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This lecture focuses on two ubiquitous numerical techiniques:
1 Optimization and equation solving

I Agents maximize utility / profits
I Estimation

2 Integration
I Expectations of the future or over unobserved variables
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Optimization

Want to solve a minimization problem:

min
x

f (x)

Two basic approaches:
1 Heuristic methods search over x in some systematic way
2 Model based approaches use an easily minimized approximation to f ()

to guide their search

First, x ∈ < for intuition

Then, x ∈ <n
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Section Search

Form bracket x1 < x2 < x3 such that f (x2) < f (x1) and f (x3)

Try new x ∈ (x1, x3), update bracket
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Quadratic Interpolation

More general interpolation methods possible

e.g. Matlab uses both quadratic and cubic interpolation for line search
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Newton-Rhapson and Quasi-Newton

Newton: use f ′(x) and f ′′(x) to construct parabola

xn+1 = xn −
f ′(xn)

f ′′(xn)

Quasi-Newton: approximate f ′′(xn) with f ′(xn)−f ′(xn−1)
xn−xn−1

BHHH: approximate f ′′(x) with 1
N

∑
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Rates of Convergence

Newton’s method converges quadraticly, i.e. in a neighborhood of the
solution,

lim
n→∞

||xn+1 − x∗||
||xn − x∗||2

= C

Parabolic interpolation and quasi-Newton methods also achieve better
than linear rates of convergence, but (usually) less than quadratic, i.e.

lim
n→∞

||xn+1 − x∗||
||xn − x∗||r

= C

for some r ∈ (1, 2]

Can achieve faster than quadratic convergence by using more
information

Usually, happy with any rate better than 1
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Trust Regions

Problem: For a function that is not globally concave, quadratic
interpolation and Newton methods might prescribe an upward step
and can fail to converge

Solution: Combine them with a sectional search, or more generally, a
trust region

I Region, R where we “trust” our quadratic approximation, f (x) ≈ f̃ (x)

xn+1 = arg min
x∈R

f̃n(x)

Shrink or expand R based on how much better f (xn+1) is than f (xn)

Brent’s method combines quadratic interpolation with sectional search
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Matlab Implementation

fminbnd() uses Brent’s method

No uni-dimensional implementation of any type of Newton method,
but could use multi-dimensional versions

We used fminbnd() in lecture 1:

1 optimset( ' fminbnd ' ) % this returns the default options for fminbnd
2

3 % change some options
4 opt = optimset( ' Display ' , ' iter ' , ... % ' off ',' final ',' notify '
5 ' MaxFunEvals ' ,1000, ' MaxIter ' ,1000, ...
6 ' TolX ' ,1e −8);
7 % maximize the expected value
8 [c ev] = fminbnd(@(c) obj(c,x,parm), cLo, cHi,opt);

For all optimization functions, can also set options through a
graphical interface by using optimtool()
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Multi-Dimensional Optimization with Quadratic
Approximation

Basic idea is the same:
I Construct a quadratic approximation to the objective
I Minimize approximation over some region

Complicated by difficulty of constructing region
I Cannot “bracket” a minimum in Rn, would need an n − 1 dimensional

manifold
I Two approaches:

F Use n dimensional trust region
F Break problem into sequence of smaller-dimensional minimizations
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Directional Search Methods

1 Choose a direction
I Näıve approach: use basis or steepest descent directions

F Very inefficient in worse case

I Try new directions, keep good ones: Powell’s method or conjugate
gradients

I Use Newton or quasi-Newton direction
F Generally fastest method

2 Do univariate minimization along that direction, this step is called a
“line search”

I Exact: find the minimum along the direction
I Approximate: just find a point that is enough of an improvement

3 Choose a different direction and repeat
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Trust Region Methods

Same as one dimension:
I Region, R where we “trust” our quadratic approximation, f (x) ≈ f̃ (x)

xn+1 = arg min
x∈R

f̃n(x)

Shrink or expand R based on how much better f (xn+1) is than f (xn)

Hybrid method: combine directional seach and a trust region
1 Use one of approaches from previous slide to choose a m < n

dimension subspace
2 Use trust-region method to minimize f within the subspace
3 Choose new subspace and repeat
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Matlab Implementation
fminunc() offers two algorithms

1 optimset( ' LargeScale ' , ' off ' ) → quasi-Newton with
approximate line-search

