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Overview

Goals
I Matlab features
I Program design
I Numerical methods
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Topics to be covered

Essentials of Matlab

Using Matlab’s features to design good programs
I Example: dynamic programming

Optimization and integration
I Example: maximum likelihood

Object-oriented programming
I Example: automatic differentiation
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Matlab References

help function or more detailed, doc function

Matlab Primer

MATLAB on Athena

10.34 Matlab tutorial

Numerical Computing with Matlab

Art of Matlab
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http://www.glue.umd.edu/~nsw/ench250/primer.htm
http://web.mit.edu/afs/.athena/astaff/project/logos/olh/Math/Matlab/TOC.html
http://ocw.mit.edu/OcwWeb/Chemical-Engineering/10-34Fall-2005/Tools/index.htm
http://www.mathworks.com/moler/
http://blogs.mathworks.com/loren/


Operators
Matrix Operators

1 a+b;
2 a−b;
3 a* b;
4 aˆn;
5 A';
6 A \ b; % returns x s.t. A* x=b
7 A / b; % returns x s.s. x* A=b

Array Operators

1 a. * b;
2 a.ˆn;
3 a. \b; % these are
4 a./b; % equivalent
5 a & b; % don ' t confuse with &&
6 a | b; % don ' t confuse with | |
7 ∼a;
8 arrayfun(fn,a); % evaluate fn at each element of a ( usually not needed )
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Avoid Matrix Inversion

1 K = 2000; N = K+1; b = ones(K,1);
2 x = randn(N,K); y = x * b + randn(N,1);
3 xx = x' * x;
4 xy = x' * y;
5

6 % from slow to fast ...
7 tic; bhat1 = (xx)ˆ( −1) * xy; toc;
8 tic; bhat2 = inv(xx) * xy; toc;
9 tic; bhat3 = xx \ xy; toc;

\ is also more accurate, see purpose of inv

Example: funWithInv.m
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http://blogs.mathworks.com/loren/2007/05/16/purpose-of-inv/
file:examples/html/funWithInv.html


Array Functions

Arrays of Constants

1 eye(10); % 10 by 10 identity
2 zeros(3); % 3 by 3 of zeros
3 zeros(2,3); % 2 by 3 of zeros
4 ones(31,35,69);
5 1:5; % [1 2 3 4 5]

Vector Functions

1 sum(a,2); % sum along 2nd dimension of x
2 max(a); % max along 1st dimension of a
3 any(a,2); % a(:,1) | a(:,2) | ...
4 all(b); % b(1,:) & b(2,:) & ...
5 cumprod(a); % cumulative product
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More Functions

All standard mathematical functions – linear algebra, special
functions, polynomials, etc

Manipulating arrays – sort, permute, find, set operations

Strings – regexp, findstr, etc

Use the Matlab Function Reference
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Flow Control

1 if (j==3)
2 % ... some commands ...
3 elseif (j >4)
4 % ... some other commands ...
5 else
6 % ... some other commands ...
7 end

1 for j=lo:hi
2 x(j) = sqrt(j);
3 end

1 epsilon = 1;
2 while (1 −epsilon ∼= 1)
3 epsilon = epsilon * 0.99
4 end
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Warning – Arrays and Flow Control

1 A = [1 2 3]; B = A; C = [1 2 2];
2 if A==B
3 fprintf( ' A==B\n' );
4 end
5

6 if A==C % what message will be printed ?
7 fprintf( ' A==C\n' );
8 elseif A∼=C
9 fprintf( ' A∼=C\n' );

10 else
11 fprintf( ' ∼( A==C) && ∼( A∼=C) !? \n' );
12 end

Output
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file:examples/html/arrayLogical.html


Array Subscripting

1 A = magic(4); % 4 by 4 magic matrix
2 A(2,3); % by subscript
3 A(5); % by linear index −− A(5) = A(1,2)
4 ind2sub(size(A),5); % convert linear index to subscripts
5 bigA = A >10; % logical 4 by 4 matrix
6 A(bigA); % vector of elements of A > 4, in order of linear index
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Array Subscripting

1 A = eye(2);
2 B = rand(3,2,2);
3 A(1,:) % [1 0]
4 A(:,2) % [0; 1]
5 try
6 B(1,:,:)+A; % not allowed
7 catch
8 squeeze(B(1,:,:))+A;
9 end

10 B(1); % = B(1,1,1)
11 A(3); % = A(1,2) − matrices stored columnwise
12 B(2,A==1); % [ B(2,1,1) B(2,2,2)]
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Structures

Way of organizing related data

Create a structure, s, with fields, x, y, and name

1 s.y = 1;
2 s.x = [1 1];
3 s.name = ' foo ' ;
4 % or equivalenty
5 s2 = struct( ' y ' ,1, ' x ' ,[1 1], ' name' , ' foo ' );

Use the fields like normal variables

Can create arrays of structures

1 for i=10:( −1):1
2 s(i).y = rand();
3 s(i).x = [i:i+2];
4 s(i).name = sprintf( ' name%d' ,i);
5 end
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Structures

