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1 PS1 Solutions

see website.

2 Mixed Logit Models

Lecture 4 covered a handful of multinomial choice models. We talked about multinomial logit, nested
logit, and multinomial probit. For more information on these and related models, see Kenneth Train’s
freely available book on discrete choice methods. It can be found at http://elsa.berkeley.edu/books/
choice2.html.

One of the most popular models of discrete choice is the mixed logit, or logit with random coefficients
model. In this model, the utility for person i from choice j is:

Uij = xijβi + εij

where εij is iid extreme value and βi has pdf f(β|θ) and θ are some parameters to be estimated. This
type of model is very popular in IO. A typical application might look at the demand for different brands
of a product. The choices indexed by j are different brands. xij are the characteristics of each brand.
βi are consumers’ heterogeneous tastes for various characteristics.

A person chooses k if Uik ≥ Uij for all j. The probability of choosing k is then:

P (k|x) =
∫

exikβ∑
j e
xijβ

dF (β; θ)

This integral is typically computed through simulation.

P̃ (k|x) =
R∑
r=1

exikβr(θ)∑
j e
xijβr(θ)

where {βr(θ)} are R indenpendent draws from f(β|θ). P̃ (k|x) can be used to form a simulated method
of moments, or simulated maximum likelihood objective function.

3 Asymptotics of Simulated Estimators

This is a quick and dirty discussion of the asymptotics of simulated extremum estimators. See Train’s
book and the references therein for more details and rigor.

Let Qn(θ) denote the exact objective function. Let Q̃n(θ) denote the simulated objective function.
Assume that θ̂ = arg minQn(θ) is consistent and asymptotically normal. We want to understand the
behavior of θ̃ = arg min Q̃n(θ). For specificity, assume that in simulating, we make R draws for each
observation, and these draws are independent across observations.
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3.1 Consistency

For consistency, the key condition to check is that Q̃(θ) = plim Q̃n(θ) is uniquely minimized at θ0.
Consider the first order condition:

∇Q̃n(θ) =∇Qn(θ) +
(
Er(∇Q̃n(θ))−∇Qn(θ)

)
+
(
∇Q̃n(θ)− Er(∇Q̃n(θ))

)
where Er denotes an expectation taken over our simulated draws. If we can show that the second and
third terms on the right vanish as n→∞, then we will have consistency. The third term is easy. Since
we are making R independent draws for each observation, as long as R is fixed or increasing with N ,
∇Q̃n(θ) satisfies an LLN and converges to its expectation. The second term depends on how we are
simulating. If R increases with N , then it also vanishes because of an LLN. Furthermore, even if R is
fixed with N , it will be zero, if our simulations result in an unbiased estimate of the gradient. In the
mixed logit example above, the simulation of choice probabilities is unbiased. Therefore, NLLS, for which
the first order condition is linear in P̃ , is consistent with fixed R. However, MLE, for which the first
order condition involves 1

P̃
, is consistent only if R increases with N . For this reason, people sometimes

suggest using the method of simulated scores (MSS) instead of MSL. MSS call for simulated the score
in an unbiased way and doing GMM on the simulated score.

3.2 Asymptotic Normality

As always, we start by taking an expansion of the first order condition:
√
n(θ̃ − θ0) =(∇2Q̃n(θ̄))−1(

√
n∇Q̃n(θ0))

If θ̃ is consistent, then (∇2Q̃n(θ̄))−1 p→ (∇2EQ̃(θ0))−1. The main thing to worry about is the behavior
of the gradient. As above, it helps to break it into three pieces:

√
n∇Q̃n(θ0) =

√
n∇Qn(θ) +

√
n
(
Er(∇Q̃n(θ))−∇Qn(θ)

)
+
√
n
(
∇Q̃n(θ)− Er(∇Q̃n(θ))

)
Let’s start with the third term. Suppose we have iid observations so that ∇Q̃n =

∑n
i=1∇q̃i,R. Let S be

the variance of ∇q̃i,1. Then the variance of ∇q̃i,R is S/R, and

√
n
(
∇Q̃n(θ)− Er(∇Q̃n(θ))

)
d→N(0, S/R)

Now, on to the second term. As above, it is zero if our simulations are unbiased. If our simulations are
biased, then it is O( 1

R ). If R is fixed, then our estimator is inconsistent. If
√
n
R → 0, then this term

vanishes, and our estimator has the same asymptotic distribution as when using the exact objective
function. If R grows with n, but slower that

√
n, then θ̃ is consistent, but not asymptotically normal.

4 Selection Models

Suppose you have an outcome, y, that is a linear function of some regressors, x,

y = xβ + ε (1)

but you do not observe y for the entire population, instead you only observed y if

zγ − ν > 0 (2)

where ν and ε are potentially correlated. Assume that ν and ε are independent of x and z. Estimating
(1) by OLS using only the observations with y observed will be inconsistent because when ν and ε are
correlated, E[xε|zγ > ν] 6= 0 even though E[xε = 0]. However, if we knew E[ε|zγ > ν] then we could do
OLS on:

y = xβ + E[ε|zγ > ν] + e (3)
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to consistently estimate β. In lecture 5 and problem set 2, we saw that if ν and ε are jointly normal this
conditional expecation is given by the inverse mills ratio, E[ε|zγ > ν] = φ(zγ)

Φ(zγ) . What if ν and ε are not
normal? It is always true that:

E[ε|zγ > ν] =
1

Fν(zγ)

∫ zγ

−∞
pν|z(ν|z)

∫
pε|ν,z(ε|ν, z)dεdν

independence

=
1

Fν(zγ)

∫ F−1
ν Fν(zγ)

−∞
pν(ν)

∫
pε|ν(ε|ν)dεdν

=K(Fν(zγ)

the conditional expectation of ε is just some function of the probability of being included in the sample.
This suggests that we can estimate the model semiparametrically by:

1. Specify a distribution for ν, estimate γ by ML

2. Run OLS of y on x and a polynomial of powers of Fν(zγ̂)

This procedure is semiparametric in the sense that it leaves the distribution of ε unspecified. We will
learn more about semiparametric estimation later. For this model, it is possible to be even more flexible.
You can also leave the distribution of ν unspecified, replace zγ with just some unknown function, g(z),
and repalce xβ with some other unknown function, µ(x).

In general, the above procedure, where an unobserved disturbance is replaced by its conditional
expectation, is called the control function approach. The conditional expectation is a “control function”
that controls for endogeneity. As briefly mentioned in 382, 2SLS has a control function interpretation.

4.1 Extremum Estimator Computation

Problem set 2 asks some questions about how extremum estimators are computed. To answer these it
helps to know a little bit about numerical optimization algorithms. Raymond Guiteras wrote some nice
notes on MLE. These notes can be found on the course website. I have some slides about optimization in
Matlab at http://web.mit.edu/~paul_s/www/14.170/matlab.html. Train’s book has a nice chapter
on maximization. http://elsa.berkeley.edu/books/choice2.html
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