F Needs gradient, will compute finite difference approximation if gradient
not supplied

F Hessian approximation underdetermined by f ′(xn) and f ′(xn−1) in
dimension > 1

F Build Hessian approximation with recurrence relation:
optimset( ' HessUpdate ' , ' bfgs ' ) (usually better) or
optimset( ' HessUpdate ' , ' dfp ' )

2 optimset( ' LargeScale ' , ' on' ) → hybrid method: 2-d trust region
with conjugate gradients

F Needs the hessian, will compute finite difference approximation if
hessian not supplied

F Can exploit sparisty pattern of Hessian
optimset( ' HessPattern ' ,sparse(kron(eye(K),ones(J))))

Generally, these algorithms perform much better with user-supplied
derivatives thatn with finite-difference approximations to derivatives

I optimset( ' GradObj ' , ' on' , ' DerivativeCheck ' , ' on' )
I optimset( ' Hessian ' , ' on' )
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Set Based Methods

Idea:
1 Evaluate function on a set of points
2 Use current points and function values to generate candidate new

points
3 Replace points in the set with new points that have lower function

values
4 Repeat until set collapses to a single poitn

Examples: grid search, Nelder-Mead simplex, pattern search, genetic
algorithms, simulated annealing

Pros: simple, robust

Cons: inefficient – an interpolation based method will usually do
better
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Nelder-Mead Simplex Algorithm

fminsearch() uses it

N + 1 points in N dimensions form a polyhedron, move the
polyhedron by

1 Reflect worst point across the center, expand if there’s an improvement
2 Shrink, e.g. toward best point, other variations possible

Animation Another Animation
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Pattern Search

Uses set of N + 1 or more directions, {dk}
Each iteration:

I Evaluate f (xi + dk∆)
I If f (xi + dk∆) < f (xi ), set xi+1 = xi + dk∆, increase ∆
I If mink f (xi + dk∆) > f (xi ), set xi+1 = xi , decrease ∆

In Matlab, [x fval] = patternsearch(@f,x)

I Requires Genetic Algorithm and Direct Search Toolbox
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Genetic Algorithm

Can find global optimum (but I do not know whether this has been
formally proven)

Begin with random “population” of points, {x0
n}, then

1 Compute “fitness” of each point ∝ −f (x i
n)

2 Select more fit points as “parents”
3 Produce children by mutation x i+1

n = x i
n + ε, crossover

x i+1
n = λx i

n + (1− λ)x i
m, and elites, x i+1

n = x i
n

4 Repeat until have not improved function for many iterations

In Matlab, [x fval] = ga(@f,nvars,options)

I Requires Genetic Algorithm and Direct Search Toolbox
I Many variations and options

F Options can affect whether converge to local or global optimum
F Read the documentation and/or use optimtool
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Simulated Annealing and Threshold Acceptance

Can find global optimum, and under certain conditions, which are
difficult to check, finds the global optimum with probability 1

Algorithm:
1 Random candidate point x = xi + τε
2 Accept x i+1 = x if f (x) < f (xi ) or

F simulated annealing: with probability 1

1+e(f (x)−f (xi ))/τ

F threshold: if f (x) < f (xi ) + T

3 Lower the temperature, τ , and threshold, T

In Matlab, [x,fval] = simulannealbnd(@objfun,x0) and
[x,fval] = threshacceptbnd(@objfun,x0)

I Requires Genetic Algorithm and Direct Search Toolbox
I Many variations and options

F Options can affect whether converge to local or global optimum
F Read the documentation and/or use optimtool
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Constrained Optimization

min
x

f (x) (1)

s.t. (2)

g(x) = 0 (3)

Quasi-Newton with directional search → sequential quadratic
programming

I Choose direction of search both to minimize function and relax
constraints

fmincon()

I ' LargeScale ' , ' off ' does sequential quadratic programming
I ' LargeScale ' , ' on' only works when constraints are simple bounds

on x , it is the same as large-scale fminunc

Matlab’s pattern search and genetic algorithm work for constrained
problems
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Solving Systems of Nonlinear Equations

Very similar to optimization

F (x) = 0 ⇐⇒ min
x

F (x)′F (x)

Largescale fsolve = Largescale fmincon applied to least-squares
problem

Mediumscale fsolve = Mediumscale lsqnonlin

I Gauss-Newton: replace F by first order expansion

xn+1 − xn = (J ′(xn)J(xn))
−1J ′(xn)F (xn)

