
C – Why use it?

Paul Schrimpf

January 16, 2009

Paul Schrimpf () C – Why use it? January 16, 2009 1 / 43

Why Use C?

It is harder to learn and use

Fast

Ubiquitous
I C can be combined with almost any other language
I Many algorithms have been written and C that are not available in

Matlab and Stata

Paul Schrimpf () C – Why use it? January 16, 2009 2 / 43

Example: Consumption and Bequests
Estimation for Einav, Finkelstein, and Schrimpf (2007) required
solving the following problem tens of thousands of times:

V (w0, g , α, β) =max
ct ,wt

T∑
t=0

st(α)δt c1−γ
t

1− γ
+ βmt(α)δt (wt + G g

t)1−γ

1− γ

s.t. 0 ≤ wt+1 = (wt + zg
t − ct)(1 + r)

Strategy: use first order conditions to concentrate out ct(c0), wt(c0)
and then use Brent’s method to maximize over c0

λ0 =s0(α)δ0c−γ
0

wt+1 =(wt + zg
t − ct)(1 + r)

λt+1 =−mt+1(α)δt+1β(wt+1 + G g
t+1)

−γ +
1

1 + r
λt

ct =

(
λt

δtst(α)

)−1/γ

Paul Schrimpf () C – Why use it? January 16, 2009 3 / 43

Example (continued)

Natural to program as a loop → very slow in Matlab compared to C

Solving 100 times in Matlab with objective function written in Matlab
takes 6 seconds

With the objective function written in C it takes 0.1 seconds

C is sixty times faster even though algorithm is identical and the code
looks very similar

Demonstration

Paul Schrimpf () C – Why use it? January 16, 2009 4 / 43

Why is C so much faster?

Consider

1 f o r i =1:100
2 x (i) = i ;
3 end

Each iteration Matlab will:
1 Increment i , check if i ≤ 100
2 Check that i is a valid index for x
3 Check that x(i) is allocated, allocate it if necessary
4 Check that x(i) is a valid target for i
5 Copy the value of i into x(i), change type of i if needed

Paul Schrimpf () C – Why use it? January 16, 2009 5 / 43

Why is C so much faster?

Equivalent C code:

1 f o r (i =0; i <0; i++) {
2 x [i] = i ;
3 }

Each iteration C will:
1 Increment i , check if i ≤ 100
2 Copy the value of i into x(i), change type of i if needed

C only does what you tell it to → fast, but also difficult and error
prone

Paul Schrimpf () C – Why use it? January 16, 2009 6 / 43

Major Practical Difference Between C and Matlab

Must declare variables
I Names and sizes – must deal with dynamic memory management

yourself

C has few functions builtin – need to link to other libraries

C is compiled, Matlab is interpreted (or JIT compiled)

C does exactly what you tell it, even if you tell it to do something bad

Paul Schrimpf () C – Why use it? January 16, 2009 7 / 43

References

You will need them
The C Book – great introductory reference

I “Programming in C is like eating red meat and drinking strong rum
except your arteries and liver are more likely to survive it.”

Kernighan and Ritchie (K&R) – classic but not great for learning
I Kernighan: Programming in C: A Tutorial (1974) – historical

C Programming Notes – K&R explained

Common C Errors

Paul Schrimpf () C – Why use it? January 16, 2009 8 / 43

http://publications.gbdirect.co.uk/c_book/
http://www.amazon.com/Programming-Language-Dennis-M-Richie/dp/0876925964
http://www.lysator.liu.se/c/bwk-tutor.html
http://www.eskimo.com/~scs/cclass/notes/sx1.html
http://www.drpaulcarter.com/cs/common-c-errors.php

Quotes

“C is often described, with a mixture of fondness and disdain varying
according to the speaker, as ‘a language that combines all the
elegance and power of assembly language with all the readability and
maintainability of assembly language’ ” – Jargon File (MIT and
Stanford AI labs circa 1983)

“C is quirky, flawed, and an enormous success.” – Dennis Ritchie

“C makes it easy to shoot yourself in the foot; C++ makes it harder,
but when you do, it blows away your whole leg.” – Bjarne Stroustrup

Paul Schrimpf () C – Why use it? January 16, 2009 9 / 43

Good News

You already know some C

Matlab’s structs, printf , strcmp, etc. take their names and functionality
from C

