
Matlab – Optimization and Integration

Paul Schrimpf

January 14, 2009

Paul Schrimpf () Matlab – Optimization and Integration January 14, 2009 1 / 43

This lecture focuses on two ubiquitous numerical techiniques:
1 Optimization and equation solving

I Agents maximize utility / profits
I Estimation

2 Integration
I Expectations of the future or over unobserved variables

Paul Schrimpf () Matlab – Optimization and Integration January 14, 2009 2 / 43

Optimization

Want to solve a minimization problem:

min
x

f (x)

Two basic approaches:
1 Heuristic methods search over x in some systematic way
2 Model based approaches use an easily minimized approximation to f ()

to guide their search

First, x ∈ < for intuition

Then, x ∈ <n

Paul Schrimpf () Matlab – Optimization and Integration January 14, 2009 3 / 43

Section Search

Form bracket x1 < x2 < x3 such that f (x2) < f (x1) and f (x3)

Try new x ∈ (x1, x3), update bracket

Paul Schrimpf () Matlab – Optimization and Integration January 14, 2009 4 / 43

Quadratic Interpolation

More general interpolation methods possible

e.g. Matlab uses both quadratic and cubic interpolation for line search

Paul Schrimpf () Matlab – Optimization and Integration January 14, 2009 5 / 43

Newton-Rhapson and Quasi-Newton

Newton: use f ′(x) and f ′′(x) to construct parabola

xn+1 = xn −
f ′(xn)

f ′′(xn)

Quasi-Newton: approximate f ′′(xn) with f ′(xn)−f ′(xn−1)
xn−xn−1

BHHH: approximate f ′′(x) with 1
N

∑
i=1 f ′i (x)f ′i (x)′Paul Schrimpf () Matlab – Optimization and Integration January 14, 2009 6 / 43

Rates of Convergence

Newton’s method converges quadraticly, i.e. in a neighborhood of the
solution,

lim
n→∞

||xn+1 − x∗||
||xn − x∗||2

= C

Parabolic interpolation and quasi-Newton methods also achieve better
than linear rates of convergence, but (usually) less than quadratic, i.e.

lim
n→∞

||xn+1 − x∗||
||xn − x∗||r

= C

for some r ∈ (1, 2]

Can achieve faster than quadratic convergence by using more
information

Usually, happy with any rate better than 1

Paul Schrimpf () Matlab – Optimization and Integration January 14, 2009 7 / 43

Trust Regions

Problem: For a function that is not globally concave, quadratic
interpolation and Newton methods might prescribe an upward step
and can fail to converge

Solution: Combine them with a sectional search, or more generally, a
trust region

I Region, R where we “trust” our quadratic approximation, f (x) ≈ f̃ (x)

xn+1 = arg min
x∈R

f̃n(x)

Shrink or expand R based on how much better f (xn+1) is than f (xn)

Brent’s method combines quadratic interpolation with sectional search

Paul Schrimpf () Matlab – Optimization and Integration January 14, 2009 8 / 43

Matlab Implementation

fminbnd() uses Brent’s method

No uni-dimensional implementation of any type of Newton method,
but could use multi-dimensional versions

We used fminbnd() in lecture 1:

1 optimset(' fminbnd ') % this returns the default options for fminbnd
2

3 % change some options
4 opt = optimset(' Display ' , ' iter ' , ... % ' off ',' final ',' notify '
5 ' MaxFunEvals ' ,1000, ' MaxIter ' ,1000, ...
6 ' TolX ' ,1e −8);
7 % maximize the expected value
8 [c ev] = fminbnd(@(c) obj(c,x,parm), cLo, cHi,opt);

For all optimization functions, can also set options through a
graphical interface by using optimtool()

Paul Schrimpf () Matlab – Optimization and Integration January 14, 2009 9 / 43

Multi-Dimensional Optimization with Quadratic
Approximation

Basic idea is the same:
I Construct a quadratic approximation to the objective
I Minimize approximation over some region

Complicated by difficulty of constructing region
I Cannot “bracket” a minimum in Rn, would need an n − 1 dimensional

manifold
I Two approaches:

F Use n dimensional trust region
F Break problem into sequence of smaller-dimensional minimizations