I Levenberg-Marquardt: add dampening to Gauss-Newton to improve
performance when first order approximation is bad

xn+1 − xn = (J ′(xn)J(xn) + λnI )
−1J ′(xn)F (xn)
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Derivatives

The best minimization algorithms require derivatives

Can use finite difference approximation
I In theory: still get better than linear rate of convergence
I In practice: can be inaccurate
I Takes n function evaluations, user written gradient typically takes 2-5

times the work of a function evaluation

Easier analytic derivatives:
I Use symbolic math program to get formulas – e.g. Matlab Symbolic

Math Toolbox / Maple, Mathematica, Maxima
I Use automatic differentiation

F In Matlab – INTLAB, ADMAT, MAD, ADiMat, or a version that we
will create in the next lecture

F Switch to a language with native automatic differentiation – AMPL,
GAMS
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Simple MLE Example: Binary Choice

1 % Script for estimating a binary choice model
2 % Paul Schrimpf , May 27, 2007
3 clear;
4 % set the parameters
5 data.N = 1000; % number of observations
6 data.nX = 2; % number of x ' s
7 parm.beta = ones(data.nX,1);
8 % note use of function handles for distribution
9 % estimation assumes that the distribution is known

10 parm.dist.rand = @(m,n) random( ' norm' ,1,0,m,n);
11 parm.dist.pdf = @(x) pdf( ' norm' ,x,0,1);
12 parm.dist.dpdf = @(x) pdf( ' norm' ,x,0,1). * x; % derivative of pdf
13 parm.dist.cdf = @(x) cdf( ' norm' ,x,0,1);
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1 % create some data
2 data = simulateBinChoice(data,parm);
3 % set optimization options
4 opt = optimset( ' LargeScale ' , ' off ' , ...
5 ' HessUpdate ' , ' bfgs ' , ...
6 ' GradObj ' , ' on' , ...
7 ' DerivativeCheck ' , ' on' , ...
8 ' Display ' , ' iter ' , ...
9 ' OutputFcn ' ,@binChoicePlot);

10 b0 = zeros(data.nX,1);
11 [parm.beta like] = fminunc(@(b) binChoiceLike(b,parm,data), ...
12 b0,opt);
13 % display results
14 fprintf( ' likelihood = %g\n' ,like);
15 for i=1:length(parm.beta)
16 fprintf( ' beta (%d) = %g\n' ,i,parm.beta(i));
17 end
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simulateBinChoice()

1 function data=simulateBinChoice(dataIn,parm)
2 % ... comments and error checking omitted ...
3 data.x = randn(data.N,data.nX);
4 data.y = (data.x * parm.beta + epsilon > 0);
5 end
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1 function [like grad hess gi] = binChoiceLike(b,parm,data)
2 % returns the −loglikelihood of ' data ' for a binary choice model
3 % the model is y = ( x* b + eps > 0)
4 % ... more comments omitted
5 xb = data.x * b;
6 % l i will be N by 1, likelihood for each person
7 l i = parm.dist.cdf( −xb);
8 l i(data.y) = 1 −l i(data.y);
9 if any(l i==0)

10 warning( ' likelihood = 0 for %d observations \n' ,sum(l i==0));
11 l i(l i==0) = REALMIN; % don ' t take log (0)!
12 end
13 like = −sum(log(l i));
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Gradient for binChoiceLike()

1 % gradient of l i
2 g i = −(parm.dist.pdf( −xb) * ones(1,length(b))). * data.x;
3 g i(data.y,:) = −g i(data.y,:);
4 % change to gradient of log −like
5 grad = −sum(g i./(l i * ones(1,length(b))),1)';
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Hessian for binChoiceLike()

1 % calculate hessian
2 h i = zeros(length(xb),length(b),length(b));
3 for i=1:length(xb)
4 h i(i,:,:) = (parm.dist.dpdf( −xb(i)) * ...
5 data.x(i,:)' * data.x(i,:)) ...
6 ... % make hessian of log −like
7 / l i(i);
8 end
9 h i(data.y,:,:) = −h i(data.y,:,:);

10 % make hessiane of log −like
11 hess = −(sum(h i,1) − g i ' * (g i./(l i.ˆ2 * ones(1,length(b)))));
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binChoicePlot.m

