Paul Schrimpf ()

Matlab — Miscellaneous Topics

Paul Schrimpf

May 31, 2007

o F
Matlab — Miscellaneous Topics

This lecture will cover three unrelated topics:
@ Using the symbolic math toolbox

» Help compute derivatives for minimizations
» Automatic log-linearization and higher order approximations

@ Debugging and profiling
© Automating the creation of quality output

Paul Schrimpf () Matlab — Miscellaneous Topics May 31, 2007 2 /28

Symbolic Math Toolbox

@ Symbolicaly compute derivatives, integrals, solutions to equations,
etc.

@ Perform variable precision arithmetic

@ Uses computational kernel of Maple

Paul Schrimpf () Matlab — Miscellaneous Topics May 31, 2007 3/28

Perturbation Methods

@ A model that relates an endogenous variable, x, to some parameters, €
f(x(e),e) =0

want to solve for x(€)

@ Suppose x(0) is known

@ Approximate x(€) using a Taylor series and the implicit function
theorem

» We know: - = (f(x(€),€)) = 0 for all n
> Use this to solve for x"(0), e.g.

=f(x(€),)x'(€) + fe(x(€), €)
X’(O):— <(x(0), 0)£(x(0),0)~*

» This becomes tedious, messy for high n — automate it with the
symbolic math toolbox

Paul Schrimpf () Matlab — Miscellaneous Topics May 31, 2007 4/28

Log-Linearization

@ Log-linearization is just a first order perturbation method

@ We will generate an arbitrary order approximation to the neoclassical
growth model
@ Based on Schmitt-Grohé and Uribe (2004)

» They compute a second order approximation, we generalize their
approach

Paul Schrimpf () Matlab — Miscellaneous Topics May 31, 2007 5/ 28

Model

@ Model: CRRA, no leisure, Cobb-Douglas production

¢ — ﬁct_ﬂlae"fﬂkf_ﬁl +(1-9)
0 :Et Ct + kt+1 - eatktq — (]. — 6)kt
dt+1 — pPat

@ We want the policy functions:

Ct :g(kt,at,a)
[ket1 } =h(kt,at,a)+[0]

dt+1 O€t41

o Expand around non-stochastic steady-state, (c, k, a, o) = (¢, k, 3,0)

Paul Schrimpf () Matlab — Miscellaneous Topics May 31, 2007 6 /28

perturb.m (1)

% compute n—order approximation for neoclassical growth model
% based on http :// www.econ.duke.edu /-—uribe /2 nd_order / neoclassiga
clear;

%eclare parameters as symbols
syms SIG DELTA ALFA BETA RHO;
% equivalent command would be: SIG = sym(" SIG");

%Declare symbolic variables

syms ¢ cp k kp a ap;

%WNrite equations that define the equilibrium

f=1[c+ kp — (L1-DELTA) » k — a = KALFA;
c(=SIG) — BETA« cp(—SIG) * (ap * ALFA » kp"(ALFA -1) + 1
log(ap) — RHO=« log(a)l;

% redefine in terms of controls , y and states , x

x =1 aly=c xp = [kp ap]; yp = cp;

% Make f a function of the logarithm of the state and control

f = subs(f, [x,y,xp,ypl, exp([x.y:xp,yp]);

© ©® N o O~ W N R

L i < =
N o 0 A W N = O

Paul Schrimpf () Matlab — Miscellaneous Topics May 31, 2007 7 /28

perturb.m (2)

1 % define variables for steady state values

2 syms as cs ks;

3 xs = [ks as];

4 yS = CS;

5

6 % set parameter values

7 BETA=0.95; %discount rate

s DELTA=1; %lepreciation rate

9 ALFA=0.3; Y%capital share

10 RHO=0; Y%persistence of technology shock

1 SIG=2; %ntertemporal elasticity of substitution

o =1 = = DA

Paul Schrimpf () Matlab — Miscellaneous Topics

perturb.m (3)

