conditions implies that portfolio holdings must ensure that the following holds

\[E_t \left[-\rho(\hat{C}_{t+1} - \hat{C}_{t+1}^{*})\hat{r}_{x,t+1} + \frac{\rho}{2}(\hat{C}_{t+1}^{2} - \hat{C}_{t+1}^{*2})\hat{r}_{x,t+1} \right] = 0 + O(\epsilon^4) \]

(26)

while expected returns are given by

\[E_t [\hat{r}_{x,t+1}] = E_t \left[\frac{-\frac{1}{2}(\hat{r}_{1,t+1}^{2} - \hat{r}_{2,t+1}^{2}) - \frac{1}{6}(\hat{r}_{1,t+1}^{3} - \hat{r}_{2,t+1}^{3})}{\rho(\hat{C}_{t+1} + \hat{C}_{t+1}^{*})\hat{r}_{x,t+1} + \frac{\rho}{2}(\hat{C}_{t+1}^{2} + \hat{C}_{t+1}^{*2})\hat{r}_{x,t+1}} + O(\epsilon^4) \right] \]

(27)

These are the third-order equivalents of (10) and (11).

Notice that (26) contains only second and third-order terms. Thus it is possible to evaluate the left-hand side of (26) using first and second-order accurate solution for consumption and excess returns from the rest of the model. Second-order accurate solutions for the behaviour of consumption and excess returns can be obtained by solving a second-order approximation of the non-portfolio parts of the model.

As in the first-order case, it is possible to show that portfolio decisions affect the second-order solution of the non-portfolio parts of the model in a particularly simple way. In particular, as before, portfolio decisions only enter the non-portfolio parts of the model via budget constraints. Furthermore, the portfolio excess return (as it relates to the time varying element of the portfolio) is a zero mean i.i.d random variable.
A second-order approximation of the home budget constraints is given by

\[
\hat{W}_{t+1} = \frac{1}{\beta} \hat{W}_t + \hat{Y}_{t+1} + \hat{C}_{t+1} + \hat{\alpha}_{t+1} \hat{r}_{x,t+1} + \frac{1}{2} \hat{Y}_{t+1}^2
\]

\[-\frac{1}{2} \hat{C}_{t+1}^2 + \frac{1}{2} \hat{\alpha}(\hat{r}_{1,t+1}^2 - \hat{r}_{2,t+1}^2) + \hat{\alpha}_t \hat{r}_{x,t+1} + \frac{1}{\beta} \hat{W}_t \hat{r}_{2,t} + O(e^3)
\]

(28)

where

\[
\hat{\alpha}_t = \frac{1}{\beta Y}(\alpha_t - \bar{\alpha}) = \frac{\alpha_t}{\beta Y} - \bar{\alpha}
\]

Note that the value of \(\hat{\alpha}\) in this equation is given by (23) (i.e. the steady-state portfolio calculated in the previous section), so it is not necessary to solve again for \(\hat{\alpha}\). Recall that, \(\alpha_{1,t} = \alpha_t\) and that \(\alpha_{1,t} + \alpha_{2,t} = W_t\) so

\[
\hat{\alpha}_{1,t} = \hat{\alpha}_t \quad \hat{\alpha}_{2,t} = \hat{W}_t - \hat{\alpha}_t
\]

(29)

The objective in this section is to solve for the behaviour of \(\hat{\alpha}_t\). Since movements in the optimal portfolio are determined by predictable time-variation in portfolio decision, it is postulated that \(\hat{\alpha}_t\) is a linear function of the state variables of the model, i.e.

\[
\hat{\alpha}_t = \gamma' \begin{bmatrix} x_t \\ s_{t+1} \end{bmatrix} = \gamma' z_{t+1} = [\gamma]_k [z_{t+1}]^k
\]

(30)

The objective is thus to solve for the vector of coefficients in this expression, i.e. \(\gamma\).