1 function stop = binChoicePlot(x,optimvalues,state)
2 if (length(x)==2)
3 if (optimvalues.iteration==0)
4 hold off;
5 end
6 grad = optimvalues.gradient;
7 f = optimvalues.fval;
8 plot3(f,x(1),x(2), ' k* ' );
9 if (optimvalues.iteration==0)

10 hold on;
11 end
12 quiver3(f,x(1),x(2),0,grad(1),grad(2));
13 drawnow
14 pause(0.5);
15 end
16 stop = false;
17 end
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Numerical Integration

Want:

F (x) =

∫ b

a
f (x)ω(x)dx

Approximate:

F (x) ≈
n∑
i

f (xi )wi

Different methods are different ways to choose n, xi , and wi

Quadrature: choose wi so the approximation is exact for a set of n
basis elements

Monte Carlo: set wi = 1
n , choose xi randomly

Adaptive: refine n, xi , and wi until approximation error is small
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Quadrature

Suppose xi , n are given, need to choose wi

Let {ej(x)} be a basis for the space of functions such that∫ b
a f (x)ω(x)dx < ∞

I
∫ b

a
ej(x)ω(x)dx should be known ∀j

{wi}ni=1 solve

n∑
i=1

wiej(xi ) =

∫ b

a
ej(x)ω(x)dx forj = 1..n (4)

Example: Newton-Cotes
I basis = polynomials
I ω(x) = 1
I Resulting rule is exact for all polynomials of degree less than or equal

to n
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Gaussian Quadrature

Now suppose n is given, but we can choose both wi and xi

Same idea, {wi , xi}ni=1 solve

n∑
i=1

wiej(xi ) =

∫ b

a
ej(x)ω(x)dx forj = 1..2n − 1 (5)

Exact for functions in the space spanned by {ej}2n−1
j=1

If {ej} is an orthogonal polynomial basis, then {xi}ni=1 will be the
roots of en

Different gaussian quadrature rules correspond to different values of
a, b, and ω(x)
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Common Forms of Gaussian Quadrature

Interval ω(x) Name
[−1, 1] 1 Legendre
(−1, 1) (1− x)α(1 + x)β Jacobi
(−1, 1) 1√

1−x2
Chebyshev (first kind)

[−1, 1]
√

1− x2 Chebyshev (second kind)
[0,∞) e−x Laguerre

(−∞,∞) e−x2
Hermite
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Quadrature in Matlab

Not built in

Many implementations available at the Mathworks file exchange

Great for single dimension integration

Multiple dimension integration is harder
I

∑n
i1

...
∑n

im=1 f (xi1, ..xim)wim..wim works, but needs mn function
evaluations

I More sophisticated methods exist – called cubature, sparse grid, or
complete polynomials – see e.g. Encyclopedia of Cubature Formulas
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Adaptive Integration

F (x) =

∫ b

a
f (x)ω(x)dx

Idea: subdivide (a, b) into smaller intervals, use simple quadrature
rule on each interval, and repeat until convergence

e.g. trapezoid rule, Simpson’s rule

trapz() , quad() , quadl()

Pro: computes integral to known accuracy

Con: care must be used when part of an objective function
I Makes the objective function discontinuous at points where solution

goes from k to k + 1 subdivisions → integration accuracy must be set
much higher than convergence criteria of optimization
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Monte Carlo Integration

Randomly draw xi from distribution p(x) ∝ ω(x), set
wi = 1

n

∫
ω(x)dx

Many methods for sampling from p(x): inverse cdf, acceptance
sampling, importance sampling, Gibbs sampling, Metropolis-Hastings

Pros: simple to understand, easy to implement, scales well, requires
little a priori knowledge of f (x)

Cons: inefficient – for a fixed n, the right quadrature rule will do
much better

I But when computing something like
∑

i g (
∑

s f (yi , xi,s)ws), errors in
g (

∑
s f (yi , xi,s)ws) for different i can offset one another
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Useful Matlab functions for Monte Carlo Integration

1 x = rand(2,3); % 2 by 3 matrix of x ¬ U[0,1]
2 y = randn(10); % 10 by 10 matrix of y ¬ N(0,1)
3 % more generally
4 t = random( ' t ' ,3,2,1); % 2 by 1, t−dist with 3 df
5 % many other distributions possible

