Paul Schrimpf ()

C — Memory and Pointers

Paul Schrimpf

January 16, 2009

- =
C — Memory and Pointers

“Other advanced languages, such as assembler and C, were not terribly
complex in themselves, but the environments in which applications were
developed were downright weird, with mines scattered about everywhere,
ready to blow the inattentive programmer out of the water.” — Bruce
Tognazzini

Paul Schrimpf () C — Memory and Pointers January 16, 2009 2/33

Pointers and Memory — Introduction

@ In C, you must manage memory yourself
> Allocate and deallocate arrays whose size is only known at run-time

@ Pointers give you direct access to memory

Paul Schrimpf () C — Memory and Pointers January 16, 2009 3/33

Pointers

double *p; /+ p is a pointer to a double x/
double x,y[10];

p = &x; /x p = address of x x/
(xp) = 1; /% makes x=1 %/

/% pointer arithmetirc =/
p = &y[0];
for (p=&y [0]; p<&y[10]; p++) (xp) = 3; /» makes y[O], y[1],

© © N o O~ W N R

=
o

11 /% pointer problems x/
12 p=£&x + 10; /* p points to 1l0xsizeof(double) bytes after
13 x = (%p); /* undefined behavior, crashes if you're lucky =

u]
)
I
nl
it
5
pe)

Paul Schrimpf () C — Memory and Pointers

p)

Arrays are Pointers

@ An array is just a const pointer with memory already allocated

@ Multidimensional array are pointers to pointers to ... to the base type

double x[2], x*xp;

p = x; /x same as p=&x[0] x/

/x now, p[0]=x[0], p[l]=x[1], etc =*/

if (x[1]==(*x(x+1))) printf('*This is always true’’

/% the left side is more readable, the right side
about what the computer does x/

/% can index pointers like arrays x/

p[3] = 5; /* does something bad x/

© ® N o O A W N R

/* cannot do arithmetic on array x/
x++; /+* not allowed x/

-
o

-
jan

)

is mdre

Paul Schrimpf () C — Memory and Pointers January 16, 2009

5/33

Functions of Pointers

@ The only way to pass an array to a function is with a pointer, the
following are equivalent

1 double f(double x[2]); /% The 2 does nothing x/
2 double f(double x[]);
3 double f(double *x);

@ The only way to return an array is with a pointer

1 void vecMult(double out[], double x[], double y[], int p)
2 int i;

3 for(i=0;i<n;i++) out[i] = x[i]*y[i];

4}

Paul Schrimpf () C — Memory and Pointers January 16, 2009 6 /33

A Subtle Error

This code will not work — do you see why?

#define MAX 1000;
double xvecMult2(double x[], double y[], int n) {
double out[MAX];
int i;
if (n>MAX) {
printf (' 'ERROR: vecMult() maximum array size exceeded\n|
exit(—1);

© 0 N O U A W N

for(i=0;i<n;i++) out[i] = x[i]*xy[i];
return(&out[0]);

i
o

H
=
—

Paul Schrimpf () C — Memory and Pointers January 16, 2009 7 /33

Memory Operations

© 0 N O U A W N

N < =
A W N = O

#include <stdlib.h> /% contains memory functions x/

double xp, *p2;

int xxip, i, N=b;

p = malloc(sizeof(double)x10); /x allocate room for 10 double

p2 = calloc (555, sizeof(double)); /+ allocate 555 doubles apc
zero x/

realloc(&p, sizeof(double)*100); /+ changes p to have room fp
doubles, first 10 will sfta
same x/

ip = malloc(sizeof (int*)*N); /« N pointers to int =/
for(i=0;i<N;i++) ip[i] = calloc(3,sizeof(int));

free(p); /+ deallocates memory pointed to by p x/

@ Memory allocated in this way is persistent — it stays allocated even
after a function exits

Paul Schrimpf () C — Memory and Pointers January 16, 2009 8 /33

vecMult() — again

double *vecMult3(double x[], double y[],

double *out;
int i;

if I(out=malloc(n*sizeof(double))) {

printf (' 'ERROR:
exit(—1);
}

vecMult() failed to allocate memory\n' ()

for(i=0;i<n;i++) out[i] = x[i]*y[i];

return(out);

int n) {

@ This version works ...