Given this postulated functional form for the determination of \(\hat{\alpha}_t\), notice that, from the point of view of period \(t\), the value of \(z_{t+1}\) is known and thus \(\hat{\alpha}_t\) is known. This implies that (as in the derivation of the steady-state portfolio) the realised excess return on (the time-varying element of) the portfolio \(\hat{\alpha}_t \hat{r}_{x,t+1}\), in period \(t+1\) is a zero-mean i.i.d. random variable (up to second-order accuracy). Bearing this in mind, the solution for \(\gamma\) can now be demonstrated using a procedure which is very similar to the solution procedure for the steady-state portfolio.

As in the previous section, initially assume that the realised excess return on the time-varying part of the portfolio is an exogenous independent mean-zero i.i.d. random variable.

9As before Walras’s law implies that we need only consider one budget constraint.

10To see why this is the case, note that we are approximating \(\hat{\alpha}_t \hat{r}_{x,t+1}\) in (28) only up to second-order accuracy. Because \(\hat{\alpha}_t\) is a first-order variable, \(\hat{r}_{x,t+1}\) is also measured up to first order. We have already shown that up to a first order, \(\hat{r}_{x,t+1}\) is a mean zero i.i.d. variable.
denoted ξ_t. The second-order approximation of the home country budget constraint in period t can therefore be written in the form

$$
\hat{W}_t = \frac{1}{\beta} \hat{W}_{t-1} + \hat{Y}_t - \hat{C}_t + \hat{\alpha}\hat{r}_{x,t} + \frac{1}{2}\hat{Y}^2_t
- \frac{1}{2}\hat{C}^2_t + \frac{1}{2}\hat{\alpha}(\hat{r}^2_{1,t} - \hat{r}^2_{2,t}) + \xi_t + \frac{1}{\beta} \hat{W}_{t-1}\hat{r}_{2,t-1} + O(\epsilon^3)
$$

(31)

where, again, the value of $\hat{\alpha}$ in this equations is given by (23). Now assume that the entire second-order approximation of the non-portfolio equations of the model can be summarised in a matrix system of the form

$$
\begin{bmatrix}
s_{t+1} \\
E_t [ct+1]
\end{bmatrix}
= \hat{A}_2
\begin{bmatrix}
s_t \\
ct
\end{bmatrix}
+ \hat{A}_3x_t + \hat{A}_4\Lambda_t + B\xi_t + O(\epsilon^3)
$$

(32)

$$
x_t = Nx_{t-1} + \epsilon_t
$$

(33)

$$
\Lambda_t = \text{vech}
\begin{bmatrix}
x_t \\
s_t \\
ct
\end{bmatrix}
$$

(34)

where B is a column vector with unity in the row corresponding to the equation for the evolution of net wealth (31) and zero in all other rows. This is the second-order analogue of (14), which was used in the derivation of the solution for the steady-state portfolio. However, note that in this case the coefficient matrices on the first-order terms differ from (14) because (32) incorporates the effects of the steady-state portfolio. This is indicated by the tildes over the matrices A_1, A_2, A_3 and A_4.

The state-space solution to this set of equations can be derived using any second-order solution method (see for instance Lombardo and Sutherland, 2005). By extracting the appropriate rows and columns from the state-space solution it is possible to write expressions for the second-order behaviour of $(\hat{C} - \hat{C}^*)$ and \hat{r}_x in the following form

$$
(\hat{C} - \hat{C}^*) = [\tilde{D}_0] + [\tilde{D}_1]x + [\tilde{D}_2][\epsilon]^i + [\tilde{D}_3][z]^k
+ [\tilde{D}_4][\epsilon][\epsilon]^j + [\tilde{D}_5][\epsilon][z]^k + [\tilde{D}_6][\epsilon][z][z] + O(\epsilon^3)
$$

(35)

11 To clarify, equation (31) is formed by replacing $\hat{\alpha}t_{t-1}^\epsilon r_{x,t}$ with ξ_t.

12 The form of equation (32) may not be general enough to encompass all dynamic general equilibrium models. For instance, some models may contain terms in the expected future value or lagged value of Λ_t. Such terms can easily be incorporated into (32) without affecting our solution approach.
\[\hat{r}_x = [\tilde{R}_0] + [\tilde{R}_1]\xi + [\tilde{R}_2]\varepsilon + [\tilde{R}_3]z^k + \tilde{R}_4\varepsilon_i [\varepsilon]_i + \tilde{R}_5\varepsilon_i [\varepsilon]_i [z]_i + \tilde{R}_6\varepsilon_i [\varepsilon]_i [z]_i + O(\epsilon^3) \]

where time subscripts have been omitted to simplify notation. These expressions are the second-order analogues of (16) and (17) (but note again that they incorporate the effects of the steady-state portfolio). These expressions show how the second-order behaviour of \((\hat{C} - \hat{C}^*) \) and \(\hat{r}_x \) depend on the excess returns on the time-varying element of portfolios (represented by \(\xi \)) and the state variables and exogenous i.i.d. innovations.