Structure array → normal array

1 % slow , explicit way
2 for i=1:length(s)
3 X(:,i) = s(i).x;
4 end
5 % equivalent fast way
6 X = [s.x]; % rationale : s.x is a comma separated list

Test for equality

1 isequal(s1,s2); % works for any s1 , s2

Paul Schrimpf () Matlab Basics January 14, 2009 14 / 24



Structures

Get a list of fields

1 f = fieldnames(s); % creates cell array containing names of fields
2 % of s

Dynamic field reference:

1 s.x % a static reference to s.x
2 s.( ' x ' ) % dynamic reference to s.x
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Structures

Loop over fields

1 f = fields(s); % fields () equivalent to fieldnames ()
2 for i=1:length(f)
3 doSomething(s.(f {i })); % do something to each field
4 end
5 % equivalently ,
6 for f=fields(s)' % for can loop over any array
7 doSomething(s.(char(f)));
8 end
9 % most compact

10 structfun(@doSomething,s);
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Cell Arrays
Cell arrays are can have entries of arbitrary datatype

1 a = cell(3,2); % create 3 by 2 cell array
2 a{1,1 } = 1;
3 a{3,1 } = ' hello ' ;
4 a{2,2 } = randn(100,100);

Useful for strings and avoiding squeeze()

Using cell arrays with other datatypes can be tricky
I indexing with () gives elements of cell arrays, which are themselves cells
I indexing with {} converts elements of cell arrays to their underlying

type, returns comma separated list if not singleton

1 a = {[1 2], 3 }; % create 2 by 1 cell array
2 y = a {1}; % y is 1 by 2 numeric array
3 ycell =a(1); % is 1 by 1 cell array
4 x = y+1; % allowed
5 xcell = ycell+1; % not allowed
6 onetwothree = [a {1:2 }]; % = [1 2 3]
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Commenting

Comments are anything after a %or a ...

Special comments:
I First contiguous block of comments in an m-file are that file’s help

F %See also FUNCTIONcreates clickable link to help for function.m
F Always include: a description of what the function does, what inputs

are expected, and what kind of output will be produced

I Code “cells” are delimited by %% Cell title
F Matlab editor has special abilities for working with cells
F publish( ' file.m ' ) runs file.m and makes nice output

1 % publish all m−files in currect directory
2 files = dir( ' * .m' );
3 cellfun(@(x) publish(x,struct( ' evalCode ' ,false)), ...
4 {files.name }, ' UniformOutput ' ,false);
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Debugging

Nobody writes a program correctly the first time

A debugger lets you pause your program at an arbitrary point and
examine its state

Debugging lingo:
I breakpoint = a place where the debugger stops
I stack = sequence of functions that lead to the current point; up the

stack = to caller; down to the stack = to callee
I step = execute one line of code; step in = execute next line of code,

move down the stack if a new frame is added; step out = execute until
current frame exits

I continue = execute until the next breakpoint

Paul Schrimpf () Matlab Basics January 14, 2009 19 / 24



Matlab Debugging

Buttons at top of editor – set/clear break points, step, continue
More under Debug menu or from the command line:

I Set breakpoints

1 dbstop in mfile at 33 % set break point at line 33 of mfile
2 dbstop in mfile at func % stop in func () in mfile
3 dbstop if error % enter debugger if error encountered
4 dbstop if warning
5 dbstop if naninf

I dbstack prints the stack
I dbup and dbdown move up and down the stack
I mlint file analyzes file.m for potential errors and inefficiencies,

messages also shown on right edge of editor

1 for i=1:10
2 x(i) = i; %#ok ( tells mlint to ignore this line )
3 end
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Profiling

Display how much time each part of a program takes

Use to identify bottlenecks
I Try to eliminate them

Could also be useful for debugging – shows exactly what lines were
executed and how often
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Matlab Profiler

profile on makes the profiler start collecting information

profile viewer shows the results

Very nice and easy to use
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Example: Diffs in Diffs Simulation

From 382: recreate and extend simulations from Betrand, Duflo, and
Mullanaithan (2004)

Illustrates:
I Importing data
I Lots of subscripting
I Use of structures
I Random numbers
I Comments and publishing

Code
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file:DinD/ps2.m


Exercises

1 Take a simple program that you have written in another language and rewrite it in Matlab.

2 Taken from the art of Matlab blog: “Q: Suppose there is a multiple-choice quiz, and for each question, one of the
responses scores 0 points, one scores 3 points, one scores 5 points, one scores 8 points, and one scores 10 points. If the
quiz has 4 questions, and assuming that each taker answers all of the questions, then which totals per taker are not
possible? For example, it would not be possible to finish the quiz with a total score of 2. If the quiz had 7 questions?
Can you generalize the code so that the number of questions can be varied by varying a single assignment?”

3 Write a collection of Matlab functions for linear regression. You could include OLS, GLS, SUR, IV, 3SLS, etc.
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