1 %we need a lot of symbolic variables to be the Taylor
2 % series coeficients of g() and h(), we put these in arrays
3 % G and H
4 = length(x);
5 = length(y);
6 % |n|t|aI|ze G and H
7 n =2
8 G = symArray([nY (n+1l) +xones(1,nX+1)], "g');
9 H = symArray([nX (n+1) *ones(1,nX+1)], "h');
10 H(L:length(xs)) = % steady state x=g(0)
11 G(l:length(ys)) = % steady state y=h(0)
Paul Schrimpf () Matlab — Miscellaneous Topics May 31, 2007 9 /28

symArray.m

1 function A = symArray(d,prefix);
2 %returns a symbolic array of size d
3 9% the symbolic variable names used are prefix %
4 % make sure you don't use these elsewhere
5 v = 0;
6 n = prod(d);
7 sub = cell(length(d),1);
8 for i=lin
9 [sub {: }] = ind2sub(d,i); % returns n—tuple subscript corresy
10 % linear index i
1 ind = sprintf(' ,%d" ,cell2mat(sub));
12 ind = ind(2:length(ind));
13 eval(sprintf("A%s) = sym('"' %%l '); ' ,ind,prefix,v));
14 v=v+1;
15 end
16 end % function symArray ()
Paul Schrimpf () Matlab — Miscellaneous Topics May 31, 2007 10 / 28

perturb.m (5)

1 % construct g, h, and g(h)
2 syms g h gh s e;
3 [g args cg]= multiTaylor(G,n);
4 % make g function of deviation from expansion point
5 g = subs(g,args,[x —Xs,s));
6
7 [h args ch]= multiTaylor(H,n);
8 h = transpose(h)+[0,s *e];
9 gh = subs(g,x,h);
10 gh = subs(gh,args,[x —Xs,s]);
11 h = subs(h,args,[x —Xs,s));
12 T = [x,g,h,gh]; % T(X,S) =X, Yy, Xp, yp
Paul Schrimpf () Matlab — Miscellaneous Topics May 31, 2007 11 /28

multiTaylor.m (1)

nin = ndims(F) -1, % dimension of args
% so, f: Rnin — R nOut

1 function [f x c] = multiTaylor(F,n)

2 % given derivative matrix F, construct symbolic taylor series
3 % that takes symbolic arguments 'Xx'

4 % c is a vector of all symbolic coefficients used

5

6 nOut = size(F,1); % dimension of f()

7

8

9

n=n+1;

10 % construct arguments

1 for i=1l:nin

12 x(i) = sym(sprintf(" xod' i));
13 end

Paul Schrimpf () Matlab — Miscellaneous Topics

multiTaylor.m (2)
o f:RK — ™ write Taylor expansion as

flx+h~ > Do)

al
loe|<n

hOé

, al = Ha,-!,

where « is an k-tuple of integers, |a| =) |«;

h® =h."alpha
1 aold = zeros(nin“(n —2),nin);
2 a = ones(nin"(n —1),nin);
3 % a will be all n—tuples of positive integers such that sum(
4
5 % initialize f to zeros order expansion
6 ind = sprintf(' ,%d" ,a(l,));
7 ind = ind(2:length(ind));
8 eval(sprintf("f = F(,% s); ' ,ind));
9 eval(sprintf(‘c = F(:,% s); ' ,ind));
10 % = F(C, a(l,));

Paul Schrimpf () Matlab — Miscellaneous Topics May 31, 2007 13 /28

multiTaylor.m (4)

© ® N o 0 A W N R

P~ L i < =
© © N o U A~ W N = O

% build taylor series
for d=2:n
aold(1:nin*(d -2),;) = a(l:nin"(d -2),3);
=1
for o=l:nin"(d -2)
for i=1l:nin
a(j,:) = aold(o,?);
a(j,i) = aold(o,i)+1;
j =y
end
end
assert(j==nIn"(d —1)+1);
for j=1:nin"(d -1)
ind = sprintf(' %d" ,a(,:));
ind = ind(2:length(ind));
eval(sprintf("f = f+F(;,% s)=prod (x. °(a(j,)
eval(sprintf('c = [c; F(,% s)]; ',ind));

end
end

nd o tunction
Paul Schrimpf ()