Note, up to second-order accuracy, that the excess return is an i.i.d. random variable with a (constant) expected value given by (11). This implies that

\[
[\tilde{R}_3]_k = 0, \quad [\tilde{R}_6]_{i,j} = 0
\]

and

\[
[\tilde{R}_0] = E[\hat{r}_x] - [\tilde{R}_4]_{i,j} [\Sigma]_{i,j}
\]

so

\[
\hat{r}_x = E[\hat{r}_x] - [\tilde{R}_4]_{i,j} [\Sigma]_{i,j} + [\tilde{R}_1]\xi + [\tilde{R}_2]\varepsilon + [\tilde{R}_3]z^k + \tilde{R}_4\varepsilon_i [\varepsilon]_i + \tilde{R}_5\varepsilon_i [\varepsilon]_i [z]_i + \tilde{R}_6\varepsilon_i [\varepsilon]_i [z]_i + O(\epsilon^3)
\]

(37)

Now recognise that the excess return on the time-varying element of portfolios is

\[
\xi = \hat{\alpha}\hat{r}_x = [\gamma]_k [z]^k \hat{r}_x
\]

This is a second-order term, so \(\hat{r}_x \) can be replaced by the first-order parts of (37). This implies that

\[
\xi = [\gamma]_k [z]^k \hat{r}_x = [\tilde{R}_2]_{i,j} [\gamma]_k [\varepsilon]_i [z]_i
\]

so (35) and (37) can be rewritten as follows

\[
(\hat{C} - \hat{C}^*) = [\tilde{D}_0] + [\tilde{D}_2]_{i,j} [\varepsilon]_i [\varepsilon]_j + [\tilde{D}_3]_{k} [z]^k + [\tilde{D}_4]_{i,j} [\varepsilon]_i [\varepsilon]_j + [\tilde{D}_5]_{k,i} [\varepsilon]_i [z]_i + O(\epsilon^3)
\]

(38)

\[
\hat{r}_x = E[\hat{r}_x] - [\tilde{R}_4]_{i,j} [\Sigma]_{i,j} + [\tilde{R}_2]_{i} [\varepsilon]_i + [\tilde{R}_4]_{i,j} [\varepsilon]_i [\varepsilon]_j + [\tilde{R}_5]_{k,i} [\varepsilon]_i [z]_i + O(\epsilon^3)
\]

(39)
These two expressions provide some of the components necessary to evaluate the left hand side of (26). The following expressions for the first-order behaviour of home and foreign consumption and the two asset returns are also required

\[\hat{C} = [\hat{C}_2^H]_i \varepsilon^i + [\hat{C}_3^H]_k \varepsilon^k + O \left(\varepsilon^2 \right), \quad \hat{C}^* = [\hat{C}_2^F]_i \varepsilon^i + [\hat{C}_3^F]_k \varepsilon^k + O \left(\varepsilon^2 \right) \] (40)

\[\hat{\rho}_1 = [\hat{\rho}_1^H]_i \varepsilon^i + [\hat{\rho}_1^F]_k \varepsilon^k + O \left(\varepsilon^2 \right), \quad \hat{\rho}_2 = [\hat{\rho}_2^H]_i \varepsilon^i + [\hat{\rho}_2^F]_k \varepsilon^k + O \left(\varepsilon^2 \right) \] (41)

where it should be noted that \([\hat{\rho}_1^H]_k = [\hat{\rho}_2^F]_k\). The coefficient matrices for these expressions can be formed by extracting the appropriate elements from the first-order parts of the solution to (32).

