Probability

Outline:

- 1. Axioms of the Probability Calculus
- 2. Key Principles
- 3. Bayes' Theorem: computations and applications
- 4. Interpretations of probability:
 - objective
 - subjective
- 5. Bayes' Theorem: philosophical issues

1. The Probability Calculus

- Notation: &, \lor , \sim , \leftrightarrow ,
- P(p): the probability of p
- Equivalent formulations: statements or outcomes

Axioms of unconditional and conditional probability

(1) (*Positive*): For any p [and q], $0 \le P(p)$ [and $0 \le P(p / q)$].

(2) (*Tautology*): If t is a tautology, then P(t) = 1 [and P(t/q) = 1].

(3) (Additivity): If p and q are mutually exclusive (can't both be true), then:

P(p or q) = P(p) + P(q);
[P(p or q / r) = P(p / r) + P(q / r), for any statement r]

(4) (Conjunction):
$$P(p \& q) = P(q) P(p / q)$$

= $P(p) P(q / p)$

Def: *p* and *q* are independent if P(p / q) = P(p)

Note: Conditional probability is generally either defined by (4) or taken to be primitive.

2. Key principles

Proposition 1: If *p* and *q* are mutually exclusive and $P(q) \neq 0$, then $P(p \mid q) = 0$.

Proposition 2: $P(\sim p) = 1 - P(p)$

Corollary: If *f* is a logical contradiction, then P(f) = 0 (since $\sim f$ is a tautology, so that $P(\sim f) = 1$).

Proposition 3: If *p* and *q* are equivalent, then P(p) = P(q).

Proposition 4: If p = q, then $P(p) \le P(q)$.

Corollary: $0 \le P(p) \le 1$ for any *p* (since *p* t and P(t) = 1).

Proposition 5: $P(p \lor q) = P(p) + P(q) - P(p \& q)$

Proposition 6: If $P(q) \neq 0$, then

P(p / q) = P(p & q) / P(q).

Proposition 7: If *p* and *q* are independent, then P(p & q) = P(p) P(q).

Question: Why can't we define conditional probability as the probability of a conditional:

$$P(p / q) = P(q \supset p)$$

Proposition 8: Suppose $p_1, ..., p_n$ are mutually exclusive, i.e., $p_i \sim p_j$ for all i, j.

Then
$$P(p_1 \vee ... \vee p_n) = P(p_1) + ... + P(p_n)$$
.

Proposition 9 (Theorem of Total Probability): Suppose $q_1, ..., q_n$ are mutually exclusive and exhaustive. Then for any sentence p,

 $P(p) = P(p \& q_1) + \ldots + P(p \& q_n)$

Corollary: Under the same assumptions,

 $P(p) = P(p / q_1)P(q_1) + ... + P(p / q_n)P(q_n)$ (just apply the conjunction axiom).

Countable additivity

Consider an infinite disjunction: $H_1 \lor H_2 \lor ...$ where H_i means you get your first heads on toss i.

Then $H \leftrightarrow H_1 \lor H_2 \lor \dots$ (where H is 'coin eventually comes up heads').

If coin is fair, P(H) = 1, and $P(H_i) = 1/2^i$. So we have

 $P(H) = \Sigma P(H_i) = P(H_1) + P(H_2) + \dots$

In general, *P* is *countably additive* if $P(p_1 \lor p_2 \ldots) = \Sigma P(p_i)$.

(De Finetti's lottery: a counterexample to countable additivity as a requirement for subjective probability)

3. Bayes' Theorem

Version A:

$$P(p / q) = \frac{P(p) \cdot P(q / p)}{P(q)}$$

Version B:

$$P(p / q) = \frac{P(p) \cdot P(q / p)}{P(p) \cdot P(q / p) + P(\sim p) \cdot P(q / \sim p)}$$

Version C:

$$P(p_1 / q) = \frac{P(p_1) \cdot P(q / p_1)}{P(p_1) \cdot P(q / p_1) + P(p_2) \cdot P(q / p_2) + \dots + P(p_n) \cdot P(q / p_n)}$$

Terminology

- The *posterior probability* of p relative to q, P(p / q), appears on the left.
- The *prior probability* of *p*, *P*(*p*).
 - Connection to plausibility
 - *Open-mindedness* about p: 0 < P(p) < 1:
- The *likelihood* of the evidence q given p, P(q / p)
 - If P(q/p) = 0, no evidence will raise probability of p
 - If P(q / p) = 1, q provides strong evidence for p (unless E is totally unsurprising even if ~p)
- The *expectedness* of the evidence q, P(q).
 - Suprising evidence has greater power to raise probability of p

c) Prior probabilities

Objection: where do prior probabilities come from?

- Symmetry of a chance set-up: lotteries, dice, card games
- Statistical frequencies

But what if neither of these applies?

Example: Some coins are biased to 75% tails; others are fair. No idea of the frequency of biased coins.

Convergence Argument: Bayesians say you should use your best guess as the prior probability. Widely divergent prior probabilities will "wash out" or converge, given a large amount of data.