Perl’s flow control, indexing scheme, etc. is also very similar to C

Paul Schrimpf () C – Why use it? January 16, 2009 10 / 43

C Datatypes

Declaring datatypes

Every variable must be declared before it can be used

1 f l o a t y ; // s i n g l e p r e c i s i o n s c a l a r , 8 d i g i t s , r a r e l y used
2 doub l e x ; /∗ doub l e p r e c i s i o n s c a l a r , 16 d i g i t s , 64 b i t s ∗/
3 l ong doub l e w; /∗ more p r e c i s e double , 96 b i t s ∗/
4 i n t i ; /∗ i n t e g e r , b/ t −2ˆ(31) and 2ˆ(31) ∗/
5 s h o r t i n t j ; /∗ 16 b i t i n t e g e r ∗/
6 cha r a , b , c ; /∗ 8 b i t c h a r a c t e r s − each ho l d s 1 l e t t e r ∗/
7 uns i gned i n t u ; /∗ i n t e g e r b/ t 0 and 2ˆ32 ∗/

Sizes and ranges of datatypes are machine dependent

Can only declare variables in certain places – start of of a { } block

Paul Schrimpf () C – Why use it? January 16, 2009 11 / 43

Basic Operators

1 doub l e x , y=1, z=2;
2 /∗ u sua l + ,∗ ,/ ,− ∗/
3 x = y+z ; y = z∗x ; z = y/x ;
4

5 /∗ l e s s f am i l a r : ∗/
6 x = 1 ;
7 x++; /∗ now x i s 2 ; ∗/
8 y = x−−; /∗ now y=2, x=1 ∗/
9 z = ++x ; /∗ now z=2, x=2 ∗/

10 y /= 4 ; /∗ s e t s y = y /4 ; ∗/
11 x = y>z ? 1 : 2 ; /∗ x = 2 , because y>z i s f a l s e ∗/

Paul Schrimpf () C – Why use it? January 16, 2009 12 / 43

Mixing Datatypes

1 doub l e x ;
2 i n t n , j =3,k=6;
3 cha r c ;
4

5 n = 2∗x ; /∗ ??? , but not an e r r o r ∗/
6 n = k%j ; /∗ modulo ∗/
7 x = j /k ; /∗ x=0 b/c j /k i s an i n t ∗/
8 x = ((doub l e) j) / ((doub l e) k) ; /∗ now , x=0.5 ∗/
9 n = x ; /∗ n = 0 b/c i t c a s t x i n t o an i n t ∗/

10

11 c = x∗ j ; /∗ ??? , but not an e r r o r ∗/
12 x = (j=(6+k=7)) ; /∗ v a l i d , but c o n f u s i n g ∗/

Paul Schrimpf () C – Why use it? January 16, 2009 13 / 43

Logical Operators

== , != , >=, >, <=, <, !, ||, &&

Any non-zero value is true as part of a logical expression

In arithmetic, true logical expressions act like int true=1

Bitwise – do not use on accident

& , | , ^ , >> , << , ~

Paul Schrimpf () C – Why use it? January 16, 2009 14 / 43

Flow Control

Same type of commands as Matlab:

1 f o r (i n i t i a l i z a t i o n ; s t opp i ng c o n d i t i o n ; i n c r ement) {
2 /∗ b r a c e s a r e o p t i o n a l i f we j u s t have s i n g l e command ∗/
3 doSomething ;
4 }

1 do {
2 doSomething at l e a s t once ;
3 } wh i l e (c o n d i t i o n) ; /∗ s em i co l on r e q u i r e d he r e /

1 wh i l e (c o n d i t i o n){
2 doSomething ;
3 }

Paul Schrimpf () C – Why use it? January 16, 2009 15 / 43

Flow Control

1 i f (c o n d i t i o n) {
2 doSomething ;
3 } e l s e { /∗ can l e a v e out e l s e , add e l s e i f , e t c ∗/
4 doSometh ingE l se
5 }

Paul Schrimpf () C – Why use it? January 16, 2009 16 / 43

More Flow Control
To be used sparingly:

1 sw i t c h (i n t e g e r) {
2 ca se con s t an t1 :
3 command1 ;
4 ca se con s t an t2 :
5 command2 ;
6 break ; /∗ note : ca s e con s t an t1 e x e cu t e s
7 both command1 and command2 ∗/
8 d e f a u l t :
9 command3 ;