Substituting (38), (39), (40) and (41) into (26) and deleting terms of order higher than three yields

\[
\begin{align*}
[\hat{D}_2]_i [\hat{R}_2]_j [\Sigma]^{i,j} &+ \left(E [\hat{\rho}_x] - [\hat{\rho}_4]_{i,j} [\Sigma]^{i,j} \right) [\hat{D}_3]_k \varepsilon^k + [\hat{\rho}_4]_{i,j} [\hat{D}_3]_k [\Sigma]^{i,j} \varepsilon^k \\
+ [\hat{\rho}_2]_i \left([\hat{D}_3]_{k,j} + [\hat{D}_1] [\hat{R}_2]_{j} [\gamma]_k \right) [\Sigma]^{i,j} \varepsilon^k &+ [\hat{D}_3]_i \left([\hat{D}_3]_{k,j} + [\hat{D}_1] [\hat{R}_2]_{j} [\gamma]_k \right) [\Sigma]^{i,j} \varepsilon^k \\
- \rho [\hat{\rho}_2]_i ([\hat{C}_2^H]_j [\hat{C}_3^H]_k - [\hat{C}_2^F]_j [\hat{C}_3^F]_k) [\Sigma]^{i,j} \varepsilon^k &+ \frac{1}{2} ([\hat{D}_2]_i [\hat{R}_2]_j [\hat{R}_3]_k [\Sigma]^{i,j} \varepsilon^k + [\hat{D}_3]_i [\hat{R}_2]_j [\hat{R}_3]_k [\Sigma]^{i,j} \varepsilon^k = 0 + O \left(\varepsilon^4 \right)
\end{align*}
\]

(42)

where use has been made of the fact that \([\hat{D}_0]\) and \([\hat{R}_0]\) are second-order terms and that all third moments of \(\varepsilon\) are assumed to be zero.\(^{13}\)

The fact that solutions (35) and (36) are based on an approximation where the steady-state portfolio is given by (23) by definition implies that

\[[\hat{D}_2]_i [\hat{R}_2]_j [\Sigma]^{i,j} = 0 \] (43)

Thus (42) implies that the following equation must be satisfied for all \(k\)

\[
\begin{align*}
\left(E [\hat{\rho}_x] - [\hat{\rho}_4]_{i,j} [\Sigma]^{i,j} \right) [\hat{D}_3]_k &+ [\hat{\rho}_4]_{i,j} [\hat{D}_3]_k [\Sigma]^{i,j} \\
+ [\hat{\rho}_2]_i \left([\hat{D}_3]_{k,j} + [\hat{D}_1] [\hat{R}_2]_{j} [\gamma]_k \right) [\Sigma]^{i,j} &+ [\hat{D}_3]_i \left([\hat{D}_3]_{k,j} + [\hat{D}_1] [\hat{R}_2]_{j} [\gamma]_k \right) [\Sigma]^{i,j} \\
- \rho [\hat{\rho}_2]_i ([\hat{C}_2^H]_j [\hat{C}_3^H]_k - [\hat{C}_2^F]_j [\hat{C}_3^F]_k) [\Sigma]^{i,j} &+ \frac{1}{2} ([\hat{D}_2]_i [\hat{R}_2]_j [\hat{R}_3]_k [\Sigma]^{i,j} + [\hat{D}_3]_i [\hat{R}_2]_j [\hat{R}_3]_k [\Sigma]^{i,j} \\
= 0 + O \left(\varepsilon^3 \right)
\end{align*}
\]

\(^{13}\)The generalisation of the solution procedure to handle non-zero third moments is simply a matter of allowing for a constant term in the expression for \(\hat{\alpha}\).
Using (40) and (41) it is possible to write the following expression for expected excess returns
\[
E[\hat{r}_x] = \frac{1}{2} \left([\tilde{R}_2^2][\tilde{R}_2^2] - [\tilde{R}_2^1][\tilde{R}_2^1] + \rho[\tilde{C}_2^H][\tilde{R}_2^2] + \rho[\tilde{C}_2^F][\tilde{R}_2^2] \right)[\Sigma]^{i,j} + O(\epsilon^3)
\] (45)