Paul Schrimpf () Matlab – Optimization and Integration January 14, 2009 36 / 43



Integration Example

1 clear;
2 % some integration experiments
3

4 % Example 1: E[ p( x)], x¬N(0,1), p( x) polynomial
5 degree = 10;
6 p = rand(1,degree+1); % make some polynomial
7 fprintf( ' adaptive quad , tol %.1g = %.10g \n' , ...
8 1e−10, quad(@(x) polyval(p,x). * normpdf(x), ...
9 −30,30,1e −10));
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Integration Example

1 fprintf( ' gauss−hermite quadrature \n' );
2 for n=1:((degree+1)/2+4)
3 % use hermite −− will be exact for n≥( degree +1)/2
4 int = gaussHermite(n);
5 % notice the change of variables
6 ep = polyval(p,int.x * sqrt(2))' * int.w/sqrt(pi);
7 if (n==round((degree+1)/2))
8 fprintf( ' −−− the rest should be exact −−−−\n' );
9 end

10 fprintf( ' n=%2d E[ p( x)] = %.10g \n' ,n,ep);
11 end
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Integration Example

1 fprintf( ' \n monte carlo integration \n' )
2 for n=1:6
3 fprintf( ' n=10ˆ%d E[ p( x)] = %.10g \n' ,n, ...
4 mean(polyval(p,randn(10ˆn,1))));
5 end
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MCMC

For nonstandard distributions, it is often impossible to sample from
p(x) directly

MCMC constructs a Markov Chain, xt ∼ p(xt |xt−1), with stationary
distribution p(x) and transition kernel, p(xt |xt−1) that can be
sampled from

Very common in Bayesian statistics
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Metropolis-Hastings

General method for constructing a Markov chain

Algorithm to draw from p(x): beginning with some x0

1 Draw y ∼ q(xt , ·)
2 Compute α(xt , y) = p(y)q(y ,xt)

p(xt)q(xt ,y)
3 Draw u ∼ U[0, 1]
4 If u < α(xt , y) set xt+1 = y , otherwise set xt+1 = xt

Choice of candidate density, q, affects behavior of chain
I If q is too disperse, will not accept many draws
I If q is too concentrated, will accept lots of draws, but they’ll be close

together

Example: metropolisHastings.m
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Exercises

1 If you have written any code that involves optimization or integration, try modifying it to use a different method.

2 Modify the dynamic programming code from lecture 1 to allow for a continuous distribution for income. If you are
clever, will be able to evaluate Eṽ(x′, y′) exactly, even if Ev(x′, y′) does not have an analytic solution.

3 We know that value function iteration converges linearly. Gauss-Newton and other quadratic approximation based
method converge at faster rates. Change the dynamic programming code from lecture 1 to use one of these methods
instead of value function iteration.

4 Change the binary choice model into a multinomial choice model. Allow for correlation between the shocks. Try to
preserve the generality of the binary model, but feel free to limit the choice of distribution if it helps.
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More Exercises

1 (hard) I don’t know much about cubature, but I’d like to learn more. Read about a few methods. Find or write some
Matlab code for one of them. Explore the accuracy of the method. To maintain a desired level of accuracy, how does
the number of points grow with the number of dimensions? Compare it monte carlo integration.

2 (hard) Matlab lacks an implementation of an optimization algorithm that uses interpolation in multiple dimensions.
Remedy this situation. Find or develop an algorithm and implement it.

3 (hard, but not as hard) Write a function for computing arbitrary Gaussian quadrature rules with polynomials as a basis.
Given integration limits, a weight function, ω(x), and the number of points, n, your function should return the

integration points and weights. You might want to use the following facts taken from Numerical Recipes . Let

〈f |g〉 =
R b
a f (x)g(x)ω(x)dx denote the inner product. Then the following recurrence relation will construct a set of

orthogonal polynomials:

p−1(x) ≡0

p0(x) ≡1

pj+1(x) =

 
x −

〈xpj |pj 〉
〈pj |pj 〉

!
x −

〈pj |pj 〉
〈pj−1|pj−1〉

pj−1(x)

Recall that the roots of the n degree polynomial will be the integration points. If you have the roots, {xj}n
j=1. Then

the weights are given by

wj =
〈pn−1|pn−1〉
pn−1(xj )p

′
n(xj )
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