Matlab — Miscellaneous Topics

—1) . /(factorial

May 31, 2007 14 / 28

perturb.m (6)

1 % now we want to compose f(T(x,s)), differentiate n times , set
2 % resulting equations to zero and solve for unkown Taylor series
3 % coefficients
4 FT = subs(subs(f),[x,y,xp,yp],T);
5 eqgn = [];
6 dFT = FT;
7 for d = 1in
8 dFT = jacobian(dFT,[x,s]);
9 egn = [eqn; reshape(dFT,prod(size(dFT)),1)];
10 end
1 for i=1:length(eqn)
12 % could do all at once, but this commandis slow because
13 % eqn has very complicated expressions
14 fprintf("working on eqgn(%d) .. ",i);
15 eqgn(i) = subs(eqn(i),[x,s,€e].[xs,0,0]);
16 fprintf(' finished \n");
17 end
Paul Schrimpf () Matlab — Miscellaneous Topics May 31, 2007 15 / 28

perturb.m (7)

% solve for steady state

1

2 fs = subs(f,[x,y,xp,ypl.[x,y.x.y]);

3 [as cs ks] = solve(fs(1),fs(2),fs(3),a,c,k);

4 as = 0;

5 ¢s = sym('log (exp(as)=«exp(ks+«ALFA) — DELTA-exp(ks)) ');
6 CS = subs(cs);

7 xs = subs([ks as]);

8 ys = subs(cs);

Paul Schrimpf () Matlab — Miscellaneous Topics May 31, 2007 16 / 28

perturb.m (8)

1 %now need to ask to solve eqgn for the unkown coefficients

2 %there doesn't seem to be an elegant way, so use eval

3 cmd ="',

4 for i=l:numel(egn)

5 cmd = sprintf(" %, subs ("' gq=0"", g, eqn(%d)) ' ,cmd,i);

6 end

7 coeffs = [cg; ch;]; % cgh];

8 unknown = [];

9 for i=1:numel(coeffs)

10 try

1 % this will throw an error if coeffs (i) is unknown
12 subs(coeffs(i));

13 catch

14 % add unknown coeff to list of things we' re solving for
15 cmd= sprintf(' %, coeffs (%d) " ,cmd,i);

16 unknown = [unknown; coeffs(i)];

17 end

18 end

19 cmd = ['soln =solve (' cmd(2 Iength(cmd)))T

g olve _will ake a very long time with “exact edn
Paul Schrimpf () Matlab — Miscellaneous Topics May 31, 2007 17 / 28

perturb.m (8)

© ® N o O A W N R

=
o

% print the solution (s)
for i=1:length(f)
try
fprintf("% = 9%\n',f {i },char(vpa(soln.(f {i D,49));
end
end

% could do more, like choose the stable solution
% check for range of validy of the solution , maybe
% create some graphs , etc

Paul Schrimpf () Matlab — Miscellaneous Topics

N

p)

Debugging

@ Nobody writes a program correctly the first time

@ A debugger lets you pause your program at an arbitrary point and
examine its state
@ Debugging lingo:
» breakpoint = a place where the debugger stops
» stack = sequence of functions that lead to the current point; up the
stack = to caller; down to the stack = to callee
> step = execute one line of code; step in = execute next line of code,
move down the stack if a new frame is added; step out = execute until
current frame exits
» continue = execute until the next breakpoint