Substituting this into (44) and simplifying yields
\[
-\frac{\rho}{2}[\tilde{D}_2][\tilde{R}_2][\tilde{D}_3][\Sigma]^{i,j}
+[\tilde{R}_2][[\tilde{D}_5][\tilde{R}_2][\gamma]_k][\Sigma]^{i,j}
+[\tilde{D}_2][[\tilde{R}_5][\tilde{R}_2][\gamma]_k][\Sigma]^{i,j}
= 0 + O(\epsilon^3)
\] (46)

which, by applying (43), simplifies to
\[
[\tilde{R}_2][[\tilde{D}_5][\tilde{R}_2][\gamma]_k][\Sigma]^{i,j}
+[\tilde{D}_2][[\tilde{R}_5][\tilde{R}_2][\gamma]_k][\Sigma]^{i,j}
= 0 + O(\epsilon^3)
\] (47)

which implies, for all \(k\), that
\[
\gamma_k = -\frac{([\tilde{R}_2][\tilde{D}_5][\tilde{R}_2][\gamma]_k)[\Sigma]^{i,j} + [\tilde{D}_2][[\tilde{R}_5][\tilde{R}_2][\gamma]_k][\Sigma]^{i,j})}{[\tilde{D}_1][\tilde{R}_2][\tilde{R}_2][\Sigma]^{i,j}} + O(\epsilon)
\] (48)

which is our solution for \(\gamma\).

It should be emphasized that implementing this solution procedure requires only that the user apply (48), which needs only information from the second-order approximation of the model in order to construct the \(D\) and \(R\) matrices. So long as the model satisfies the general properties described in section 2, the other details of the model, such as production, labour supply, and price setting can be varied without affecting the implementation. The derivations used to obtain (48) do not need to be repeated. In summary, the solution for equilibrium \(\gamma\) has three steps:

1. Solve the non-portfolio equations of the model in the form of (32) to yield a state-space solution.
2. Extract the appropriate rows from this solution to form \(\tilde{D}_1, \tilde{R}_2, \tilde{D}_2, \tilde{R}_5\) and \(\tilde{D}_5\).
3. Calculate \(\gamma\) using (48).

What is the intuition behind expression (48)? The key insight is to recognize that, when we evaluate the portfolio selection equation up to a third order, we can no longer
describe the optimal portfolio choice as being determined by a constant covariance between \((\hat{C} - \hat{C}^\ast)\) and \(\hat{r}_x\). Second-order effects of predictable movements in state variables will lead to time-variation in this covariance, and this requires changes in the optimal portfolio composition. Take for instance the first term in the numerator of (48), given by \(\langle [\ddot{R}_2]_t [\ddot{D}_5]_{k,j} [\Sigma]^{i,j}\rangle\). Looking at (35), we see that \([\ddot{D}_5]\) captures the way in which movements in state variables affect the response to the consumption difference to stochastic shocks, at the second order. Since this leads to a predictable change in the covariance between the \((\hat{C} - \hat{C}^\ast)\) and \(\hat{r}_x\) so long as \([\ddot{R}_2]\) is non-zero, this requires an adjustment of the optimal portfolio to compensate for this. The other term in the numerator has a similar interpretation; predictable movements in the state variable affect the response of \(\hat{r}_x\) to stochastic shocks at the second order, and so long as \([\ddot{D}_2]\) is non-zero, this changes the covariance between \((\hat{C} - \hat{C}^\ast)\) and \(\hat{r}_x\), and requires a change in the optimal portfolio.

5 Example

The solution procedure is illustrated using the simple dynamic endowment model described in Devereux and Sutherland (2006). This is a one-good, two-country economy where the utility of home households is given by

\[
U_t = E_t \sum_{\tau=t}^{\infty} \beta^{\tau-t} C^{1-\rho}_t \frac{1}{1-\rho}
\]

where \(C\) is consumption of the single good. There is a similar utility function for foreign households.