Paul Schrimpf () Matlab – Optimization and Integration January 14, 2009 10 / 43

Directional Search Methods

1 Choose a direction
I Näıve approach: use basis or steepest descent directions

F Very inefficient in worse case

I Try new directions, keep good ones: Powell’s method or conjugate
gradients

I Use Newton or quasi-Newton direction
F Generally fastest method

2 Do univariate minimization along that direction, this step is called a
“line search”

I Exact: find the minimum along the direction
I Approximate: just find a point that is enough of an improvement

3 Choose a different direction and repeat

Paul Schrimpf () Matlab – Optimization and Integration January 14, 2009 11 / 43

Trust Region Methods

Same as one dimension:
I Region, R where we “trust” our quadratic approximation, f (x) ≈ f̃ (x)

xn+1 = arg min
x∈R

f̃n(x)

Shrink or expand R based on how much better f (xn+1) is than f (xn)

Hybrid method: combine directional seach and a trust region
1 Use one of approaches from previous slide to choose a m < n

dimension subspace
2 Use trust-region method to minimize f within the subspace
3 Choose new subspace and repeat

Paul Schrimpf () Matlab – Optimization and Integration January 14, 2009 12 / 43

Matlab Implementation
fminunc() offers two algorithms

1 optimset(' LargeScale ' , ' off ') → quasi-Newton with
approximate line-search

F Needs gradient, will compute finite difference approximation if gradient
not supplied

F Hessian approximation underdetermined by f ′(xn) and f ′(xn−1) in
dimension > 1

F Build Hessian approximation with recurrence relation:
optimset(' HessUpdate ' , ' bfgs ') (usually better) or
optimset(' HessUpdate ' , ' dfp ')

2 optimset(' LargeScale ' , ' on') → hybrid method: 2-d trust region
with conjugate gradients

F Needs the hessian, will compute finite difference approximation if
hessian not supplied

F Can exploit sparisty pattern of Hessian
optimset(' HessPattern ' ,sparse(kron(eye(K),ones(J))))

Generally, these algorithms perform much better with user-supplied
derivatives thatn with finite-difference approximations to derivatives

I optimset(' GradObj ' , ' on' , ' DerivativeCheck ' , ' on')
I optimset(' Hessian ' , ' on')

Paul Schrimpf () Matlab – Optimization and Integration January 14, 2009 13 / 43

Set Based Methods

Idea:
1 Evaluate function on a set of points
2 Use current points and function values to generate candidate new

points
3 Replace points in the set with new points that have lower function

values
4 Repeat until set collapses to a single poitn

Examples: grid search, Nelder-Mead simplex, pattern search, genetic
algorithms, simulated annealing

Pros: simple, robust

Cons: inefficient – an interpolation based method will usually do
better

Paul Schrimpf () Matlab – Optimization and Integration January 14, 2009 14 / 43

Nelder-Mead Simplex Algorithm

fminsearch() uses it

N + 1 points in N dimensions form a polyhedron, move the
polyhedron by

1 Reflect worst point across the center, expand if there’s an improvement
2 Shrink, e.g. toward best point, other variations possible

Animation Another Animation

Paul Schrimpf () Matlab – Optimization and Integration January 14, 2009 15 / 43

http://en.wikipedia.org/wiki/File:Nelder_Mead1.gif
http://en.wikipedia.org/wiki/File:Nelder_Mead2.gif

Pattern Search

Uses set of N + 1 or more directions, {dk}
Each iteration:

I Evaluate f (xi + dk∆)
I If f (xi + dk∆) < f (xi), set xi+1 = xi + dk∆, increase ∆
I If mink f (xi + dk∆) > f (xi), set xi+1 = xi , decrease ∆

In Matlab, [x fval] = patternsearch(@f,x)

I Requires Genetic Algorithm and Direct Search Toolbox

Paul Schrimpf () Matlab – Optimization and Integration January 14, 2009 16 / 43

Genetic Algorithm

Can find global optimum (but I do not know whether this has been
formally proven)

Begin with random “population” of points, {x0
n}, then

1 Compute “fitness” of each point ∝ −f (x i
n)

2 Select more fit points as “parents”
3 Produce children by mutation x i+1

n = x i
n + ε, crossover

x i+1
n = λx i

n + (1− λ)x i
m, and elites, x i+1

n = x i
n

4 Repeat until have not improved function for many iterations

In Matlab, [x fval] = ga(@f,nvars,options)

I Requires Genetic Algorithm and Direct Search Toolbox
I Many variations and options

