
Matlab Basics

Paul Schrimpf

January 14, 2009

Paul Schrimpf () Matlab Basics January 14, 2009 1 / 24

Overview

Goals
I Matlab features
I Program design
I Numerical methods

Paul Schrimpf () Matlab Basics January 14, 2009 2 / 24

Topics to be covered

Essentials of Matlab

Using Matlab’s features to design good programs
I Example: dynamic programming

Optimization and integration
I Example: maximum likelihood

Object-oriented programming
I Example: automatic differentiation

Paul Schrimpf () Matlab Basics January 14, 2009 3 / 24

Matlab References

help function or more detailed, doc function

Matlab Primer

MATLAB on Athena

10.34 Matlab tutorial

Numerical Computing with Matlab

Art of Matlab

Paul Schrimpf () Matlab Basics January 14, 2009 4 / 24

http://www.glue.umd.edu/~nsw/ench250/primer.htm
http://web.mit.edu/afs/.athena/astaff/project/logos/olh/Math/Matlab/TOC.html
http://ocw.mit.edu/OcwWeb/Chemical-Engineering/10-34Fall-2005/Tools/index.htm
http://www.mathworks.com/moler/
http://blogs.mathworks.com/loren/

Operators
Matrix Operators

1 a+b;
2 a−b;
3 a* b;
4 aˆn;
5 A';
6 A \ b; % returns x s.t. A* x=b
7 A / b; % returns x s.s. x* A=b

Array Operators

1 a. * b;
2 a.ˆn;
3 a. \b; % these are
4 a./b; % equivalent
5 a & b; % don ' t confuse with &&
6 a | b; % don ' t confuse with | |
7 ∼a;
8 arrayfun(fn,a); % evaluate fn at each element of a (usually not needed)

Paul Schrimpf () Matlab Basics January 14, 2009 5 / 24

Avoid Matrix Inversion

1 K = 2000; N = K+1; b = ones(K,1);
2 x = randn(N,K); y = x * b + randn(N,1);
3 xx = x' * x;
4 xy = x' * y;
5

6 % from slow to fast ...
7 tic; bhat1 = (xx)ˆ(−1) * xy; toc;
8 tic; bhat2 = inv(xx) * xy; toc;
9 tic; bhat3 = xx \ xy; toc;

\ is also more accurate, see purpose of inv

Example: funWithInv.m

Paul Schrimpf () Matlab Basics January 14, 2009 6 / 24

http://blogs.mathworks.com/loren/2007/05/16/purpose-of-inv/
file:examples/html/funWithInv.html

Array Functions

Arrays of Constants

1 eye(10); % 10 by 10 identity
2 zeros(3); % 3 by 3 of zeros
3 zeros(2,3); % 2 by 3 of zeros
4 ones(31,35,69);
5 1:5; % [1 2 3 4 5]

Vector Functions

1 sum(a,2); % sum along 2nd dimension of x
2 max(a); % max along 1st dimension of a
3 any(a,2); % a(:,1) | a(:,2) | ...
4 all(b); % b(1,:) & b(2,:) & ...
5 cumprod(a); % cumulative product

Paul Schrimpf () Matlab Basics January 14, 2009 7 / 24

More Functions

All standard mathematical functions – linear algebra, special
functions, polynomials, etc

Manipulating arrays – sort, permute, find, set operations

Strings – regexp, findstr, etc

Use the Matlab Function Reference

Paul Schrimpf () Matlab Basics January 14, 2009 8 / 24

Flow Control

1 if (j==3)
2 % ... some commands ...
3 elseif (j >4)
4 % ... some other commands ...
5 else
6 % ... some other commands ...
7 end

1 for j=lo:hi
2 x(j) = sqrt(j);
3 end

1 epsilon = 1;
2 while (1 −epsilon ∼= 1)
3 epsilon = epsilon * 0.99
4 end

Paul Schrimpf () Matlab Basics January 14, 2009 9 / 24

Warning – Arrays and Flow Control

1 A = [1 2 3]; B = A; C = [1 2 2];
2 if A==B
3 fprintf(' A==B\n');
4 end
5

6 if A==C % what message will be printed ?
7 fprintf(' A==C\n');
8 elseif A∼=C
9 fprintf(' A∼=C\n');