The home and foreign endowments of the single good are auto-regressive processes of the form

\[
\log Y_t = \zeta_Y \log Y_{t-1} + \varepsilon_{Y,t}, \quad \log Y^*_t = \zeta_Y \log Y^*_{t-1} + \varepsilon_{Y^*,t}
\]

where \(0 \leq \zeta_Y \leq 1\) and \(\varepsilon_Y\) and \(\varepsilon_{Y^*}\) are i.i.d. shocks symmetrically distributed over the interval \([-\epsilon, \epsilon]\) with \(\text{Var}[\varepsilon_Y] = \text{Var}[\varepsilon_{Y^*} = \sigma_Y^2\).

Asset trade is restricted to home and foreign nominal bonds. The budget constraint of home agents is given by

\[
W_t = \alpha_{B,t-1} r_{B,t} + \alpha_{B^*,t-1} r_{B^*,t} + Y_t - C_t
\]
where W is net wealth, α_B and α_{B^*} are holdings of home and foreign bonds and $r_{B,t}$ and $r_{B^*,t}$ are the real returns on bonds. By definition, net wealth is the sum of bond holdings, i.e.

$$W_t = \alpha_{B,t} + \alpha_{B^*,t}$$ (52)

Real returns on bonds are given by

$$r_{B,t} = R_{B,t} \frac{P_{t-1}}{P_t} \quad r_{B^*,t} = R_{B^*,t} \frac{P_{t-1}^*}{P_t^*}$$ (53)

where P and P^* are home and foreign currency prices for the single tradeable good and R_B and R_{B^*} are the nominal returns on bonds. The law of one price holds so $P = SP^*$ where S is the nominal exchange rate (defined as the home currency price of foreign currency).

Consumer prices are assumed to be determined by simple quantity theory relations of the following form

$$M_t = P_t Y_t, \quad M_t^* = P_t^* Y_t^*$$ (54)

where home and foreign money supplies, M and M^*, are assumed to be exogenous auto-regressive processes of the following form

$$\log M_t = \zeta_M \log M_{t-1} + \varepsilon_{M,t}, \quad \log M_t^* = \zeta_M \log M_{t-1}^* + \varepsilon_{M^*,t}$$ (55)

where $0 \leq \zeta_M \leq 1$ and ε_M and ε_{M^*} are i.i.d. shocks symmetrically distributed over the interval $[-\epsilon, \epsilon]$ with $Var[\varepsilon_M] = Var[\varepsilon_{M^*}] = \sigma^2_M$.

To make the example easy, the four shock processes are assumed to be independent from each other. So the covariance matrix of the vector of innovations, $\varepsilon_t = \begin{bmatrix} \varepsilon_{Y,t} & \varepsilon_{Y^*,t} & \varepsilon_{M,t} & \varepsilon_{M^*,t} \end{bmatrix}$, is given by

$$\Sigma = \begin{bmatrix} \sigma^2_Y & 0 & 0 & 0 \\ 0 & \sigma^2_Y & 0 & 0 \\ 0 & 0 & \sigma^2_M & 0 \\ 0 & 0 & 0 & \sigma^2_M \end{bmatrix}$$

The first-order conditions for home and foreign consumption and bond holdings are

$$C_t^{\rho} = \beta E_t \left[C_{t+1}^{\rho} r_{B,t+1} \right], \quad C_t^{\rho^*} = \beta E_t \left[C_{t+1}^{\rho^*} r_{B^*,t+1} \right]$$ (56)

$$E_t \left[C_{t+1}^{\rho} r_{B,t+1} \right] = E_t \left[C_{t+1}^{\rho^*} r_{B^*,t+1} \right], \quad E_t \left[C_{t+1}^{\rho^*} r_{B^*,t+1} \right] = E_t \left[C_{t+1}^{\rho} r_{B^*,t+1} \right]$$ (57)
Finally, equilibrium consumption plans must satisfy the resource constraint

\[C_t + C_t^* = Y_t + Y_t^* \quad (58) \]

There are four sources of shocks in this model and only two independent assets. Assets markets are incomplete.

