
14.32 Recitation 2

Paul Schrimpf

February 12, 2009

This recitation will go over the Stata code from lecture 3 in greater detail. This code did two things.

1 Random Numbers and Histograms

The first part generated some random number and drew a histogram. Here is the code:

1 capture l og c l o s e
2 l og us ing ln3 . log , t ex t r ep l a c e
3 c l e a r
4 // draw 5000 random normals and uniforms , then make histograms
5 s e t obs 5000
6 gen rnor = rnormal ()
7 h i s t rnor , bin (20) percent ///
8 s u b t i t l e (”Histogram of Random Normal Draws”)
9 graph export ln3 normHist . eps , r ep l a c e

10 ! epstopdf ln3 normHist . eps
11

12 histogram runi , bin (20) percent ///
13 s u b t i t l e (”Histogram of Random Uniform Draws”)
14 graph export l n 3 un i fH i s t . eps , r ep l a c e
15 ! epstopdf l n 3 un i fH i s t . eps
16 l og c l o s e

Some explanations

• Preceding any command with capture hides its output including any error messages. A do-file will stop
running if it encounters an error. log close closes a log file if there’s one open, and returns an error
otherwise. log using filename. log opens a new log file, unless there’s already one open, in which case
it returns an error. Beginning the do-file with capture log close is convenient when you’re debugging.
If there’s an error in your do-file, it will stop running before it gets to the log close command at the
end. Then after you fix the error and re-run the do file, the first thing you need to do is close the open
log.

• // makes the rest of a line into a comment. You can also enclose comments in /∗ A comment ∗/

• /// extends a command onto the next line. By default commands are separated by new lines

1 #de l im i t ; // means commands end with ; i n s t ead
2 gen run i = uniform () ;
3 h i s t runi , bin (20) percent
4 s u b t i t l e (”Histogram of Random Uniform Draws”) ;
5 #de l im i t cr // change back to commands ending with new l i n e s aka
6 // c a r r a i g e r e tu rn s

1

• ! passes the command to the operating system shell is an alias for !. In general, it’s a good idea to
make your programs require as little user intervention as possible, but sometimes you will need to use
external programs, especially when creating nice looking output. This is when shell can be handy. In
the above code, we use the linux utility epstopdf utility to convert an eps graph to a pdf. For some
reason, Stata can only create pdfs directly on Macs.

• Most Stata commands can be abbreviated – hist and histogram are the same, as are: su, sum, and
summarize ; and gen and generate

2 Histogram of CPS Earnings

The second part of the code drew a histogram of weekly earnings. It uses data from the Current Population
Survey, or CPS. The CPS is a monthly survey conducted by the Bureau of Labor Statistics. The survey was
created to measure unemployment, and each month it asks questions about labor force status. Additionally,
in March each year, the survey asks questions about income. This is the data we will mostly be interested
in. The Integrated Public Use Microdata Series (IPUMS) website provides access to the March CPS. You
can read a brief description of the CPS data hosted at IPUMS at http://cps.ipums.org/cps/intro.shtml.

Before downloading any data, you must register as a user (and agree to “use it for good – never for
evil,” which seems awfully restrictive to me). After registering, there’s a fairly easy to use web interface for
selecting which variables you want. Once you submit your selection, it will create a fixed format txt file
containing the data, and Stata, SAS, and SPSS code for loading the data. The Stata code looks something
like the following:

1 /∗ Important : you need to put the . dat and . do f i l e s in one f o l d e r /
2 d i r e c t o r y and then s e t the working f o l d e r to that f o l d e r . ∗/
3

4 s e t more o f f
5

6 c l e a r
7 i n f i x ///
8 i n t year 1−4 ///
9 long s e r i a l 5−9 ///

10 byte mish 10 ///
11 f l o a t hhwt 11−17 ///
12 us ing pau l s mi t edu 002 . dat
13

14 r ep l a c e hhwt=hhwt/100
15

16 l a b e l var year ”Survey year ”
17 l a b e l var s e r i a l ”Household s e r i a l number”
18 l a b e l var mish ”Month in sample , household l e v e l ”
19 l a b e l var hhwt ”Household weight ”
20

21 l a b e l va lue s year y e a r l b l
22

23 l a b e l va lue s s e r i a l s e r i a l l b l
24

25 l a b e l d e f i n e mi sh lb l 1 ”One”
26 l a b e l d e f i n e mi sh lb l 2 ”Two” , add
27 l a b e l d e f i n e mi sh lb l 3 ”Three” , add
28 l a b e l d e f i n e mi sh lb l 4 ”Four” , add
29 l a b e l d e f i n e mi sh lb l 5 ”Five ” , add

2

http://cps.ipums.org/cps/intro.shtml

30 l a b e l d e f i n e mi sh lb l 6 ” Six ” , add
31 l a b e l d e f i n e mi sh lb l 7 ”Seven” , add
32 l a b e l d e f i n e mi sh lb l 8 ”Eight ” , add
33 l a b e l va lue s mish mish lb l
34

35 l a b e l va lue s hhwt hhwtlbl

• infix is used for reading fixed format data files. A fixed format data file looks like a big block of
numbers, eg:

2008000014005283801552520531060480000000000000000000
2008000014005283802581520890560840000000000000002885
2008000034002939001342520366510331000000000000000800

infix int year 1−4 means that a variable named year will be created by taking the digits in columns
1-4 of the file and storing them as an int.