F Options can affect whether converge to local or global optimum
F Read the documentation and/or use optimtool

Paul Schrimpf () Matlab – Optimization and Integration January 14, 2009 17 / 43

Simulated Annealing and Threshold Acceptance

Can find global optimum, and under certain conditions, which are
difficult to check, finds the global optimum with probability 1

Algorithm:
1 Random candidate point x = xi + τε
2 Accept x i+1 = x if f (x) < f (xi) or

F simulated annealing: with probability 1

1+e(f (x)−f (xi))/τ

F threshold: if f (x) < f (xi) + T

3 Lower the temperature, τ , and threshold, T

In Matlab, [x,fval] = simulannealbnd(@objfun,x0) and
[x,fval] = threshacceptbnd(@objfun,x0)

I Requires Genetic Algorithm and Direct Search Toolbox
I Many variations and options

F Options can affect whether converge to local or global optimum
F Read the documentation and/or use optimtool

Paul Schrimpf () Matlab – Optimization and Integration January 14, 2009 18 / 43

Constrained Optimization

min
x

f (x) (1)

s.t. (2)

g(x) = 0 (3)

Quasi-Newton with directional search → sequential quadratic
programming

I Choose direction of search both to minimize function and relax
constraints

fmincon()

I ' LargeScale ' , ' off ' does sequential quadratic programming
I ' LargeScale ' , ' on' only works when constraints are simple bounds

on x , it is the same as large-scale fminunc

Matlab’s pattern search and genetic algorithm work for constrained
problems

Paul Schrimpf () Matlab – Optimization and Integration January 14, 2009 19 / 43

Solving Systems of Nonlinear Equations

Very similar to optimization

F (x) = 0 ⇐⇒ min
x

F (x)′F (x)

Largescale fsolve = Largescale fmincon applied to least-squares
problem

Mediumscale fsolve = Mediumscale lsqnonlin

I Gauss-Newton: replace F by first order expansion

xn+1 − xn = (J ′(xn)J(xn))
−1J ′(xn)F (xn)

I Levenberg-Marquardt: add dampening to Gauss-Newton to improve
performance when first order approximation is bad

xn+1 − xn = (J ′(xn)J(xn) + λnI)
−1J ′(xn)F (xn)

Paul Schrimpf () Matlab – Optimization and Integration January 14, 2009 20 / 43

Derivatives

The best minimization algorithms require derivatives

Can use finite difference approximation
I In theory: still get better than linear rate of convergence
I In practice: can be inaccurate
I Takes n function evaluations, user written gradient typically takes 2-5

times the work of a function evaluation

Easier analytic derivatives:
I Use symbolic math program to get formulas – e.g. Matlab Symbolic

Math Toolbox / Maple, Mathematica, Maxima
I Use automatic differentiation

F In Matlab – INTLAB, ADMAT, MAD, ADiMat, or a version that we
will create in the next lecture

F Switch to a language with native automatic differentiation – AMPL,
GAMS

Paul Schrimpf () Matlab – Optimization and Integration January 14, 2009 21 / 43

Simple MLE Example: Binary Choice

1 % Script for estimating a binary choice model
2 % Paul Schrimpf , May 27, 2007
3 clear;
4 % set the parameters
5 data.N = 1000; % number of observations
6 data.nX = 2; % number of x ' s
7 parm.beta = ones(data.nX,1);
8 % note use of function handles for distribution
9 % estimation assumes that the distribution is known

10 parm.dist.rand = @(m,n) random(' norm' ,1,0,m,n);
11 parm.dist.pdf = @(x) pdf(' norm' ,x,0,1);
12 parm.dist.dpdf = @(x) pdf(' norm' ,x,0,1). * x; % derivative of pdf
13 parm.dist.cdf = @(x) cdf(' norm' ,x,0,1);

Paul Schrimpf () Matlab – Optimization and Integration January 14, 2009 22 / 43

1 % create some data
2 data = simulateBinChoice(data,parm);
3 % set optimization options
4 opt = optimset(' LargeScale ' , ' off ' , ...
5 ' HessUpdate ' , ' bfgs ' , ...
6 ' GradObj ' , ' on' , ...
7 ' DerivativeCheck ' , ' on' , ...
8 ' Display ' , ' iter ' , ...
9 ' OutputFcn ' ,@binChoicePlot);