10 }

1 wh i l e (c o n d i t i o n) {
2 command1 ;
3 i f (cond2) break ; /∗ e x i t l oop e a r l y ∗/
4 e l s e i f (cond3) con t i nu e ; /∗ go to s t a r t o f l oop ∗/
5 command2 ;
6 }
Paul Schrimpf () C – Why use it? January 16, 2009 17 / 43

Why we fear break – AT&T 1990 Outage

Switches had this type of code:

1 do {
2 /∗ . . . many l i n e s omi t t ed . . . ∗/
3 sw i t c h (someth ing) {
4 ca se 1 :
5 /∗ . . . many l i n e s omi t t ed . . . ∗/
6 i f (wantToStop) break ;
7 /∗ . . . many l i n e s omi t t ed . . . ∗/
8 break ;
9 ca se 2 :

10 /∗ . . . many l i n e s omi t t ed . . . ∗/
11 }
12 } wh i l e (c o n d i t i o n) ;

This code caused big problems ...

Paul Schrimpf () C – Why use it? January 16, 2009 18 / 43

Why we fear break – AT&T 1990 Outage

When switches crash they send an “out of service” message

This code made it so that when a switch received an “out of service”
message, it crashed ... and then rebooted

Result: one switch failed, nearby switches crashed, making more
switches crash, ... switches reboot in time to receive to the “out of
service” message from far away switches, so they immediatly crash
again

I Took 9 hours to fix
I Cost $60 million

Paul Schrimpf () C – Why use it? January 16, 2009 19 / 43

More Flow Control

To be used sparingly:

1 i f (c o n d i t i o n) goto l a b e l 1 ; /∗ the in famous goto ∗/
2 /∗ . . . bunch o f s t u f f to s k i p . . . ∗/
3 l a b e l 1 : /∗ got s en t he r e

“ Everybody knows that the goto statement is a ‘bad thing.’ Used
without care it is a great way of making programs hard to follow and
of obscuring any structure in their flow. Dijkstra wrote a famous
paper in 1968 called ‘Goto Statement Considered Harmful,’ which
everybody refers to and almost nobody has read.” – The C Book

Paul Schrimpf () C – Why use it? January 16, 2009 20 / 43

http://publications.gbdirect.co.uk/c_book/chapter3/flow_control.html

References

This section go over the simplest way to compile a C program. For more
information see:

ACM Developing Software in Unix Tutorial – everything you need to get started in
Unix or Linux

GCC manual

Paul Schrimpf () C – Why use it? January 16, 2009 21 / 43

http://www.cs.washington.edu/orgs/acm/tutorials/dev-in-unix/
http://gcc.gnu.org/onlinedocs/

Getting a Compiler

Many compilers are available – gcc is the most common, Intel’s icc
can be faster, many others exist

To install
I Linux / Unix – already have it
I Windows

F IDE – Bloodshed Dev-C++

F Unix-like – MINGW , Cygwin

I Mac OS X – Xcode

If you just want to use within Matlab, try typing mex, it may work

If you don’t use an IDE, you’ll want a quality editor too – Emacs and
Vi(m) are classics

My preference: Linux or MINGW & Emacs

Paul Schrimpf () C – Why use it? January 16, 2009 22 / 43

http://www.bloodshed.net/devcpp.html
http://www.mingw.org/
http://www.cygwin.com/
http://developer.apple.com/tools/
http://www.gnu.org/software/emacs/
http://www.vim.org/

Hello, World!

1 #i n c l u d e <s t d i o . h>
2

3 i n t main () {
4 p r i n t f (” He l l o , World !\ n”) ;
5 }

1 Open your editor, type it, and save it as helloWorld.c

2 To compile: gcc helloWorld.c -o hello.exe

3 To run: ./hello.exe

Fun fact: A Tutorial Introduction to the Language B (Kernighan, 1972) – contains the
original “Hello World!”

Paul Schrimpf () C – Why use it? January 16, 2009 23 / 43

http://cm.bell-labs.com/cm/cs/who/dmr/btut.html

Hello, Matlab!

1 #i n c l u d e ”mex . h”
2

3 vo i d mexFunct ion (i n t n lh s , mxArray ∗ p l h s [] ,
4 i n t nrhs , con s t mxArray ∗ prhs [])
5 {
6 mexPr i n t f (” He l l o , Matlab !\ n”) ;
7 }

1 To compile: mex helloWorld.c (within Matlab)

2 To run: helloWorld() (within Matlab)

Paul Schrimpf () C – Why use it? January 16, 2009 24 / 43

Hello, Stata!