10 else
11 fprintf(' ∼(A==C) && ∼(A∼=C) !? \n');
12 end

Output

Paul Schrimpf () Matlab Basics January 14, 2009 10 / 24

file:examples/html/arrayLogical.html

Array Subscripting

1 A = magic(4); % 4 by 4 magic matrix
2 A(2,3); % by subscript
3 A(5); % by linear index −− A(5) = A(1,2)
4 ind2sub(size(A),5); % convert linear index to subscripts
5 bigA = A >10; % logical 4 by 4 matrix
6 A(bigA); % vector of elements of A > 4, in order of linear index

Paul Schrimpf () Matlab Basics January 14, 2009 11 / 24

Array Subscripting

1 A = eye(2);
2 B = rand(3,2,2);
3 A(1,:) % [1 0]
4 A(:,2) % [0; 1]
5 try
6 B(1,:,:)+A; % not allowed
7 catch
8 squeeze(B(1,:,:))+A;
9 end

10 B(1); % = B(1,1,1)
11 A(3); % = A(1,2) − matrices stored columnwise
12 B(2,A==1); % [B(2,1,1) B(2,2,2)]

Paul Schrimpf () Matlab Basics January 14, 2009 12 / 24

Structures

Way of organizing related data

Create a structure, s, with fields, x, y, and name

1 s.y = 1;
2 s.x = [1 1];
3 s.name = ' foo ' ;
4 % or equivalenty
5 s2 = struct(' y ' ,1, ' x ' ,[1 1], ' name' , ' foo ');

Use the fields like normal variables

Can create arrays of structures

1 for i=10:(−1):1
2 s(i).y = rand();
3 s(i).x = [i:i+2];
4 s(i).name = sprintf(' name%d' ,i);
5 end

Paul Schrimpf () Matlab Basics January 14, 2009 13 / 24

Structures

Structure array → normal array

1 % slow , explicit way
2 for i=1:length(s)
3 X(:,i) = s(i).x;
4 end
5 % equivalent fast way
6 X = [s.x]; % rationale : s.x is a comma separated list

Test for equality

1 isequal(s1,s2); % works for any s1 , s2

Paul Schrimpf () Matlab Basics January 14, 2009 14 / 24

Structures

Get a list of fields

1 f = fieldnames(s); % creates cell array containing names of fields
2 % of s

Dynamic field reference:

1 s.x % a static reference to s.x
2 s.(' x ') % dynamic reference to s.x

Paul Schrimpf () Matlab Basics January 14, 2009 15 / 24

Structures

Loop over fields

1 f = fields(s); % fields () equivalent to fieldnames ()
2 for i=1:length(f)
3 doSomething(s.(f {i })); % do something to each field
4 end
5 % equivalently ,
6 for f=fields(s)' % for can loop over any array
7 doSomething(s.(char(f)));
8 end
9 % most compact

10 structfun(@doSomething,s);

Paul Schrimpf () Matlab Basics January 14, 2009 16 / 24

Cell Arrays
Cell arrays are can have entries of arbitrary datatype

1 a = cell(3,2); % create 3 by 2 cell array
2 a{1,1 } = 1;
3 a{3,1 } = ' hello ' ;
4 a{2,2 } = randn(100,100);

Useful for strings and avoiding squeeze()

Using cell arrays with other datatypes can be tricky
I indexing with () gives elements of cell arrays, which are themselves cells
I indexing with {} converts elements of cell arrays to their underlying

type, returns comma separated list if not singleton

1 a = {[1 2], 3 }; % create 2 by 1 cell array
2 y = a {1}; % y is 1 by 2 numeric array
3 ycell =a(1); % is 1 by 1 cell array
4 x = y+1; % allowed
5 xcell = ycell+1; % not allowed
6 onetwothree = [a {1:2 }]; % = [1 2 3]
Paul Schrimpf () Matlab Basics January 14, 2009 17 / 24

Commenting

Comments are anything after a %or a ...