5.1 Solution for steady-state bond holdings

Devereux and Sutherland (2006) show how the model can be written in a linearised form suitable for derivation of the solution for the steady-state portfolio. Applying (23) yields the following expression for bond holdings

\[\tilde{\alpha}_B = -\tilde{\alpha}_B^* = -\frac{\sigma_Y^2}{2(\sigma^2_M + \sigma_Y^2)(1 - \beta \zeta_Y)} \]

5.2 Solution for first-order time-variation in bond holdings

Now solving the model up to the second order, and applying the procedures described above, we obtain the following expressions.

\[
\begin{align*}
\tilde{R}_2 &= \begin{bmatrix} 1 & -1 & -1 & 1 \end{bmatrix} \\
\tilde{D}_1 &= [2(1 - \beta)] \\
\tilde{R}_5 &= 0 \\
\tilde{D}_5 &= \begin{bmatrix} \Delta_2 & -\Delta_1 & -\Delta_1 & \Delta_1 \\
\Delta_1 & -\Delta_2 & -\Delta_1 & \Delta_1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
\Delta_3 & \Delta_3 + 2(1 - \beta) & 0 & -2(1 - \beta) \end{bmatrix}
\end{align*}
\]

where

\[
\begin{align*}
\Delta_1 &= -\frac{1 - \beta}{1 - \beta \zeta_Y} \tilde{\alpha}_B \{ (1 - \zeta_Y) \rho [1 - \zeta_Y (1 - \beta) \beta] + \zeta_Y (1 - \beta) \} \\
\Delta_2 &= -\frac{1 - \beta}{1 - \beta \zeta_Y} \frac{\beta (1 - \zeta_Y)^2 \zeta_Y (1 - \beta \rho)}{(1 - \beta \zeta_Y) (1 - \beta \zeta_Y)} + \Delta_1 \\
\Delta_3 &= -\frac{1 - \beta}{1 - \beta \zeta_Y} \frac{1 - \beta [1 - (1 - \zeta_Y) \beta \rho]}{\beta} \Delta_1
\end{align*}
\]

The solution for \(\hat{\alpha}_{B,t} \) is

\[\hat{\alpha}_{B,t} = \gamma_1 Y_t + \gamma_2 Y_t^* + \gamma_3 M_t + \gamma_4 M_t^* + \gamma_5 \tilde{W}_t \]

19
where
\[
\gamma_1 = \gamma_2 = \frac{1}{2} \left(1 - \frac{(1 - \zeta Y) [1 - \rho + (1 - \beta) \beta \rho \zeta Y^2]}{1 - \beta \zeta Y} \right) \tilde{\alpha}_B
\]
\[
\gamma_3 = \gamma_4 = 0
\]
\[
\gamma_5 = \frac{1}{2}
\]
Note that, from (29), it follows that the solution for \(\hat{\alpha}_{B^*,t} \) is
\[
\hat{\alpha}_{B^*,t} = -\gamma_1 Y_t - \gamma_2 Y^*_t - \gamma_3 M_t - \gamma_4 M^*_t + (1 - \gamma_5) \hat{W}_t
\]

The intuition behind the time variation in portfolios in this example follows the logic of the previous section. Predictable movements in home income make the consumption difference \(\hat{C} - \hat{C}^* \) more sensitive to stochastic shocks to home or foreign income, when evaluated up to a second order. This means that consumers in each country must increase the degree to which nominal bonds hedge consumption risk. So, for instance, in the case where \(\zeta Y = 1 \), and \(\tilde{\alpha}_B = -\sigma^2_Y/[2(\sigma^2_M + \sigma^2_Y)(1 - \beta)] \), home consumers take a short position in home nominal bonds. In response to a predictable rise in home income, their consumption becomes more sensitive to home output shocks, at the second order. As a result they increase their short position in home currency bonds, so that \(\gamma_1 = \tilde{\alpha}_B/2 \). For the same reason, they increase their long position in foreign bonds. A predictable rise in foreign income has the same effect.

6 Conclusion

This paper shows how the solution method described in Devereux and Sutherland (2006) can be extended to yield analytical expressions for the dynamic behaviour of portfolios in open economy general equilibrium models. We derive a general formula which can be applied to any model, with any number of assets and with complete or incomplete financial markets.

The advantage of our general formula is that it can provide simple and clear insights into the factors which determine the dynamic evolution of portfolios. Such insights may not always be available from purely numerical approaches. In future work, we plan to apply these procedures to the analysis of the dynamics of asset holdings in more complex international macro environments.

20
References