Paul Schrimpf ()

C — Memory and Pointers

January 16, 2009

9/33

vecMult() — again

@ ... but it is dangerous — what happens here?

int n;
double *x,*xy,*z;
/% ... x and y allocated and assigned values ... x/

z = vecMult3(vecMult3(x,y,n),x,n);
x = vecMult3(z,y,n);

[I N N N

Paul Schrimpf () C — Memory and Pointers January 16, 2009 10 / 33

Correct Usage of vecMult3()

1 int n;

2 double *x,xy,xz,xtemp;

3 /*« ... x and y allocated and assigned values ... x/
4 temp = vecMult3(x,y,n);

5 z = vecMult3(temp,x,n);

6 free(temp);

7 free(x);

8 x = vecMult3(z,y,n);

9 free(z);

@ Clumsy and error prone

e First version of vecMult() is better

void vecMult(double xout, double *x, double xy, int n);

Paul Schrimpf () C — Memory and Pointers January 16, 2009 11 /33

Example — Matrix

@ Use struct to create a matrix that knows its size: Recall from lecture

1:

1 typdef struct matrix_s {

2 unsigned short xsize; /% vector of sizes x/

3 double *xa; /% pointer to array of contents x/
4 } matrix;

Paul Schrimpf () C — Memory and Pointers January 16, 2009 12 /33

matrix.h

© 0 N O U A W N

=
N = O

#ifndef MATRIX.H /% do not want to include more than once =

#define MATRIX_H

typdef struct matrix.s {

int xsize; /x vector of sizes x/

double *xa; /% pointer to matrix of contents x/
} matrix;

matrix newMatrix(int size[2]);
void freeMatrix(matrix xa);

#endif /% ifndef MATRIXH x/

Paul Schrimpf () C — Memory and Pointers January 16, 2009

13 /33

newMatrix()

matrix newMatrix(int size[]) {
matrix a;
int i;
if (!(a.size = malloc(2xsizeof(int)))) {
printf (‘'ERROR: newMatrix() — failed to allocates a.sizge)
exit(—1);
} /* error checking omitted below x/
memcpy (a.size ,size ,2«sizeof(int)); /* a.size[i]=size[i] =
a.a = malloc(size [0]xsizeof (doublex));
a.a[0] = malloc(size[l]xsize[0]*sizeof(double));
for(i=1l;i<size [0];i+4) {
a.a[i] = a.a[i—-1]+size[1];
}
return(a);
}

Paul Schrimpf () C — Memory and Pointers January 16, 2009

14 / 33

freeMatrix()

1 void freeMatrix(matrix *a) {
2 free(a—a[0]);

3 free(a—a);

4 free(a—>size);

5 a—>a = NULL;

6 a—>size = NULL;

7

Paul Schrimpf () C — Memory and Pointers

N

p)

Usage

1 #include "matrix.h"

2

3 int main() {

4 int size[2];

5 int i,j;

6 matrix m;

7 size [0] = 10;

8 size [1] = 2;

9 m = newMatrix(size);

10 for(i=0;i<size [0];i++) {
11 for(j=0;j<size [1];j++) {
12 m.al[i][j] = i*j;

13 }

14 }

15 freeMatrix(&m);

16 return (0);

o}

To compile: gcc matrix.c main.c

Paul Schrimpf () C — Memory and Pointers

January 16, 2009

16 / 33

Using C with other Programs

o Matlab APl — MEX

@ APIs — C works with (nearly) everything, but not so easily
°

Stata — plugins

Paul Schrimpf ()

C — Memory and Pointers

http://www.mathworks.com/access/helpdesk/help/techdoc/index.html?/access/helpdesk/help/techdoc/apiref/bqoqnz0.html&http://www.mathworks.com/support/tech-notes/1600/1605.html?BB=1
http://www.stata.com/plugins/

MEX

o Lets you:

» Write function in C and use it in Matlab — mexFunction()
» Access Matlab arrays from C — mxFuncName()
» Call Matlab from within C — engFuncName()

