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1 Review of Asymptotic Normality

Recall the basic asymptotic normality theorem from lecture 3:

Theorem 1. Asymptotic Normality If θ̂
p→ θ0 and

(i) θ0 ∈ int(Θ)

(ii) Q̂(θ) is twice continuously differentiable in a neighborhood, N , of θ0

(iii)
√
n∇Q̂(θ0)

d→N(0,Ω)

(iv) There is J(θ) that is continuous at θ0 and supθ∈N ‖∇2Q̂(θ)− J(θ)‖ p→ 0

(v) J = J(θ0) is nonsingular

then, √
n(θ̂ − θ0)

d→N(0, J−1ΩJ−1)

Make sure that you understand the reasoning behind this result – taking a mean-value expansion of
the first order condition.

1.1 Asymptotic Linearity and Influence Functions

Another way of describing results on asymptotic normality is by considering asymptotically linear esti-
mators and their influence functions. θ̂ is asymptotically linear with influence funtion ψ(z) if:

√
n(θ̂ − θ0) =

∑
ψ(zi)/

√
n+ op(1) (1)

with Eψ(z) = 0 and E[ψ(z)ψ(z)′] < ∞. Most common estimators are asymptotically linear. For
example, MLE has influence function

ψMLE(z) = −H−1∇ ln f(z|θ0)

We probably will not talk about asymptotic linearity or influence functions much in this course. Two
places where influence functions come up are in calculating semi-parametric efficiency bounds, and in
analyzing robustness (to outliers) of estimators.

1.2 Asymptotic Normality of Minimum Distance

In the last recitation we talked about minimum distance estimators, which have the form:

θ̂ = arg min f̂n(θ)′Ŵ f̂n(θ)

GMM and MLE fit into this framework, as well as classical minimum distance (CMD) and indirect
inference. CMD and indirect inference use f̂n(θ) = π̂ − h(θ) where π̂

p→ π0 = h(θ0). Let’s specialize the
generic asymptotic normality theorem to minimum distance. Conditions (i)-(v) above become:
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Theorem 2. Asymptotic Normality for Minimum Distance If θ̂
p→ θ0 and

(i) θ0 ∈ int(Θ)

(ii) f̂n(θ) is continuously differentiable in a neighborhood, N , of θ0

(iii)
√
nf̂n(θ0)

d→N(0,Ω)

• For CMD and indirect inference
√
nf̂(θ0) = (π̂ − π0) + op(1), so it is enough that

√
n(π̂ −

π0)
d→N(0,Ω)

(iv) There is G(θ) that is continuous at θ0 and supθ∈N ‖∇f̂n(θ)−G(θ)‖ p→ 0

• For CMD and indirect inference, ∇f̂n(θ) = ∇h(θ), so it is enough that h(θ) is continuously
differentiable.

(v) Ŵ
p→ W is positive semi-definite and G′WG is nonsingular

then, √
n(θ̂ − θ0)

d→N(0, (G′WG)−1G′WΩWG(G′WG)−1)

Proof. Verify that these conditions are the same as in theorem (1).

The primary difference compared to the basic asymptotic normality theorem is that twice differen-
tiability of the objective function is restated as once differentiability of the distance function.

Example 3. Chamberlain Panel Data: See recitation 1 notes for setup. π are unrestricted OLS coeffi-
cients. h(θ) = IT ⊗β′ + ıTλ

′. We know that OLS is asymptotically normal, so condition (iii) is satisfied.
h() is linear, so conditions (ii) and (iv) hold. Suppose we choose Ŵ = Ω̂−1, where Ω is the usual OLS
estimate of the variance of π. We know that ˆOmega

p→ Ω is positive semi-definite. G′WG will be non-
singular as long as the model is identified. If there are K regressors, and T time periods, then there are
T 2K elements in π. There are K unknowns in β and TK unknowns in λ. Hence, an order condition is
that T ≥ 2.