Paul Schrimpf () Matlab — Miscellaneous Topics May 31, 2007 19 /28

Matlab Debugging

e Buttons at top of editor — set/clear break points, step, continue
@ More under Debug menu or from the command line:
» Set breakpoints

dbstop in mfile at 33 % set break point at line 33 of
dbstop in mfile at func % stop in func () in mfile
dbstop if error % enter debugger if error encountered
dbstop if warning

dbstop if naninf

[I N N N

» dbstack prints the stack
» dbup and dbdown move up and down the stack
» mlint file analyzes file.m for potential errors and inefficiencies

Paul Schrimpf () Matlab — Miscellaneous Topics May 31, 2007 20 / 28

Profiling

@ Display how much time each part of a program takes
@ Use to identify bottlenecks
» Try to eliminate them
@ Could also be useful for debugging — shows exactly what lines were
executed and how often

Paul Schrimpf () Matlab — Miscellaneous Topics May 31, 2007 21 /28

Matlab Profiler

@ profile on makes the profiler start collecting information
@ profile viewer shows the results

@ Very nice and easy to use

Paul Schrimpf () Matlab — Miscellaneous Topics May 31, 2007 22 /28

Creating Output

Just like your program should be easy to modify, your final output
should be easy to modify

Good goal: a single command runs your program, creates tables and
graphs, and inserts them into your paper

| do it with ATEX

Could probably also use Excel

Paul Schrimpf () Matlab — Miscellaneous Topics May 31, 2007 23 /28

1(10) distribution

50001

4000

30001

20001

1000

Table: A Random Matrix

coll col?2 col 3 col4 colb

row 1

0.236 0.454 0.0552 0.581 0.296

row2 0.881 0.162 0.204 0.676 0.702

Paul Schrimpf ()

Matlab — Miscellaneous Topics

May 31, 2007

24 /28

IATEXCode

\centering{\includegraphics[height=0.5\pageheight]{figs/randh:

\centering{
\begin{table} \caption{A Random Matrix}
\input{tables/rand.tex}
\end{table}
}

Paul Schrimpf () Matlab — Miscellaneous Topics May 31, 2007 25 /28

Matlab Code

clear;
M= 2;
N = 5;
% create a table
x = rand(M,N);
out = fopen('tables /rand.tex ','WwW);
fprintf(out, "\\begin {tabular }{');
for c=1:size(x,2);
fprintf(out, 'c');
end
fprintf(out, "N);
% print column headings
for c=Ll:size(x,2);
fprintf(out, ' & col %' ,c);
end

fprintf(out, " \\\\ \\hline \n");

© 0 N O U A W N

L e < =
o o0 A W N R O

Paul Schrimpf () Matlab — Miscellaneous Topics May 31, 2007

26 / 28

Matlab Code

© o N O U A W N

e i < =
o o0 A W N KB O

% print the rows
for r=1:size(x,1);

fprintf(out, "row %' r);
for c=1:size(x,2)
fprintf(out, " & %3g " x(r,c));
end
fprintf(out, AN\ AN)
end
fprintf(out, "\\hline \\end {tabular }");

fclose(out);

% create a histogram

figure;
hist(random(' t',10,100000,1),100);
title('t (10) distribution ")

print —depsc2 figs/randhist.eps;

Paul Schrimpf () Matlab — Miscellaneous Topics May 31, 2007

27 / 28

Exercises

The perturbation code is not nearly as general as it could be. Make it so that it can solve any model of the form

f(x(€), €) = 0. In particular, your code should be able to solve the income fluctuation problem from lecture 1. Compare
the solution to the one obtained in lecture 1.

e (hard) In the previous lecture we saw that derivatives can really help for optimization. Pick an often optimized class of
functions and write a program using the symbolic toolbox that automatically computes derivatives.

e Pick any program and profile it. Try to use the results to improve the performance of the program.

o (boring) Make one of the programs we've covered produce nicer output.

Paul Schrimpf () Matlab — Miscellaneous Topics May 31, 2007 28 /28

	Outline
	Symbolic Math Toolbox
	Perturbation Methods

	Debugging and Profiling
	Debugging
	Profiling

	Creating Output