Paul Schrimpf () C — Memory and Pointers January 16, 2009 18 / 33

Writing MEX-files

1 #include "mex.h" /+ header file for matlab APl x/

2

3 void mexFunction /% entry point from matlab =/

4 /x Always takes these arguments x/

5 (int nlhs, /* number of left hand side argument:
6 mxArray splhs|], /* pointer to lhsx/

7 int nrhs, /* number of rhs argumentssx/
8 const mxArray xprhs[]) /% pointer to rhs argumentssx/
9

10 /% body of function x/

11

@ Always begin with this
@ mxArray is a type defined in "mex.h"

@ Use mx functions to manipulate mxArrays

Paul Schrimpf () C — Memory and Pointers January 16, 2009 19 / 33

Working with mxArray

© ® N o A W N R

10
11
12
13
14
15

{ /* inside mexFunction() x/

double xx,*xy;
int mn;

x = mxGetPr(prhs[0]) /+ now x points to begining of the alrr

argument passed to the function x
m=mxGetM (prhs [0]); /+* m by n is the size of x x/
n=mxGetN(prhs [0]);

plhs [0] = mxCreateDoubleMatrix (m,n, mxREAL);
/% creates space in Matlab to hold output x/

function(y,x,m,n); /+ some function that operates on x anfd
return ;

Paul Schrimpf () C — Memory and Pointers January 16, 2009 20/ 33

More Useful Commands

@ There are lots —

@ mxAlloc() works like malloc() except Matlab manages memory and will
automatically free it when you function exits

@ mxAssert() — debugging

@ mexPrintf() instead of printf ()

Paul Schrimpf () C — Memory and Pointers January 16, 2009 21 /33

http://www.mathworks.com/access/helpdesk/help/techdoc/index.html?/access/helpdesk/help/techdoc/matlab_external/bp_kqh7.html&http://www.mathworks.com/support/tech-notes/1600/1605.html?BB=1

fibMexLoop() with Error Checking

1 void mexFunction(int nlhs, mxArray splhs[], int nrhs, const
2 {

3 int n;

4 if (mxGetNumberOfElements(prhs[0])!=1) {

5 mexPrintf (" Only scalar input allowed\n");

6 plhs [0] = mxCreateDoubleScalar (mxGetNaN());

7 return ;

s}

9 n = mxGetScalar(prhs[0]);

10 if (n<0 || n!'=mxGetScalar(prhs[0])) {

11 mexPrinf(” Only non—negative integers allowed\n");
12 plhs [0] = mxCreateDoubleScalar (mxGetNaN());

13 return ;

14 }

15 plhs [0] = mxCreateDoubleScalar(fibLoop(n));

16

Paul Schrimpf () C — Memory and Pointers January 16, 2009 22 /33

Stata plugins

@ Lets you:
» Write C functions that can be used in Stata
» Access Stata variables, macros, and matrices from C
» Print messages and errors on Stata’s screen

@ Simpler than Matlab’s MEX

@ Can only access and modify existing variables and matrices, cannot
create new ones

Paul Schrimpf () C — Memory and Pointers January 16, 2009 23 /33

Writing Stata plugins

#include "stplugin.h” /x header file for Stata APl x/

STDLL stata_call /« entry point from Stata x/

/* Always takes these inputs (same as main for command line
(int argc, /* number of arguments x/

char xargv[]) /* string vector containing arguments x/

/% Body of function x/

© © N o U B~ W N -

Paul Schrimpf () C — Memory and Pointers

Accessing Stata Variables

{ /+ inside stata_call() x/

/x for future compatibility , use datatypes defined in

ST_int nObs = SF_nobs(); /+ get number of observations x/

stpllt

ST_int nVarlnData = SF_nvar(); /+ number of variables in |d
ST_int nVarsPassed = SF_nvars(); /% number of variables ip
ST_double val;

/% loop over observations that satisfy “‘if’’ and ‘‘in’'’ |c

for(int j = SF_inl(); j < SF.in2(); j++) {
if (SF_ifobs(j)) {
/% square lst variable, store result in 2nd x/
SF_vdata(1l,j,&val);
val = val;
SF_vstore (2,j,val);