2 Variance Matrix Estimation

To use results on asymptotic normality for inference, we need to be able to consistently estimate the
asymptotic variance matrix. The Hessian term, H, for MLE and Jacobian, G, for GMM can simply be
estimated by evaluating the derivative of the sample objective function at θ̂. Estimation of the middle
term, the variance of the gradient, depends on whether there is dependence in the data. For iid data,
Ω = E[∇q̂i(θ0)∇q̂i(θ0)′], which when Q(θ) =

∑
qi(θ), can be estimated by

Ω̂ =
1
n

∑
∇q̂i(θ̂)∇q̂i(θ̂)′

Lemma 4.3 from Newey and McFadden gives precise conditions for when Ω̂
p→ Ω

Lemma 4. Newey and McFadden Lemma 4.3 If zi is iid, a(z, θ) is continuous at θ0 and there is a neigh-
borhood, N , of θ0, such that E

[
supθ∈θ0

‖a(z, θ)‖
]
<∞, then for any θ̃

p→ θ0, we have 1
n

∑
a(zi, θ̃)

p→ E[a(z, θ0)].

When the data is not iid, Ω 6= E[∇q̂i(θ0)∇q̂i(θ0)′], and some other estimator must be used. The same
ideas that apply to OLS apply here. For example, if there is clustering, then

Ω̂ =
1
C

∑
c

1
nc

∑
i

∑
j

∇q̂i(θ̂)∇q̂j(θ̂)′

is a consistent estimator for Ω. If there is serial correlation, then Newey-West or some similar estimator
can be used. You can learn more about this time series if you want.
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2.1 GMM

The above remarks apply to GMM with g(zi, θ) in place of ∇q̂i(θ).

2.2 MLE

For MLE, we know that √
n(θ̂ − θ0)

d→N(0,H−1ΩH−1)

where H = E[∇2 ln f(z|θ)] and Ω = E[∇ ln f(z|θ)∇ ln f(z|θ)′]. In lecture 4, we saw that when the
likelihood is correctly specified the information equality holds, Ω = H−1. This suggests the following
estimators for the asymptotic variance:

• Hessian: Ĥ−1 =
(

1
n

∑ ∂2 ln fi

∂θ∂θ′ |θ=θ̂

)−1

– In principle, when doing conditional MLE you can also use the expected conditional hessian:

ĤE =
1
n

∑
E

[
∂2 ln f(yi|xi, θ̂)

∂θ∂θ′
|xi

]

but it is often difficult to compute this expectation

• Outer product of gradients: ˆOmega = 1
n

∑
∇ ln f(z|θ̂)∇ ln f(z|θ̂)′

• Sandwich: Ĥ−1Ω̂Ĥ−1

– Could use ĤE in place of Ĥ

– Since this estimator does not use the information equality, it is consistent even if the likelihood
is misspecified (as long as θ̂ remains consistent)

3 Hypothesis Testing

Suppose we want to test a hypothesis of the form:

H0 : r(θ) = 0

where r : Rk → Rq is differentiable. First we will discuss the familiar likelihood setup, then we will
talk about testing in GMM. Before discussing these test statistics, it will be useful to review the delta
method and to derive the asymptotic distribution of a constrained extremum estimator.

Delta Method Suppose
√
n(θ̂−θ0)

d→N(0, V ). Let f(θ) be continuously differentiable. Then
√
n(f(θ̂)−

f(θ0))
d→N(0, f ′(θ0)V f ′(θ0)′).

Asymptotic Normality of Constrained Estimators Suppose θ̂ solves:

θ̂ = arg minQ(θ) s.t. r(θ) = 0

The first order condition for this problem is:

0 =
(
∇Q(θ̂R) + λr′(θ̂R)

r(θ̂R)

)
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Expanding around θ0 and λ0 = 0 gives:

0 =
(
∇Q(θ0) + λ0r

′(θ0)
r(θ0)

)
+

(
θ̂R − θ0
λ̂− λ0

) (
∇2Q(θ̄) r′(θ̄)′

r′(θ̄) r(θ0)

)
√
n

(
θ̂R − θ0

λ̂

)
=

(
∇2Q(θ̄) r′(θ̄)′

r′(θ̄) 0

)−1 (
∇Q(θ0)

0

)
=
√
n

(
(∇2Q)−1 − (∇2Q)−1R̄′(R̄(∇2Q)−1R̄′)−1R̄(∇2Q)−1 (∇2Q)−1R̄′(R̄(∇2Q)−1R̄′)−1

(R̄(∇2Q)−1R̄′)−1R̄(∇2Q)−1 −(R̄(∇2Q)−1R̄′)−1

) (
∇Q(θ0)

0

)
=

((
(∇2Q)−1 − (∇2Q)−1R̄′(R̄(∇2Q)−1R̄′)−1R̄(∇2Q)−1

)
(
√
n∇Q(θ0))