10 b0 = zeros(data.nX,1);
11 [parm.beta like] = fminunc(@(b) binChoiceLike(b,parm,data), ...
12 b0,opt);
13 % display results
14 fprintf(' likelihood = %g\n' ,like);
15 for i=1:length(parm.beta)
16 fprintf(' beta (%d) = %g\n' ,i,parm.beta(i));
17 end

Paul Schrimpf () Matlab – Optimization and Integration January 14, 2009 23 / 43

simulateBinChoice()

1 function data=simulateBinChoice(dataIn,parm)
2 % ... comments and error checking omitted ...
3 data.x = randn(data.N,data.nX);
4 data.y = (data.x * parm.beta + epsilon > 0);
5 end

Paul Schrimpf () Matlab – Optimization and Integration January 14, 2009 24 / 43

1 function [like grad hess gi] = binChoiceLike(b,parm,data)
2 % returns the −loglikelihood of ' data ' for a binary choice model
3 % the model is y = (x* b + eps > 0)
4 % ... more comments omitted
5 xb = data.x * b;
6 % l i will be N by 1, likelihood for each person
7 l i = parm.dist.cdf(−xb);
8 l i(data.y) = 1 −l i(data.y);
9 if any(l i==0)

10 warning(' likelihood = 0 for %d observations \n' ,sum(l i==0));
11 l i(l i==0) = REALMIN; % don ' t take log (0)!
12 end
13 like = −sum(log(l i));

Paul Schrimpf () Matlab – Optimization and Integration January 14, 2009 25 / 43

Gradient for binChoiceLike()

1 % gradient of l i
2 g i = −(parm.dist.pdf(−xb) * ones(1,length(b))). * data.x;
3 g i(data.y,:) = −g i(data.y,:);
4 % change to gradient of log −like
5 grad = −sum(g i./(l i * ones(1,length(b))),1)';

Paul Schrimpf () Matlab – Optimization and Integration January 14, 2009 26 / 43

Hessian for binChoiceLike()

1 % calculate hessian
2 h i = zeros(length(xb),length(b),length(b));
3 for i=1:length(xb)
4 h i(i,:,:) = (parm.dist.dpdf(−xb(i)) * ...
5 data.x(i,:)' * data.x(i,:)) ...
6 ... % make hessian of log −like
7 / l i(i);
8 end
9 h i(data.y,:,:) = −h i(data.y,:,:);

10 % make hessiane of log −like
11 hess = −(sum(h i,1) − g i ' * (g i./(l i.ˆ2 * ones(1,length(b)))));

Paul Schrimpf () Matlab – Optimization and Integration January 14, 2009 27 / 43

binChoicePlot.m

1 function stop = binChoicePlot(x,optimvalues,state)
2 if (length(x)==2)
3 if (optimvalues.iteration==0)
4 hold off;
5 end
6 grad = optimvalues.gradient;
7 f = optimvalues.fval;
8 plot3(f,x(1),x(2), ' k* ');
9 if (optimvalues.iteration==0)

10 hold on;
11 end
12 quiver3(f,x(1),x(2),0,grad(1),grad(2));
13 drawnow
14 pause(0.5);
15 end
16 stop = false;
17 end

Paul Schrimpf () Matlab – Optimization and Integration January 14, 2009 28 / 43

Numerical Integration

Want:

F (x) =

∫ b

a
f (x)ω(x)dx

Approximate:

F (x) ≈
n∑
i

f (xi)wi

Different methods are different ways to choose n, xi , and wi

Quadrature: choose wi so the approximation is exact for a set of n
basis elements

Monte Carlo: set wi = 1
n , choose xi randomly

Adaptive: refine n, xi , and wi until approximation error is small

Paul Schrimpf () Matlab – Optimization and Integration January 14, 2009 29 / 43

Quadrature

Suppose xi , n are given, need to choose wi

Let {ej(x)} be a basis for the space of functions such that∫ b
a f (x)ω(x)dx < ∞

I
∫ b

a
ej(x)ω(x)dx should be known ∀j

{wi}ni=1 solve

n∑
i=1

wiej(xi) =

∫ b

a
ej(x)ω(x)dx forj = 1..n (4)