/% would use SF_sdata and SF_sstore for strings x/

Paul Schrimpf () C — Memory and Pointers January 16, 2009

25 /33

More Commands

Matrices: SF_mat_el(), SF_mat_store(), SF_col(), SF_row()

Macros and scalars:
SF_macro_save(), SF_macro_use(), SF_scal_save (), SF_scal_use()

Display: SF_display (), SF_error()
Missings: SF_is_missing (), SV_missval

That's everything

Paul Schrimpf () C — Memory and Pointers January 16, 2009 26 / 33

Stata Fibonacci

© ® N o O A W N R

e~ L i < =
© © N o U A W N = O

STDLL stata_call(int argc, char xargv][])
{ ST.int i
ST_double val , fib;
ST_retcode rc ;
if (SF_nvars() = 2) {
return(102) ; /* wrong number of variables specifi¢d
for(j = SF.inl(); j < SF.in2(); j++) {
if (SF_ifobs(j)) {
if(rc = SF_vdata(1,j,&val)) return(rc)
fib = SF_is_missing(val)? SV_missval
(ST_double) fibLoop ((unsigned int) val);
if(rc = SF_vstore(SF_nvars(), j, fib)) return(rc)
}
}
return (0)
}

Paul Schrimpf () C — Memory and Pointers January 16, 2009

27 /33

Debugging

o Debuggers

» Within IDE

'@l GDB Tutorial

@ lint — like Matlab’s mlint

Paul Schrimpf ()

C — Memory and Pointers

» gdb — command line, or better yet, within emacs (<Alt-x> gdb)
.

http://www.cs.princeton.edu/~benjasik/gdb/gdbtut.html
http://www.thefreecountry.com/programming/debuggers.shtml

Memory Related Errors

Memory bugs — leaks, illegal addressing — are very difficult to diagnose

Effect of memory bugs can depend on program inputs, compiler
options, length of program execution, etc.

Responsible for many computer viruses

See Techniques for memory debugging
Tools:

» @D — indispensible @RI
>

Paul Schrimpf () C — Memory and Pointers January 16, 2009 29 /33

http://www.ibm.com/developerworks/aix/library/au-memorytechniques.html
http://valgrind.org/
http://www.cprogramming.com/debugging/valgrind.html
http://perens.com/FreeSoftware/

Input and Output

@ Input

FILEx fopen(char namel[],char *mode)

> charx fgets(char xstring, int size, FILE xf)

> int scanf(char xformat, ...) also, sscanf, fscanf
> char xgets(char *s) — use with caution

v

o Output
> int printf (char «format, ...) also, sprintf, fprintf

@ more, see man string.h

Paul Schrimpf () C — Memory and Pointers January 16, 2009 30/ 33

Strings

size_t strlen (const char x)

char xstrchar (const char *s, char c)

char x strstr (const char xneedle, const char xhaystack)
int strcmp(const char sl, const char xs2)

char xstrtok (const char xs,const char sxsep)

more, see man string.h

Paul Schrimpf () C — Memory and Pointers January 16, 2009

31/33

Reading Files

@ If very strict about file format and not careful about errors, can get by
with fopen, fscanf, fclose

@ More flexible formats and more careful error checking requires more
care

@ Example: readcsv.c — reads a bunch of numbers from a comma
separated text file, and then prints them on the screen

Paul Schrimpf () C — Memory and Pointers January 16, 2009 32/33

Exercises

@ Run a program in a debugger. Figure out how to set breakpoints, move around in
the call stack, and display the contents of variables.
@ Modify the Fibonacci program for Matlab so that it works with arrays. Given an

array of integers, it should return return an array of the same size with each of the
corresponding Fibonacci numbers.

© Improve readcsv.c in one or more of the following ways:

@® Make it stores the column or row from which it read each number.

@ Make it store cells with non-numeric content.

@ It behaves unexpectly for input such as: “ 1, , 3pm, ". Make it do
something sensible in these cases.

Paul Schrimpf () C — Memory and Pointers January 16, 2009 33 /33

	Introduction
	Pointers
	Memory Management
	Example -- Matrix

	Using C with Matlab
	Stata
	Debugging
	Input and Output

