Paul Schrimpf ()

Paul Schrimpf

January 16, 2009

C — Why use it?

Why Use C?

@ It is harder to learn and use
o Fast
e Ubiquitous
» C can be combined with almost any other language

» Many algorithms have been written and C that are not available in
Matlab and Stata

Paul Schrimpf () C — Why use it? January 16, 2009 2 /43

Example: Consumption and Bequests

e Estimation for Einav, Finkelstein, and Schrimpf (2007) required
solving the following problem tens of thousands of times:

T - -
Gg 1—v
V(o g, 5) =max > (st £+ pm(a)ot HF-E)

st. 0 < wpp = (Wt +zf—c)(1+7r)
o Strategy: use first order conditions to concentrate out c¢(cp), we(co)
and then use Brent's method to maximize over ¢
/\0 :50(04)50C0_7
W1 =(we +2f — c)(1+71)
1
1+r

)\t—l-l = — mt+1(a)5t+1,8(Wt+]_ + C';tg+1)_’y +)\f

B s =1/~
=\ Gtsy(a)

Paul Schrimpf () C — Why use it? January 16, 2009 3/43

Example (continued)

@ Natural to program as a loop — very slow in Matlab compared to C

@ Solving 100 times in Matlab with objective function written in Matlab
takes 6 seconds

@ With the objective function written in C it takes 0.1 seconds

o C is sixty times faster even though algorithm is identical and the code
looks very similar

Demonstration

Paul Schrimpf () C — Why use it? January 16, 2009 4 /43

Why is C so much faster?

o Consider

1 for i=1:100
2 x(i) = i;
3 end

@ Each iteration Matlab will:
@ Increment i, check if i <100
@ Check that i is a valid index for x
© Check that x(i) is allocated, allocate it if necessary
© Check that x(i) is a valid target for i
© Copy the value of i into x(i), change type of i if needed

Paul Schrimpf () C — Why use it? January 16, 2009

5 /43

Why is C so much faster?

@ Equivalent C code:

1 for(i=0;i<0;i++) {
2 x[i] = i;

3}

@ Each iteration C will:

@ Increment i, check if i <100
@ Copy the value of i into x(i), change type of i if needed

@ C only does what you tell it to — fast, but also difficult and error
prone

Paul Schrimpf () C — Why use it? January 16, 2009 6 /43

Major Practical Difference Between C and Matlab

Must declare variables

» Names and sizes — must deal with dynamic memory management
yourself

C has few functions builtin — need to link to other libraries

C is compiled, Matlab is interpreted (or JIT compiled)

@ C does exactly what you tell it, even if you tell it to do something bad

Paul Schrimpf () C — Why use it? January 16, 2009 7 /43

References

@ You will need them

° — great introductory reference
» “Programming in C is like eating red meat and drinking strong rum
except your arteries and liver are more likely to survive it.”
e Kernighan and Ritchie (K&R) — classic but not great for learning
Q< ricvan: Programming in C: A Tutoria (1974) IR JIRORCI
. — K&R explained
Y Common C Errors

Paul Schrimpf ()

C — Why use it?

http://publications.gbdirect.co.uk/c_book/
http://www.amazon.com/Programming-Language-Dennis-M-Richie/dp/0876925964
http://www.lysator.liu.se/c/bwk-tutor.html
http://www.eskimo.com/~scs/cclass/notes/sx1.html
http://www.drpaulcarter.com/cs/common-c-errors.php

Quotes

e "“C is often described, with a mixture of fondness and disdain varying
according to the speaker, as ‘a language that combines all the
elegance and power of assembly language with all the readability and
maintainability of assembly language’ " — Jargon File (MIT and
Stanford Al labs circa 1983)

e "C is quirky, flawed, and an enormous success.” — Dennis Ritchie

@ "“C makes it easy to shoot yourself in the foot; C++ makes it harder,
but when you do, it blows away your whole leg.” — Bjarne Stroustrup

Paul Schrimpf () C — Why use it? January 16, 2009 9 /43

Good News

@ You already know some C

o Matlab's structs, printf, stremp, etc. take their names and functionality
from C

@ Perl’s flow control, indexing scheme, etc. is also very similar to C

Paul Schrimpf () C — Why use it? January 16, 2009 10 / 43

C Datatypes

@ Declaring datatypes

@ Every variable must be declared before it can be used

long double w; /x
int i; / *
short int j; /*
char a,b,c; /%
unsigned int u; /%

B N N O R N

float vy; // single precision
double x; /* double precision

more precise
integer , b/t

16 bit integer x/
8 bit characters — each holds 1 letter
integer b/t 0 and 2732 x/

scalar, 8 digits, rarely]|
scalar, 16 digits, 64 bifs
double, 96 bits x/

—27(31) and 27(31) x/

@ Sizes and ranges of datatypes are machine dependent

@ Can only declare variables in certain places — start of of a { } block

Paul Schrimpf ()

C — Why use it?

