Paul Schrimpf ()

Matlab Basics

Paul Schrimpf

January 14, 2009

Matlab Basics

Overview

o Goals

» Matlab features

» Program design

» Numerical methods

Paul Schrimpf ()

Matlab Basics

Topics to be covered

o Essentials of Matlab

@ Using Matlab's features to design good programs
» Example: dynamic programming

@ Optimization and integration
» Example: maximum likelihood

@ Object-oriented programming
» Example: automatic differentiation

Paul Schrimpf () Matlab Basics January 14, 2009 3/24

Matlab References

@ help function or more detailed, doc function

"W Matlab Primer

["J MATLAB on Athena

@ QUEAZRVENELRINGICE]

["J Numerical Computing with Matlab

"YW Art of Matlab

Paul Schrimpf () Matlab Basics

http://www.glue.umd.edu/~nsw/ench250/primer.htm
http://web.mit.edu/afs/.athena/astaff/project/logos/olh/Math/Matlab/TOC.html
http://ocw.mit.edu/OcwWeb/Chemical-Engineering/10-34Fall-2005/Tools/index.htm
http://www.mathworks.com/moler/
http://blogs.mathworks.com/loren/

Operators
Matrix Operators

~ o g A~ W N o=
o))
>

A\ by %retuns x st Axx=b
Al b, %returns x s.s. XxxA=b

Array Operators

a. xb;

a.’n;

a. \b; % these are

a./b; % equivalent

a &b, %don't confuse with &&
a | b, %don't confuse with ||
~a;

b N~ o O A W N R

d aviinn al: d d a d
Paul Schrimpf Matlab Basics

Avoid Matrix Inversion

1 K = 2000; N = K+1; b ones(K,1);
2 x = randn(N,K); y = x xb + randn(N,1);
3 XX = X' %X

4 Xy = X #y,;

5

6 % from slow to fast

7 tic; bhatl = (xx)°(—1) »xy; toc;

g tic; bhat2 = inv(xx) *Xy; toc;

9 tic; bhat3 = xx \ Xxy; toc;

@ \ is also more accurate, see purpose of inv

o Example: funWithInv.m

Paul Schrimpf ()

Matlab Basics January 14, 2009

6 /24

http://blogs.mathworks.com/loren/2007/05/16/purpose-of-inv/
file:examples/html/funWithInv.html

Array Functions

Arrays of Constants

[I N N N

eye(10); % 10 by 10 identity
zeros(3); % 3 by 3 of zeros
zeros(2,3); % 2 by 3 of zeros
ones(31,35,69);

1:5; %[l 2 3 4 5]

Vector Functions

[T N O N

sum(a,2); % sum along 2nd dimension of x
max(a); % max along 1st dimension of a
any(a,2); % a(;,1) | a(,2) |

all(b); % b(1,:) & b(2,) & ...
cumprod(a); % cumulative product

Paul Schrimpf () Matlab Basics January 14, 2009

7/ 24

More Functions

@ All standard mathematical functions — linear algebra, special
functions, polynomials, etc

@ Manipulating arrays — sort, permute, find, set operations
@ Strings — regexp, findstr, etc
@ Use the Matlab Function Reference

Paul Schrimpf () Matlab Basics January 14, 2009 8 /24

Flow Control

1 if (j==3)

2 % ... some commands ...

3 elseif i >9

4 % ... some other commands ...
5 else

6 % ... some other commands ...
7 end

1 for j=lo:hi
2 x() = sart();

3 end

1 epsilon = 1;

2 while (1 —epsilon ~= 1)

3 epsilon = epsilon x0.99
4 end

Paul Schrimpf ()

Matlab Basics

Warning — Arrays and Flow Control

1 A=[123;B=AC=1[122]

2 if ==B

3 fprintf(" A==B\n');

4 end

5

6 if ==C % what message will be printed ?
7 fprintf(" A==C\n");

g elseif A~=C

9 fprintf(" A=C\n'");

10 else

1 fprintf("~(A==C) && ~(A~=C) 1?2 \n");
12 end

Output

Paul Schrimpf () Matlab Basics January 14, 2009

10 / 24

file:examples/html/arrayLogical.html

Array Subscripti

ng

Paul Schrimpf ()

Matlab Basics

1 A = magic(4); % 4 by 4 magic matrix

2 A(2,3); % by subscript

3 A(B); %by linear index — A(5) = A(1,2)

4 ind2sub(size(A),5); % convert linear index to subscripts

5 bigA = A >10; % logical 4 by 4 matrix

6 A(bigA); % vector of elements of A > 4, in order of linear inde
5 = E = DA

Array Subscripting

© 0 N O U A W N

=
N = O

A = eye(2);

B = rand(3,2,2);
A(L,) %1 Q0]
A(,2) % [0; 1]

try
B(1,:,:)+A; % not allowed
catch
squeeze(B(1,:,:))+A,;
end
B(1); %= B(1,1,1)
A@B); %= A(1,2) — matrices stored columnwise

B(2,A==1); % [B(2,1,1) B(22.2)]

Paul Schrimpf () Matlab Basics

January 14, 2009

12 /24

Structures

o Way of organizing related data
o Create a structure, s, with fields, %, y, and name

1 sy =1,

2 sx =11 1]

3 s.name = 'foo';

4 % or equivalenty

5 82 = struct('y',1, 'x',1 1], 'name ,’'foo");

@ Use the fields like normal variables
@ Can create arrays of structures

1 for i=10:(-1):1

2 s(i).y = rand();

3 s(i).x = [ii+2];

4 s(i).name = sprintf(" name%d’ ,i);
5 end

Paul Schrimpf () Matlab Basics January 14, 2009 13 /24

Structures

@ Structure array — normal array

% slow , explicit way
for i=l:length(s)
X(@0) = s(i).x;
end
% equivalent fast way
X = [s.x]; % rationale : s.x is a comma separated