1 #i n c l u d e ” s t p l u g i n . h”
2

3 STDLL s t a t a c a l l (i n t argc , cha r ∗ a rgv [])
4 {
5 SF d i s p l a y (” He l l o S ta ta !\ n”) ;
6 r e t u r n (0) ;
7 }

1 Download stplugin.c and stplugin.h1

2 To compile: gcc -ansi -shared -fPIC [-DSYSTEM=OPUNIX]
stplugin.c helloStata.c -o hello.plugin

3 To use, in stata:
program hello, plugin
plugin call hello

1See http://www.stata.com/plugins/ for more information.
Paul Schrimpf () C – Why use it? January 16, 2009 25 / 43

http://www.stata.com/plugins/stplugin.c
http://www.stata.com/plugins/stplugin.h
http://www.stata.com/plugins/

Hello What?

1 i n t i ; main (){ f o r (; i [‘ ‘] < i ;++ i){−− i ;} ’ ’] ; r ead (’− ’− ’− ’ , i+++’ ’ h e l l \
2 o , wor ld !\ n ’ ’ , ’ / ’ / ’ / ’)) ; } r ead (j , i , p){ w r i t e (j /p+p , i−−−j , i / i) ; }

Winner of the 1984 International Obfuscated C Code Contest

Paul Schrimpf () C – Why use it? January 16, 2009 26 / 43

http://www.ioccc.org/years.html#1984

Example: Fibonacci Sequence

We’ll demonstrate the tools we’ve covered so far by writing a function
that computes the nth Fibonacci number

F (n) =

{
n if n = 0, 1

F (n − 2) + F (n − 1) if n > 1
(1)

We’ll compute F (n) näıvely – the clever method is left as an exercise

Paul Schrimpf () C – Why use it? January 16, 2009 27 / 43

Fibonacci: Loop Version

1 uns i gned i n t f i bLoop (uns i gned i n t n) {
2 uns i gned i n t F , Fm1 ,Fm2 ;
3 i n t i ;
4

5 i f (n≤1) r e t u r n (n) ;
6 Fm1=1;
7 Fm2=0;
8 f o r (i =2; i≤n ; i++) {
9 F = Fm2+Fm1 ;

10 Fm2 = Fm1 ;
11 Fm1 = F ;
12 }
13 r e t u r n (F) ;
14 }

Paul Schrimpf () C – Why use it? January 16, 2009 28 / 43

Fibonacci: Recursive Version

1 uns i gned i n t f i bR e c u r (uns i gned i n t n) {
2 i f (n≤1) r e t u r n (n) ;
3 e l s e r e t u r n (f i bR e c u r (n−1) + f i bR e c u r (n−2)) ;
4 }

More elegant

Much more time consuming for large n – big call stack

Paul Schrimpf () C – Why use it? January 16, 2009 29 / 43

To Use from Command Line

1 #i n c l u d e <s t d i o . h> /∗ heade r f i l e f o r i n pu t / output f u n c t i o n s ∗/
2 /∗ f u n c t i o n d e c l a r a t i o n s − needed so we can use them i n main () ∗/
3 uns i gned i n t f i bLoop (uns i gned i n t) ;
4 uns i gned i n t f i bR e c u r (uns i gned i n t) ;
5

6 i n t main (i n t argc , cha r ∗∗ a rgv) {
7 uns i gned i n t n ;
8 i f (a rgc != 2) {
9 p r i n t f (”ERROR: 1 command l i n e argument r e q u i r e d \n”) ;

10 r e t u r n (1 2) ; /∗ shou l d r e t u r n 0 on succe s s , non−z e r o on f a i l u r e ∗/
11 }
12 i f (! s s c a n f (a rgv [1] , ”%d” ,&n)) {
13 p r i n t f (”ERROR: bad i npu t \”%s \”\n” , a rgv [1]) ;
14 r e t u r n (1 3) ; /∗ shou l d r e t u r n 0 on succe s s , non−z e r o on f a i l u r e ∗/
15 }
16 p r i n t f (”Loop v e r s i o n : The %d F i bona c c i number i s %d\n” ,n , f i bLoop (n)) ;
17 p r i n t f (” Re c u r s i v e v e r s i o n : The %d F i bona c c i number i s %d\n” ,n , f i bR e c u r (n)) ;
18 r e t u r n (0) ;
19 }