Example: Newton-Cotes
I basis = polynomials
I ω(x) = 1
I Resulting rule is exact for all polynomials of degree less than or equal

to n

Paul Schrimpf () Matlab – Optimization and Integration January 14, 2009 30 / 43

Gaussian Quadrature

Now suppose n is given, but we can choose both wi and xi

Same idea, {wi , xi}ni=1 solve

n∑
i=1

wiej(xi) =

∫ b

a
ej(x)ω(x)dx forj = 1..2n − 1 (5)

Exact for functions in the space spanned by {ej}2n−1
j=1

If {ej} is an orthogonal polynomial basis, then {xi}ni=1 will be the
roots of en

Different gaussian quadrature rules correspond to different values of
a, b, and ω(x)

Paul Schrimpf () Matlab – Optimization and Integration January 14, 2009 31 / 43

Common Forms of Gaussian Quadrature

Interval ω(x) Name
[−1, 1] 1 Legendre
(−1, 1) (1− x)α(1 + x)β Jacobi
(−1, 1) 1√

1−x2
Chebyshev (first kind)

[−1, 1]
√

1− x2 Chebyshev (second kind)
[0,∞) e−x Laguerre

(−∞,∞) e−x2
Hermite

Paul Schrimpf () Matlab – Optimization and Integration January 14, 2009 32 / 43

Quadrature in Matlab

Not built in

Many implementations available at the Mathworks file exchange

Great for single dimension integration

Multiple dimension integration is harder
I

∑n
i1

...
∑n

im=1 f (xi1, ..xim)wim..wim works, but needs mn function
evaluations

I More sophisticated methods exist – called cubature, sparse grid, or
complete polynomials – see e.g. Encyclopedia of Cubature Formulas

Paul Schrimpf () Matlab – Optimization and Integration January 14, 2009 33 / 43

http://www.mathworks.com/matlabcentral/fileexchange/loadCategory.do?objectId=16&objectType=Category
http://www.cs.kuleuven.ac.be/~nines/research/ecf/ecf.html

Adaptive Integration

F (x) =

∫ b

a
f (x)ω(x)dx

Idea: subdivide (a, b) into smaller intervals, use simple quadrature
rule on each interval, and repeat until convergence

e.g. trapezoid rule, Simpson’s rule

trapz() , quad() , quadl()

Pro: computes integral to known accuracy

Con: care must be used when part of an objective function
I Makes the objective function discontinuous at points where solution

goes from k to k + 1 subdivisions → integration accuracy must be set
much higher than convergence criteria of optimization

Paul Schrimpf () Matlab – Optimization and Integration January 14, 2009 34 / 43

Monte Carlo Integration

Randomly draw xi from distribution p(x) ∝ ω(x), set
wi = 1

n

∫
ω(x)dx

Many methods for sampling from p(x): inverse cdf, acceptance
sampling, importance sampling, Gibbs sampling, Metropolis-Hastings

Pros: simple to understand, easy to implement, scales well, requires
little a priori knowledge of f (x)

Cons: inefficient – for a fixed n, the right quadrature rule will do
much better

I But when computing something like
∑

i g (
∑

s f (yi , xi,s)ws), errors in
g (

∑
s f (yi , xi,s)ws) for different i can offset one another

Paul Schrimpf () Matlab – Optimization and Integration January 14, 2009 35 / 43

Useful Matlab functions for Monte Carlo Integration

1 x = rand(2,3); % 2 by 3 matrix of x ¬ U[0,1]
2 y = randn(10); % 10 by 10 matrix of y ¬ N(0,1)
3 % more generally
4 t = random(' t ' ,3,2,1); % 2 by 1, t−dist with 3 df
5 % many other distributions possible

Paul Schrimpf () Matlab – Optimization and Integration January 14, 2009 36 / 43

Integration Example

1 clear;
2 % some integration experiments
3

4 % Example 1: E[p(x)], x¬N(0,1), p(x) polynomial
5 degree = 10;
6 p = rand(1,degree+1); % make some polynomial
7 fprintf(' adaptive quad , tol %.1g = %.10g \n' , ...
8 1e−10, quad(@(x) polyval(p,x). * normpdf(x), ...
9 −30,30,1e −10));

Paul Schrimpf () Matlab – Optimization and Integration January 14, 2009 37 / 43

Integration Example

1 fprintf(' gauss−hermite quadrature \n');
2 for n=1:((degree+1)/2+4)
3 % use hermite −− will be exact for n≥(degree +1)/2
4 int = gaussHermite(n);
5 % notice the change of variables
6 ep = polyval(p,int.x * sqrt(2))' * int.w/sqrt(pi);
7 if (n==round((degree+1)/2))
8 fprintf(' −−− the rest should be exact −−−−\n');
9 end