January 16, 2009 11 / 43

Basic Operators

1 double x,y=1,z=2;

2 /% usual +,x,/,— x/

3 x =ytz; y = zxx; z =y/x;

4

5 /x less familar: x/

6 x = 1;

7 x++; /* now x is 2; x/

8 y = x——; /* now y=2, x=1 %/

9 z = ++x; /* now z=2, x=2 x/

0y /= 4; /[x sets y =y/4;, %/

11 x = y>z? 1:2; /% x = 2, because y>z is false x/

o <5 z =» = @9ac

Paul Schrimpf () C — Why use it?

Mixing Datatypes

© © N O U A W N =

== e
N = O

double x;

int n,j=3,k=6;

char c;

n = 2xx; /% 777, but not an error x/

n = k%j; /* modulo x/

x = j/k; /* x=0 b/c j/k is an int x/
x = ((double) j)/((double) k); /* now, x=0.5 x/
n = x; /* n =0 b/c it cast x into an int x/
¢ = xxj; /% 777, but not an error x/

x = (j=(6+k=7)); /* valid, but confusing x/

Paul Schrimpf ()

C — Why use it?

N

p)

Logical Operators

, <=, <], &
Any non-zero value is true as part of a logical expression
In arithmetic, true logical expressions act like int true=1
Bitwise — do not use on accident

&, 1, ", >, <<, "

Paul Schrimpf () C — Why use it? January 16, 2009 14 / 43

Flow Control

@ Same type of commands as Matlab:

for(initialization ;

stopping condition;

increment) {

1
2 /% braces are optional
3 doSomething;
4

}

if we just have single command

1 do {
2 doSomething at

least once;
3 } while (condition); /* semicolon

required here /

1 while (condition){
2 doSomething;

30}

Paul Schrimpf ()

C — Why use it?

January 16, 2009 15 / 43

Flow Control

Paul Schrimpf ()

C — Why use it?

1 if (condition) {
2 doSomething;
3 } else { /+ can leave out else, add else if, etc x/
4 doSomethingElse
5}
or <3 =» = 9ac

More Flow Control
@ To be used sparingly:

1 switch (integer) {

2 case constantl:

3 commandl;

4 case constant2:

5 command2;

6 break; /+ note: case constantl executes
7 both commandl and command2 x/
8 default:

9 command3;

0 }

1 while(condition) {

2 commandl;

3 if (cond2) break; /+ exit loop early x/

4 else if (cond3) continue; /% go to start of loop %/
5 command?2;

Paul Schrimpf () C — Why use it? January 16, 2009 17 / 43

Why we fear break — AT&T 1990 Outage

@ Switches had this type of code:

1 do |

2 /% ... many lines omitted ... x/
3 switch (something) {

4 case 1:

5 /% ... many lines omitted ... x/
6 if (wantToStop) break;

7 /% ... many lines omitted ... x/
8 break;

9 case 2:

10 /% ... many lines omitted ... x/
11

12} while (condition);

@ This code caused big problems ...

Paul Schrimpf () C — Why use it? January 16, 2009 18 / 43

Why we fear break — AT&T 1990 Outage

@ When switches crash they send an “out of service” message

@ This code made it so that when a switch received an “out of service”
message, it crashed ... and then rebooted
@ Result: one switch failed, nearby switches crashed, making more

switches crash, ... switches reboot in time to receive to the “out of
service” message from far away switches, so they immediatly crash
again

» Took 9 hours to fix
» Cost $60 million

Paul Schrimpf () C — Why use it? January 16, 2009 19 / 43

More Flow Control

@ To be used sparingly:

1 if (condition) goto labell; /+ the infamous goto x/
2 /% ... bunch of stuff to skip ... %/
3 labell: /x got sent here

e " Everybody knows that the goto statement is a ‘bad thing.” Used
without care it is a great way of making programs hard to follow and
of obscuring any structure in their flow. Dijkstra wrote a famous
paper in 1968 called ‘Goto Statement Considered Harmful,” which
everybody refers to and almost nobody has read.” —

Paul Schrimpf () C — Why use it? January 16, 2009 20 / 43

http://publications.gbdirect.co.uk/c_book/chapter3/flow_control.html

References

information see:

Unix or Linux

This section go over the simplest way to compile a C program. For more
°

"M ACM Developing Software in Unix Tutorial JE everything you need to get started in

Paul Schrimpf ()

C — Why use it?

http://www.cs.washington.edu/orgs/acm/tutorials/dev-in-unix/
http://gcc.gnu.org/onlinedocs/

Getting a Compiler

@ Many compilers are available — gcc is the most common, Intel's icc
can be faster, many others exist
@ To install

> Linux / Unix — already have it
> Windows

F 3N ID]=I Bloodshed Dev-C++
* Unix-like — @G, @D

» Mac OS X —
@ If you just want to use within Matlab, try typing mex, it may work

@ If you don't use an IDE, you'll want a quality editor too — and
are classics

@ My preference: Linux or MINGW & Emacs

Paul Schrimpf () C — Why use it? January 16, 2009 22 /43

http://www.bloodshed.net/devcpp.html
http://www.mingw.org/
http://www.cygwin.com/
http://developer.apple.com/tools/
http://www.gnu.org/software/emacs/
http://www.vim.org/

Hello, World!

#include <stdio.h>

1
2
3 int main () {
4 printf (" Hello, World!\n");
5
}

@ Open your editor, type it, and save it as helloWorld.c
@ To compile: gcc helloWorld.c -o hello.exe
© Torun: ./hello.exe

e Fun fact: — contains the
original "Hello World!"

Paul Schrimpf () C — Why use it?

http://cm.bell-labs.com/cm/cs/who/dmr/btut.html

Hello, Matlab!

1 #include "mex.h"

2

3 void mexFunction(int nlhs, mxArray *plhs|[],

4 int nrhs, const mxArray xprhs[])
5

6 mexPrintf (" Hello, Matlab!\n");

!

@ To compile: mex helloWorld.c (within Matlab)
@ To run: helloWorld() (within Matlab)

Paul Schrimpf () C — Why use it? January 16, 2009 24 / 43

Hello, Stata!

1 #include "stplugin.h”

2

3 STDLL stata_call(int argc, char xargv][])
« |

5 SF_display (" Hello Stata!\n");

6 return (0);

!

@ Download stplugin.c and stplugin.h?

@ To compile: gcc -ansi -shared -fPIC [-DSYSTEM=0PUNIX]
stplugin.c helloStata.c -o hello.plugin

© To use, in stata:
program hello, plugin
plugin call hello

!See http://www.stata.com/plugins/ for more information.
Paul Schrimpf () C — Why use it? January 16, 2009 25 /43

http://www.stata.com/plugins/stplugin.c
http://www.stata.com/plugins/stplugin.h
http://www.stata.com/plugins/

Hello What?

1oint ismain(){for(Gi[*]<i;++i){——i;} "];read('—"—"=",i+++""hell\
2 o, world!\n"","/"/"/"));}read(j,i,p){write(j/p+p,i—j.,i/i);}

@ Winner of the 1984 International Obfuscated C Code Contest

Paul Schrimpf () C — Why use it? January 16, 2009 26 / 43

http://www.ioccc.org/years.html#1984

Example: Fibonacci Sequence

@ We'll demonstrate the tools we've covered so far by writing a function
that computes the nth Fibonacci number

n ifn=0,1
Fln) = {F(n—2)+F(n—1) ifn>1 (1)

o We'll compute F(n) naively — the clever method is left as an exercise

Paul Schrimpf () C — Why use it? January 16, 2009 27 / 43

Fibonacci: Loop Version

1 unsigned int fibLoop(unsigned int n) {
2 unsigned int F,Fml,Fm2;
3 int i;

4

5 if (n<l) return(n);

6 Fml=1;

7 Fm2=0;

8 for(i=2; i<n; i++) {

9 F = Fm2+Fm1;

10 Fm2 = Fm1l,;

11 Fml = F;

12 }

13 return(F);