Paul Schrimpf () C – Why use it? January 16, 2009 30 / 43

To Use in Matlab

1 #i n c l u d e ”mex . h” /∗ heade r f i l e f o r mat lab API ∗/
2

3 uns i gned i n t f i bLoop (uns i gned i n t) ;
4

5 vo i d mexFunct ion
6 (i n t n lh s , /∗ number o f l e f t hand s i d e arguments ∗/
7 mxArray ∗ p l h s [] , /∗ p o i n t e r to l h s ∗/
8 i n t nrhs , /∗ number o f r h s arguments ∗/
9 con s t mxArray ∗ prhs []) /∗ p o i n t e r to r h s arguments ∗/

10 {
11 /∗ e r r o r check i ng omi t ted ∗/
12

13 p l h s [0] = mxCreateDoub leSca la r (f i bLoop (mxGetSca lar (p rh s [0]))) ;
14 }

Paul Schrimpf () C – Why use it? January 16, 2009 31 / 43

To Use in Stata

1 STDLL s t a t a c a l l (i n t argc , cha r ∗ a rgv [])
2 {
3 ST in t j ;
4 ST double va l , f i b ;
5 ST retcode r c ;
6 f o r (j = SF in1 () ; j ≤ SF in2 () ; j++) {
7 i f (S F i f o b s (j)) { /∗ t r u e i f s t a t a i f command t r u e ∗/
8 i f (r c = SF vdata (1 , j ,& v a l)) r e t u r n (r c) ;
9 f i b = (doub l e) f i bLoop ((uns i gned i n t) v a l) ;

10 i f (r c = SF v s t o r e (SF nva r s () , j , f i b)) r e t u r n (r c) ;
11 }
12 }
13 r e t u r n (0) ;
14 }

Paul Schrimpf () C – Why use it? January 16, 2009 32 / 43

Lots More to Learn ...

Preprocessor directives, e.g. #include

Header files, e.g. ’ ’mex.h’’

More datatypes, e.g. const mxArray

Pointers, e.g. char ∗∗argv

Paul Schrimpf () C – Why use it? January 16, 2009 33 / 43

The C Preprocessor

Before compiling, a C source code is preprocessed, i.e. the text is
modified

Preprocessor commands begin with #

#define PI 3.14 defines a constant

#define MAX(a,b) a≥b? a:b defines a macro

#ifdef PI some command #endif# only includes some command if the
macro PI had been defined

#include <file> or #include ’ ’ file ’ ’ inserts the contents of file

Paul Schrimpf () C – Why use it? January 16, 2009 34 / 43

Header Files

Contain function and variable declarations – must declare functions
before you can use them

e.g. <stdio.h> declares sscanf () and printf ()

’ ’mex.h’’ declares mxArray, mxGetPr(), etc

Files inside <> are supposed to be system header files that are part of
your compiler or OS

I Common headers: <math.h>, <stdio.h>, <stdlib .h>, etc.
I Use man header.h to learn about header file or man function to

learn about a function

Only contain function prototypes, not the actual code

Actual functions are contained in a library file somewhere

Paul Schrimpf () C – Why use it? January 16, 2009 35 / 43

Compilation
1 Preprocessing
2 Compiler – changes source files to assembly language

1 mov eax , [L1] ; eax = byte at L1
2 mov ebx , [L2] ; ebx = byte at L2
3 add eax , ebx ; eax = eax + eax
4 mov [L1] , eax ; by te at L1 = eax

3 Assembler – translates assembly into machine language
4 Linker – examines object file(s), creates list of functions/variables

referenced but not defined, and either:
I static linking: searches system libraries for them, adds the ones found,

and finally packages everything into an executable
I dynamic linking: inserts commands that load the needed libraries when

the program is executed

Usually do not have to worry about details, just type:
I Command line: gcc [-g] -Wall file1.c file2.c -o

program.exe
I Matlab: mex [-g] file.x
I Stata: gcc -shared -fPIC [-DSYSTEM=OPUNIX] stplugin.c

file.c -o foo.plugin

Paul Schrimpf () C – Why use it? January 16, 2009 36 / 43

Compiler Options

Compiling can get very complicated
I Hundreds of options – man gcc is 6884 lines
I Linking libraries
I Breaking into steps

Tools to manage
I IDE – automates much, menus for options
I make – manages complicated compilations A Make Tutorial