Special comments:
I First contiguous block of comments in an m-file are that file’s help

F %See also FUNCTIONcreates clickable link to help for function.m
F Always include: a description of what the function does, what inputs

are expected, and what kind of output will be produced

I Code “cells” are delimited by %% Cell title
F Matlab editor has special abilities for working with cells
F publish(' file.m ') runs file.m and makes nice output

1 % publish all m−files in currect directory
2 files = dir(' * .m');
3 cellfun(@(x) publish(x,struct(' evalCode ' ,false)), ...
4 {files.name }, ' UniformOutput ' ,false);

Paul Schrimpf () Matlab Basics January 14, 2009 18 / 24

Debugging

Nobody writes a program correctly the first time

A debugger lets you pause your program at an arbitrary point and
examine its state

Debugging lingo:
I breakpoint = a place where the debugger stops
I stack = sequence of functions that lead to the current point; up the

stack = to caller; down to the stack = to callee
I step = execute one line of code; step in = execute next line of code,

move down the stack if a new frame is added; step out = execute until
current frame exits

I continue = execute until the next breakpoint

Paul Schrimpf () Matlab Basics January 14, 2009 19 / 24

Matlab Debugging

Buttons at top of editor – set/clear break points, step, continue
More under Debug menu or from the command line:

I Set breakpoints

1 dbstop in mfile at 33 % set break point at line 33 of mfile
2 dbstop in mfile at func % stop in func () in mfile
3 dbstop if error % enter debugger if error encountered
4 dbstop if warning
5 dbstop if naninf

I dbstack prints the stack
I dbup and dbdown move up and down the stack
I mlint file analyzes file.m for potential errors and inefficiencies,

messages also shown on right edge of editor

1 for i=1:10
2 x(i) = i; %#ok (tells mlint to ignore this line)
3 end

Paul Schrimpf () Matlab Basics January 14, 2009 20 / 24

Profiling

Display how much time each part of a program takes

Use to identify bottlenecks
I Try to eliminate them

Could also be useful for debugging – shows exactly what lines were
executed and how often

Paul Schrimpf () Matlab Basics January 14, 2009 21 / 24

Matlab Profiler

profile on makes the profiler start collecting information

profile viewer shows the results

Very nice and easy to use

Paul Schrimpf () Matlab Basics January 14, 2009 22 / 24

Example: Diffs in Diffs Simulation

From 382: recreate and extend simulations from Betrand, Duflo, and
Mullanaithan (2004)

Illustrates:
I Importing data
I Lots of subscripting
I Use of structures
I Random numbers
I Comments and publishing

Code

Paul Schrimpf () Matlab Basics January 14, 2009 23 / 24

file:DinD/ps2.m

Exercises

1 Take a simple program that you have written in another language and rewrite it in Matlab.

2 Taken from the art of Matlab blog: “Q: Suppose there is a multiple-choice quiz, and for each question, one of the
responses scores 0 points, one scores 3 points, one scores 5 points, one scores 8 points, and one scores 10 points. If the
quiz has 4 questions, and assuming that each taker answers all of the questions, then which totals per taker are not
possible? For example, it would not be possible to finish the quiz with a total score of 2. If the quiz had 7 questions?
Can you generalize the code so that the number of questions can be varied by varying a single assignment?”

3 Write a collection of Matlab functions for linear regression. You could include OLS, GLS, SUR, IV, 3SLS, etc.

Paul Schrimpf () Matlab Basics January 14, 2009 24 / 24

http://blogs.mathworks.com/loren/2008/12/02/possible-test-scores/

	Overview
	Matlab Basics
	References
	Structures
	Cell Arrays

	Using Matlab Effectively
	Commenting
	Debugging
	Profiling