[I B N S N

list

@ Test for equality

1 isequal(sl,s2); % works for any sl1, s2

Paul Schrimpf () Matlab Basics

Structures

@ Get a list of fields

1 f = fieldnames(s); % creates cell array containing names
2 % of s
@ Dynamic field reference:
1 SX % a static reference to s.x
2 s 'x') %dynamic reference to s.x
Paul Schrimpf ()

Matlab Basics

N

Structures

@ Loop over fields

© ® N o O A W N R

=
o

f = fields(s); % fields () equivalent to fieldnames ()
for i=l:length(f)
doSomething(s.(f {i })); % do something to each field
end
% equivalently
for f=fields(s)' % for can loop over any array
doSomething(s.(char(f)));
end
% most compact
structfun(@doSomething,s);

Paul Schrimpf () Matlab Basics January 14, 2009

16 / 24

Cell Arrays

@ Cell arrays are can have entries of arbitrary datatype

1 a = cell(3,2); % create 3 by 2 cell array
2 a{ll} =1;

3 a{3,1} = "hello ';

4 a{2,2 } = randn(100,100);

@ Useful for strings and avoiding squeeze()
@ Using cell arrays with other datatypes can be tricky
> indexing with () gives elements of cell arrays, which are themselves cells
» indexing with {} converts elements of cell arrays to their underlying
type, returns comma separated list if not singleton

1 a={[12],3 }, %create 2 by 1 cell array
2y =afl}; %y is 1 by 2 numeric array

3 ycell =a(l); %is 1 by 1 cell array

4 X = y+l; % allowed

5 xcell = ycell+1; % not allowed

6 onetwothree = [a {1:2}; %=[1 2 3]

Paul Schrimpf () Matlab Basics January 14, 2009 17 / 24

Commenting

o Comments are anything after a %or a ...

@ Special comments:

» First contiguous block of comments in an m-file are that file's help
* %See also FUNCTIONCcreates clickable link to help for function.m
* Always include: a description of what the function does, what inputs

are expected, and what kind of output will be produced

» Code “cells” are delimited by %% Cell title
* Matlab editor has special abilities for working with cells
* publish(' filem ") runs file.m and makes nice output

1 % publish all mfiles in currect directory

2 files = dir("x.m');

3 cellfun(@(x) publish(x,struct(" evalCode ' ,false)),
4 {files.name }, ' UniformOutput ' false);

Paul Schrimpf () Matlab Basics January 14, 2009 18 / 24

Debugging

@ Nobody writes a program correctly the first time

@ A debugger lets you pause your program at an arbitrary point and
examine its state
@ Debugging lingo:
» breakpoint = a place where the debugger stops
» stack = sequence of functions that lead to the current point; up the
stack = to caller; down to the stack = to callee
> step = execute one line of code; step in = execute next line of code,
move down the stack if a new frame is added; step out = execute until
current frame exits
» continue = execute until the next breakpoint

Paul Schrimpf () Matlab Basics January 14, 2009 19 / 24

Matlab Debugging

@ Buttons at top of editor — set/clear break points, step, continue
@ More under Debug menu or from the command line:

> Set breakpoints

1 dbstop in mfile at 33 % set break point at line 33 of
2 dbstop in mfile at func % stop in func () in mfile

3 dbstop if error % enter debugger if error encountered
4 dbstop if warning

5 dbstop if naninf

» dbstack prints the stack

» dbup and dbdown move up and down the stack

» mlint file analyzes file.m for potential errors and inefficiencies,
messages also shown on right edge of editor

i=1:10
x(i) = i

end

1 for
2

3

%tok (tells mlint to ignore this

line)

Paul Schrimpf () Matlab Basics January 14, 2009

20 / 24

Profiling

@ Display how much time each part of a program takes
@ Use to identify bottlenecks
» Try to eliminate them
@ Could also be useful for debugging — shows exactly what lines were
executed and how often

Paul Schrimpf () Matlab Basics January 14, 2009 21 /24

Matlab Profiler

@ profile on makes the profiler start collecting information
@ profile viewer shows the results

@ Very nice and easy to use

Paul Schrimpf () Matlab Basics January 14, 2009 22 /24

Example: Diffs in Diffs Simulation

@ From 382: recreate and extend simulations from Betrand, Duflo, and
Mullanaithan (2004)

@ lllustrates:

Importing data

Lots of subscripting

Use of structures

Random numbers

Comments and publishing

vV vy vy VvYyy

Code

Paul Schrimpf () Matlab Basics January 14, 2009 23 /24

file:DinD/ps2.m

Exercises

0 Take a simple program that you have written in another language and rewrite it in Matlab.

e Taken from the art of Matlab blog: “Q: Suppose there is a multiple-choice quiz, and for each question, one of the
responses scores 0 points, one scores 3 points, one scores 5 points, one scores 8 points, and one scores 10 points. If the
quiz has 4 questions, and assuming that each taker answers all of the questions, then which totals per taker are not
possible? For example, it would not be possible to finish the quiz with a total score of 2. If the quiz had 7 questions?
Can you generalize the code so that the number of questions can be varied by varying a single assignment?”

e Write a collection of Matlab functions for linear regression. You could include OLS, GLS, SUR, IV, 3SLS, etc.

Paul Schrimpf () Matlab Basics January 14, 2009 24 / 24

http://blogs.mathworks.com/loren/2008/12/02/possible-test-scores/

	Overview
	Matlab Basics
	References
	Structures
	Cell Arrays

	Using Matlab Effectively
	Commenting
	Debugging
	Profiling