(R̄(∇2Q)−1R̄′)−1R̄(∇2Q)−1(
√
n∇Q(θ0))

)
where R̄ = r′(θ̄). This gives us the following conclusions:

Theorem 5. Under the conditions of theorem 1 andj r(θ) is continuously differentiable in a neighborhood
of θ0, we have:

√
n(θ̂R − θ0) =

(
J−1 − J−1R′(RJ−1R′)−1RJ−1

)
(
√
n∇Q(θ0)) + op(1) (2)

√
nλ̂ =(RJ−1R′)−1RJ−1(

√
n∇Q(θ0)) + op(1) (3)

√
n(θ̂ − θ0) =J−1(

√
n∇Q(θ0)) + op(1) (4)

√
n(θ̂ − θ̂R) =J−1R′(RJ−1R′)−1RJ−1(

√
n∇Q(θ0)) + op(1) (5)

√
n∇Q(θ̂R) =−R′(RJ−1R′)−1RJ−1(

√
n∇Q(θ0)) + op(1) (6)

Proof. (2) and (3) are direct consequences of the previous reasoning. (4) comes from theorem 1. (5) is
simply the difference of (2) and (4). (6) comes from pluggin (3) into the first order condition.

This theorem tells us the asymptotic variance of various quantities that will be used in our test
statistics. For example from (5), we know that

√
n(θ̂ − θ̂R) d→N

(
0, J−1R′(RJ−1R′)−1RJ−1ΩJ−1R′(RJ−1R′)−1RJ−1

)
3.1 ML Testing

When doing MLE, we have the usual trinity of tests: Wald, Lagrange multiplier, and likelihood-ratio.
Throughout we will write Avar(θ̂) to denote the asymptotic variance of θ̂. It should be straightforward
to calculate using theorem 5. Each statistic can be thought of as a measure of the difference between
the restricted and unrestricted objective functions. The Likelihood ratio uses the actual difference. The
Wald statistic uses a quadratic expansion at the unrestricted estimate, θ̂, to approximate the restricted
objective value. The Lagrange multiplier uses a quadratic expansion at the restricted estimate, θ̂R, to
approximate the unrestricted objective value.

3.1.1 Wald

Wald test statistics look at the distance between θ or r(θ) in the restricted and unrestricted models. One
version of the Wald statistic is motivated by asking whether r(θ̂) = 0? It uses the test statistic:

W1 =nr(θ̂)′AV ar(r(θ̂))−1r(θ̂)
(delta method) (7)

=nr(θ̂)′(r′(θ̂)AV ar(θ̂)r′(θ̂))−1r(θ̂) d→χ2
q (8)

Another variant of the Wald test looks at the distance between restricted and unrestricted estimates
of θ:

W2 =n(θ̂ − θ̂R)′(Avar(θ̂ − θ̂R))−1(θ̂ − θ̂R) d→X2
q (9)
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3.1.2 Lagrange Multiplier

The Lagrange multiplier test is based on the fact that under H0, the Lagrange multiplier of the restricted
optimization problem should be near 0. The first order condition from the restricted ML is:

1
n

∑
∇ ln f(z|θ̂R) = λ̂r′(θ̂R)

which suggests the test statistic:

LM1 =
1
n

(∑
∇ ln f(z|θ̂R)

)′
Avar(∇ ln f(z|θ̂R))−1

(∑
∇ ln f(z|θ̂R)

)
d→χ2

q

Equivalently, we could look at the estimated Lagrange Multiplier,

LM2 = nλ̂′Avar(λ̂)−1λ̂

3.1.3 Likelihood Ratio

The Likelihood ratio statistic compares the restricted and unrestricted likelihoods.

LR = 2(LN (θ̂)− LN (θ̂R)) d→χ2
q

To prove this, expand LN (θ̂R) around LN (θ̂):

LR =2(LN (θ̂)− LN (θ̂R))

=2
(
LN (θ̂)− LN (θ̂)−∇LN (θ̂)(θ̂ − θ̂R)− (θ̂ − θ̂R)′∇2LN (θ̄)(θ̂ − θ̂R)

)
=(θ̂ − θ̂R)′∇2LN (θ̄)(θ̂ − θ̂R)

3.2 GMM

The same three test types of test stastistics work for GMM. The Wald and Lagrange Multiplier statistics
are particularly identical to the ML case. The likelihood ratio statistic is replaced by the distance metric:

DM = 2n(Qn(θ̂)−Qn(θ̂R))
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