1%}

Paul Schrimpf () C — Why use it? January 16, 2009 28 / 43

Fibonacci: Recursive Version

1 unsigned int fibRecur(unsigned int n) {

2 if (n<l) return(n);

3 else return(fibRecur(n—1) + fibRecur(n—-2));
4

@ More elegant
@ Much more time consuming for large n — big call stack

Paul Schrimpf () C — Why use it? January 16, 2009 29 / 43

To Use from Command Line

1 #include <stdio.h> /% header file for input/output functionp
2 /% function declarations — needed so we can use them in mdir
3 unsigned int fibLoop(unsigned int);

4 unsigned int fibRecur(unsigned int);

5

6 int main(int argc, char =sxargv) {

7 unsigned int n;

8 if (arge = 2) {

9 printf ("ERROR: 1 command line argument required\n");

10 return (12); /% should return 0 on success, non—zero on|
11

12 if (!sscanf(argv[1l],"%d" &n)) {

13 printf ("ERROR: bad input \"%s\"\n" ,argv[1l]);

14 return (13); /* should return 0 on success, non—zero on [f:
15

16 printf (" Loop version: The %d Fibonacci number is %d\n" ,n,|fi
17 printf(” Recursive version: The %d Fibonacci number is %d\p’
18 return (0);

19}

Paul Schrimpf ()

C — Why use it?

January 16, 2009 30/ 43

To Use in Matlab

#include "mex.h” /x header file for matlab APl x/

unsigned

int fibLoop(unsigned int);

void mexFunction

(int nlhs, /% number

{

}

mxArray *p
int nrhs,

lhs[], /+ pointer to lhsx/
/* number of rhs argumentssx/

of left hand side arguments x/

const mxArray xprhs[]) /+ pointer to rhs argumentss/

/% error

plhs[0] =

checking omitted x/

mxCreateDoubleScalar(fibLoop (mxGetScalar(prhs [0

Paul Schrimpf ()

C — Why use it?

January 16, 2009

31 /43

To Use in Stata

1 STDLL stata_call(int argc, char xargv][])

2 {

3 ST_ int IR

4 ST_double val , fib;

5 ST_retcode rc ;

6 for(j = SF.inl1(); j < SF.in2(); j++) {

7 if (SF_ifobs(j)) { /* true if stata if command true x/
8 if(rc = SF_vdata(1l,j,&val)) return(rc)

9 fib = (double) fibLoop ((unsigned int) val);

10 if(rc = SF_vstore(SF_nvars(), j, fib)) return(rc) ;
11 }

12 }

13 return(0) ;

s}

Paul Schrimpf () C — Why use it?

January 16, 2009 32 /43

Lots More to Learn ...

@ Preprocessor directives, e.g. #include
@ Header files, e.g. ' 'mexh”

@ More datatypes, e.g. const mxArray
°

Pointers, e.g. char *xargv

Paul Schrimpf () C — Why use it? January 16, 2009 33 /43

The C Preprocessor

Before compiling, a C source code is preprocessed, i.e. the text is
modified

Preprocessor commands begin with #
#define PI 3.14 defines a constant
#define MAX(a,b) a>b? a:b defines a macro

#ifdef Pl some command #tendif# only includes some command if the
macro Pl had been defined

#include <file> or #include '’ file '’ inserts the contents of file

Paul Schrimpf () C — Why use it? January 16, 2009 34 /43

Header Files

@ Contain function and variable declarations — must declare functions
before you can use them

@ e.g. <stdio.h> declares sscanf() and printf ()
"'mex.h’’ declares mxArray, mxGetPr(), etc

Files inside <> are supposed to be system header files that are part of
your compiler or OS
» Common headers: <math.h>, <stdio.h>, <stdlib.h>, etc.
» Use man header.h to learn about header file or man function to
learn about a function

Only contain function prototypes, not the actual code

Actual functions are contained in a library file somewhere

Paul Schrimpf () C — Why use it? January 16, 2009 35 /43

Compilation

© Preprocessing
@ Compiler — changes source files to assembly language

1 mov eax, [L1] ; eax = byte at L1
2 mov ebx, [L2] ; ebx = byte at L2
3 add eax, ebx ; eax = eax + eax

4 mov [L1], eax ; byte at L1 = eax

© Assembler — translates assembly into machine language
@ Linker — examines object file(s), creates list of functions/variables
referenced but not defined, and either:
» static linking: searches system libraries for them, adds the ones found,
and finally packages everything into an executable
» dynamic linking: inserts commands that load the needed libraries when
the program is executed

@ Usually do not have to worry about details, just type:
» Command line: gcc [-g] -Wall filel.c file2.c -o
program.exe

> Matlab: mex [-g] file.x
Paul Schrimpf () C — Why use it?

