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• Wooldridge problems 10.1, 10.8, 11.8, 12.1, 12.2, 12.5

1 Lagged Dependent Variables

By a model with lagged dependent variables, we mean a regression with the lagged outcome included as an
explanatory variable. The simplest example is:

yt = β0 + β1yt−1 + ut (1)

Sometimes you will hear the warning that if et is serially correlated, then β̂1 is inconsistent. Strictly speaking,
this is true. For consistency, we require that E[yt−1et] = 0 and if et and et−1 are correlated, then this
generally (but not necessarily) will not be true. However, Wooldridge and Prof Angrist both argue that it
usually doesn’t make sense to think of a model with lagged dependent variables as having serially correlated
residuals (and I’d modify this statement to say that you shouldn’t worry about serial correlation leading to
inconsistency, but you should worry about it for your standard errors). This is another version of Josh’s
general point that OLS never gives inconsistent estimates; it may not give you consistent estimates of the
regression you want, but it does give you consistent estimates of the regression you have. Put another
way, OLS always gives you a consistent best linear approximation to the conditional expectation function.
Whether or not the conditional expectation function is what you want depends on context. If you’re interested
in the causal effect of education or military status on earnings, then the conditional expectation function
you can estimate probably isn’t the conditinoal expectation function you want because you can’t observe
ability. However, it turns out that in many time series applications the regression you have is the regression
you want.

To be more concrete about the math of lagged dependent variables, let’s go over the example in Wooldridge
section 12.1. So we estimate a regression that looks like (1),

yt = β0 + β1yt−1 + ut

The question is whether β̂OLS
1 is consistent. The answer depends on what we have in mind. If we are

interested in the best linear approximation to E[yt|yt−1], say yt = β0 + β1yt1 where β1 = COV (yt−1,yt

V (yt)
, then

by construction E[utyt−1] = 0 and OLS is consistent. Note that ut might still be serially correlated, so we
need to fix the standard errors, but at least OLS is consistent. If you are willing to go even further and say
that E[yt|yt−1, yt−2, ...] = E[yt|yt−1]1 and that the CEF is linear, then you can also show that ut is serially
uncorrelated, so OLS standard errors are correct.

The situation when it makes sense to worry about serial correlation causing inconsistency is when you’ve
derived (1) from some economic model so that β0 and β1 have an intrinsic meaning and are not necessarily
coefficients of the best linear approximation to the conditional expectation function. Good examples of this
situation are the (Neo-Keynesian) Philips curve (e.g. Gaĺı and Gertler 1999), models about investment and

1Wooldridge calls this situation – when you’ve included all the variables relevant for the conditional expectation – dynamic
completeness.
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Tobin’s Q (e.g. Blundell et al 1992), and consumption CAPM (e.g. Hansen and Singleton 1982). In these
sort of models it’s natural to think that ut might be serially correlated, and as a result, correlated with yt−1.
For example if ut = ρut−1 +et where et is iid, then E[utyt−1] = ρCOV (yt−1, ut−1) = ρσ2

u

1−βρ 6= 0. In situations
where β0 and β1 have intrinsic meaning as part of an economic model, the solution when you have serially
correlated errors is to use instrumental variables. Ideally, the theory that led to your model will also suggest
potential instruments. Often these instruments are simply older lags of the variables.

However, many time series applications are simply focused on estimating conditional expectation func-
tions. In forecasting, the expectation of yt given the past is the object of interest. Therefore, it doesn’t make
sense to worry about inconsistency due to serially correlated errors when forecasting. Another common sit-
uation in time series where the conditional expectation function is the object of interest is when estimating
vector auto-regressions or VARs. In a VAR we have a handful of variables (say 2) that we’re interested in
the dynamics of. To summarize the dynamics we estimate:

yt =βyy1yt−1 + ... + βyypyt−p + βyx1xt−1 + ... + βyxpxt−p + eyt

xt =βxy1yt−1 + ... + βxypyt−p + βxx1xt−1 + ... + βxxpxt−p + ext

We then look at the estimates of β (or some function of them) either to: (1) gather some stylized facts that
we think we should explain or (2) compare with the qualitative perdictions of some model. Here, we’re not
exactly forecasting, but all we care about is the dynamic behavior of y and x, that is, all we care about it is
E[yt|yt−1, xt−1, ...] and E[xt|yt−1, xt−1, ...]. 2

2Sims (1980) first proposed VARs. A related idea are structural VARs. These try to impose weak restrictions that let us
decompose movements in y and x into changes due to interpretable shocks. The classic example is Blanchard and Quah (1989)
who decompose movements in GDP into those due to short-run (demand) shocks and long-run (productivity) shocks.
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