• label var year ”Survey year” attaches a label to year. This label will be displayed when you use the
describe command. It will also appear in appropriate places on graphs and tables.

• label define mishlbl 1 ”One” creates a value label. When you have a categorical variable coded as an
integer, you can create value labels to keep track of what the numbers mean. The labels will be used
to display results when appropriate, such as with the tabulate command. label values mish mishlbl
attaches the value label mishlbl to the variable mish

To use the IPUMS data, you just run their do-file by typing do email mit edu 001.do (or whatever it’s
called).

The code that actually draws the histograms is:

1 c l e a r
2 s e t mem 500m
3 /∗
4 Data was ext rac t ed from the IPUMS−CPS http :// cps . ipums . org / cps /
5 The f o l l ow i ng v a r i a b l e s are used : age , sex , wkswork1 , incwage
6 ∗/
7 // unzip cps data (only need to do once)
8 // ! gunzip pau l s mi t edu 002 . dat . gz
9 /∗ The IPUMS−CPS prov ides a do− f i l e f o r l oad ing the data

10 and g iv ing v a r i a b l e s n i c e names . ∗/
11 do pau l s mi t edu 002 . do
12

13 gen earnwke = incwage / wkswork1
14 gen earnwkeUncen = earnwke
15 l a b e l var earnwkeUncen ”Weekly wage and sa l a r y ea rn ings (incwage/wksworks1) ”
16 // censor to make histogram look n i c e r
17 r ep l a c e earnwke = . i f earnwke > 4000
18 l a b e l var earnwke ”Weekly wage and sa l a r y ea rn ings ”
19 // keep only men 25−50
20 keep i f sex==1 & age >=25 & age<51
21 // some summary s t a t i s t i c s
22 sum earnwke ∗ , d e t a i l
23

24 h i s t earnwke , bin (20) percent add labe l s ///

3

25 s u b t i t l e (”Histogram of usua l weekly wages −− populat ion d i s t r i b u t i o n ”) ///
26 note (”CPS 2008 , males age 25−50”)
27 graph export ln3 cpsEarn . eps , r ep l a c e
28 ! epstopdf ln3 cpsEarn . eps

By now, most of this code should be pretty clear. I think every command has either already been covered
in these notes, or in Yuqiao’s.

Since there were some questions about it in lecture, let’s see what happens when we censor weekly
earnings at a different value and when we use a different measure of weekly earnings. The above code graphs
usual weekly wages, which are defined as wage income last year divided by weeks worked last year. The CPS
also includes a variable named earnweek. The description of this variable from the IPUMS website is:

EARNWEEK reports how much the respondent usually earned per week at their current job,
before deductions. Interviewers asked directly about total weekly earnings and also collected
information about the usual number of hours worked per week and the hourly rate of pay at
the current job. The figure given in EARNWEEK is the higher of the values derived from these
two sources: 1) the respondent’s answer to the question, “How much do you usually earn per
week at this job before deductions?”; or 2) for workers paid by the hour (and coded as “2” in
PAIDHOUR), the reported number of hours the respondent usually worked at the job, multiplied
by the hourly wage rate given in HOURWAGE.

We should not expect this variable to be exactly the same as our usual weekly wage measure, but it should
be similar. The file exploreEarn.do draws a bunch of histograms to compare the two variables. Some new
commands in this file include:

• pwcorr to compute pairwise correlations

• reg to estimate a regression, we’ll see a lot more of this.

• Using the option name() for graphs to make more than one graph window stay open at a time.

• addplot() to draw plots on top of one another

– This command appears to have a bug (which I spent a couple of hours trying to figure out). Look
at the overlaid histograms with the percent option. It doesn’t look like the sum of both sets of
bars is 100%. Overlaid density histograms look like they might be correct.

3 Sampling from a data set

To draw a sample with replacement from the data in memory, you can use bsample. In lecture, we used it
as a follows:

1 // draw sample o f 1500 , with replacement
2 bsample 1500 i f earnwke !=.

Being simple to use and fast, bsample is the best way to sample with replacement from data. However,
there’s always more than one way to do something. The following commands accomplish the same thing as
bsample 1500

1 // these commands are equ iva l en t to bsample , but s lower and more verbose
2 gen id = n // goes from 1 to n
3 s o r t id
4 t emp f i l e tmp
5 save ‘tmp ’
6 c l e a r

4

7 s e t obs 1500
8 gen id = c e i l (runi form ()∗ N) // sample 1500 i d s with replacement
9 s o r t id

10 merge id us ing ‘tmp ’
11 keep i f merge==3
12 drop merge id

5

	Random Numbers and Histograms
	Histogram of CPS Earnings
	Sampling from a data set