10 fprintf(' n=%2d E[p(x)] = %.10g \n' ,n,ep);
11 end

Paul Schrimpf () Matlab – Optimization and Integration January 14, 2009 38 / 43

Integration Example

1 fprintf(' \n monte carlo integration \n')
2 for n=1:6
3 fprintf(' n=10ˆ%d E[p(x)] = %.10g \n' ,n, ...
4 mean(polyval(p,randn(10ˆn,1))));
5 end

Paul Schrimpf () Matlab – Optimization and Integration January 14, 2009 39 / 43

MCMC

For nonstandard distributions, it is often impossible to sample from
p(x) directly

MCMC constructs a Markov Chain, xt ∼ p(xt |xt−1), with stationary
distribution p(x) and transition kernel, p(xt |xt−1) that can be
sampled from

Very common in Bayesian statistics

Paul Schrimpf () Matlab – Optimization and Integration January 14, 2009 40 / 43

Metropolis-Hastings

General method for constructing a Markov chain

Algorithm to draw from p(x): beginning with some x0

1 Draw y ∼ q(xt , ·)
2 Compute α(xt , y) = p(y)q(y ,xt)

p(xt)q(xt ,y)
3 Draw u ∼ U[0, 1]
4 If u < α(xt , y) set xt+1 = y , otherwise set xt+1 = xt

Choice of candidate density, q, affects behavior of chain
I If q is too disperse, will not accept many draws
I If q is too concentrated, will accept lots of draws, but they’ll be close

together

Example: metropolisHastings.m

Paul Schrimpf () Matlab – Optimization and Integration January 14, 2009 41 / 43

examples/html/metropolisHastings.html

Exercises

1 If you have written any code that involves optimization or integration, try modifying it to use a different method.

2 Modify the dynamic programming code from lecture 1 to allow for a continuous distribution for income. If you are
clever, will be able to evaluate Eṽ(x′, y′) exactly, even if Ev(x′, y′) does not have an analytic solution.

3 We know that value function iteration converges linearly. Gauss-Newton and other quadratic approximation based
method converge at faster rates. Change the dynamic programming code from lecture 1 to use one of these methods
instead of value function iteration.

4 Change the binary choice model into a multinomial choice model. Allow for correlation between the shocks. Try to
preserve the generality of the binary model, but feel free to limit the choice of distribution if it helps.

Paul Schrimpf () Matlab – Optimization and Integration January 14, 2009 42 / 43

More Exercises

1 (hard) I don’t know much about cubature, but I’d like to learn more. Read about a few methods. Find or write some
Matlab code for one of them. Explore the accuracy of the method. To maintain a desired level of accuracy, how does
the number of points grow with the number of dimensions? Compare it monte carlo integration.

2 (hard) Matlab lacks an implementation of an optimization algorithm that uses interpolation in multiple dimensions.
Remedy this situation. Find or develop an algorithm and implement it.

3 (hard, but not as hard) Write a function for computing arbitrary Gaussian quadrature rules with polynomials as a basis.
Given integration limits, a weight function, ω(x), and the number of points, n, your function should return the

integration points and weights. You might want to use the following facts taken from Numerical Recipes . Let

〈f |g〉 =
R b
a f (x)g(x)ω(x)dx denote the inner product. Then the following recurrence relation will construct a set of

orthogonal polynomials:

p−1(x) ≡0

p0(x) ≡1

pj+1(x) =

x −

〈xpj |pj 〉
〈pj |pj 〉

!
x −

〈pj |pj 〉
〈pj−1|pj−1〉

pj−1(x)

Recall that the roots of the n degree polynomial will be the integration points. If you have the roots, {xj}n
j=1. Then

the weights are given by

wj =
〈pn−1|pn−1〉
pn−1(xj)p

′
n(xj)

Paul Schrimpf () Matlab – Optimization and Integration January 14, 2009 43 / 43

http://www.nrbook.com/a/bookcpdf/c4-5.pdf

	Outline
	Optimization
	Uni-Dimensional Optimization
	Multi-Dimensional
	Simple MLE Example

	Integration
	Quadrature
	Adaptive Integration
	Monte Carlo Integration
	Example