Important options:
I -g turns on debugging information
I -Wall turns on all warning messages
I -llib tells to link against library lib – e.g. for math, -lm
I -O2 and -O3 adds optimizations – can do even better with fine tuning

Paul Schrimpf () C – Why use it? January 16, 2009 37 / 43

http://www.eng.hawaii.edu/Tutor/Make/

Arrays

1 doub l e x [1 0] , y [5] [6] ;
2 i n t i ;
3 f o r (i =0; i <10; i++) x [i] = s q r t (i) ;

Indexed starting with 0
I “Should array indices start at 0 or 1? My compromise of 0.5 was

rejected without, I thought, proper consideration.” – Stan Kelly-Bootle

No way to figure out size

Paul Schrimpf () C – Why use it? January 16, 2009 38 / 43

structs and typedef

1 s t r u c t v e c t o r s {
2 uns i gned i n t s i z e ; /∗ s i z e ∗/
3 doub l e ∗ v a l ; /∗ p o i n t e r to a r r a y o f v a l u e s ∗/
4 } ;
5 t y p ed e f s t r u c t v e c t o r s v e c t o r ; /∗ d e f i n e a new v a r i a b l e type c a l l e d
6 ‘ ‘ v e c t o r ’ ’ ∗/
7 v e c t o r x ; /∗ d e c l a r e x to be a v e c t o r ∗/
8 /∗ use l i k e i n Matlab ∗/
9 x . s i z e = 10 ; /∗ e t c ∗/

10 x . v a l = ma l l o c (x . s i z e ∗ s i z e o f (doub l e)) ;

Paul Schrimpf () C – Why use it? January 16, 2009 39 / 43

Enums

enums

1 t y pd e f enum { /∗ a named mu l t i n om i a l v a r i b l e ∗/
2 bee r =1, wine , m i l k /∗ make bee r =1, wine=2, m i l k=3 ∗/
3 } b e v e r i d g e ; /∗ name t h i s enum be v e r i d g e ∗/
4 b e v e r i d g e cup ;
5 sw i t c h (cup) {
6 ca se bee r : chug (cup) ; b reak ;
7 ca se wine : s i p (cup) ; b reak ;
8 ca se m i l k : d r i n k (cup) ; b reak ;
9 d e f a u l t : po i s on (cup) ;

10 }

Paul Schrimpf () C – Why use it? January 16, 2009 40 / 43

Unions

unions – exotic

1 un ion { /∗ d e c l a r e l i k e s t r u c t s ∗/
2 doub l e x ; /∗ but , the f i e l d s s ha r e the ∗/
3 i n t i ; /∗ same p l a c e i n memory ∗/
4 } u ;
5 u . x = 3 . 5 ; /∗ i f we examine u . i i t would be someth ing s t r a n g e ∗/
6 u . i = 2 ; /∗ u . x has now changed to someth ing s t r a n g e ∗/

Paul Schrimpf () C – Why use it? January 16, 2009 41 / 43

Variable Scope and Type Modifiers

Normally local within {}

Outside of any function → accessible by all functions in that file

Prefixes change behaviour
I const int x = 3 makes x constant
I static double x makes x static / persistent
I extern double x makes x global

Prefixes can have different meaning depending on context
I double function (const double x) means that x cannot be modified within

funciton
I static void f(char ∗s) means that f() can only be called by other

functions in the same file

Exotic type modifies – volatile and register

Paul Schrimpf () C – Why use it? January 16, 2009 42 / 43

Exercises

Unlike the Matlab portion of the course, it will be very difficult to get much out of this
without trying the exercises. At the very least, you should attempt to compile and run
the provided code. I’ve wasted many days struggling with compiler related configuration
problems.

1 A good algorithm can calculate the Fibonacci sequence in O(log2 n) steps.
Develop and implement one.

2 Try giving passing some strange arguments to the Fibonacci programs, e.g.
non-integers, negative numbers, imaginary numbers, chacters, etc. What happens?
(It’s quite likely that the program will enter an infinite loop. Press ¡crt-c¿ to stop
the command line version. You may have to kill Matlab. Use Windows’ task
manager, or type “killall -TERM MATLAB” at linux command line.) Modify the
program so that it doesn’t behave so badly.

Paul Schrimpf () C – Why use it? January 16, 2009 43 / 43

	Introduction
	An Example
	C Basics
	Compiling and Running a Program
	Getting a Compiler
	Hello World
	Example: Fibonacci Sequence

	Compilation
	Compiler Options

	More Datatypes