January 16, 2009 36 / 43

Compiler Options

@ Compiling can get very complicated

>

>

>

Hundreds of options —man gcc is 6884 lines
Linking libraries
Breaking into steps

@ Tools to manage

>

IDE — automates much, menus for options

» make — manages complicated compilations
@ Important options:

>

>
>
>

-g turns on debugging information

-Wall turns on all warning messages

-1/ib tells to link against library lib — e.g. for math, -1m

-02 and -03 adds optimizations — can do even better with fine tuning

Paul Schrimpf () C — Why use it? January 16, 2009 37 /43

http://www.eng.hawaii.edu/Tutor/Make/

Arrays

1 double x[10], y[5][6];
2 int i;
3 for(i=0;i<10;i4++) x[i] = sqrt(i);

@ Indexed starting with O

» “Should array indices start at 0 or 17 My compromise of 0.5 was
rejected without, | thought, proper consideration.” — Stan Kelly-Bootle

@ No way to figure out size

Paul Schrimpf () C — Why use it? January 16, 2009 38 /43

@ structs and typedef

1 struct vector_s {

2 unsigned int size; /% size x/

3 double xval; /* pointer to array of values x/

4}

5 typedef struct vector_s vector; /+ define a new variablg
6 “‘vector '’ x/

7 vector x; /+ declare x to be a vector x/

8 /+ use like in Matlab x/

9 x.size = 10; /*x etc x/

10 x.val = malloc(x.sizexsizeof(double));

u]
)
I
il
it

Paul Schrimpf () C — Why use it?

Enums

@ enums
1 typdef enum { /* a named multinomial varible x/
2 beer=1, wine, milk /% make beer=1, wine=2, milk=3 %/
3 } beveridge; /* name this enum beveridge x/
4 beveridge cup;
5 switch(cup) {
6 case beer: chug(cup); break;
7 case wine: sip(cup); break ;
g case milk: drink(cup); break;
o default: poison (cup);
0 }

Paul Schrimpf () C — Why use it? January 16, 2009 40 / 43

Unions

@ unions — exotic

/%
/
/%

/*
/%

declare like structs */
but, the fields share the x/
same place in memory */
if we examine u.i it would be something
u.x has now changed to something strang

™

Paul Schrimpf ()

C — Why use it?

Variable Scope and Type Modifiers

Normally local within {}

Outside of any function — accessible by all functions in that file

Prefixes change behaviour

» const int x = 3 makes x constant
» static double x makes x static / persistent
> extern double x makes x global
@ Prefixes can have different meaning depending on context
> double function(const double x) means that x cannot be modified within
funciton

> static void f(char *s) means that f() can only be called by other
functions in the same file

Exotic type modifies — volatile and register

Paul Schrimpf () C — Why use it? January 16, 2009 42 /43

Exercises

Unlike the Matlab portion of the course, it will be very difficult to get much out of this
without trying the exercises. At the very least, you should attempt to compile and run
the provided code. I've wasted many days struggling with compiler related configuration
problems.

@ A good algorithm can calculate the Fibonacci sequence in O(log, n) steps.
Develop and implement one.

@ Try giving passing some strange arguments to the Fibonacci programs, e.g.
non-integers, negative numbers, imaginary numbers, chacters, etc. What happens?
(It's quite likely that the program will enter an infinite loop. Press jcrt-c; to stop
the command line version. You may have to kill Matlab. Use Windows' task
manager, or type “killall -TERM MATLAB" at linux command line.) Modify the
program so that it doesn't behave so badly.

Paul Schrimpf () C — Why use it? January 16, 2009 43 /43

	Introduction
	An Example
	C Basics
	Compiling and Running a Program
	Getting a Compiler
	Hello World
	Example: Fibonacci Sequence

	Compilation
	Compiler Options

	More Datatypes

