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1 Inference

This section goes over the asymptotic behavior of quantile regression. It is based on Koenker (2005).

1.1 Setup

Let {Yi} be independent random variables with distributions {Fi}. Suppose that the τth quantile of Yi

given xi is linear in x:

QYi
(τ |xi) = x′iβ(τ) (1)

By definition, we have

F−1
i (τ |xi) = QYi

(τ |xi) ≡ ξi(τ) (2)

We will consider the behavior of the quantile regression estimator:

β̂n(τ) = arg min
b∈<p

∑
ρτ (yi − x′ib) (3)

where ρτ (u) = u (τ − 1(u < 0)) is the check function.

1.2 Asymptotic Distribution

Assume:

A1 {Fi} are uniformly continuous with fi(ξ) uniformly bounded away from 0 and ∞ at {ξi(τ)}.

A2 There exist positive definite D0 and D1(τ) such that

(a) limn→∞ n−1
∑
xix

′
i = D0

(b) limn→∞ n−1
∑
fi(ξi(τ))xix

′
i = D1(τ)

(c) max ||xi||/
√
n→ 0

Theorem 1 (Asymptotic Normality). Under these assumptions,

√
n

(
β̂n(τ)− β(τ)

)
d→N

(
0, τ(1− τ)D1(τ)−1D0D1(τ)−1

)
Proof. We show this result by finding the limit distribution of the objective function. Convexity then
implies that the limit distribution of the estimator is the distribution of the minimizer limiting objective
function.

Rewrite the objetive function as:

Qn(β̂n(τ)) =
∑

ρτ (yi − x′iβ̂n(τ)) (4)

=
∑

ρτ (yi − x′iβ(τ)− x′i(
√
n(β̂n(τ)− β(τ)))/

√
n (5)
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Let ui = yi−x′iβ(τ) and δ =
√
n(β̂n(τ)−β(τ)). We can add a constant to the objetive function without

changing our estimator. Consider

Zn(δ) =
∑

ρτ (ui − x′iδ/
√
n)− ρτ (ui) (6)

As in Knight (1998), consider the identity:

ρτ (u− v)− ρτ (u) = −vψτ (u) +
∫ v

0

(1(u ≤ s)− 1(u ≤ 0))ds (7)

where ψτ (u) = τ − 1(u < 0)1 Using this identity, we can rewrite () as:

Zn(δ) =−
∑

x′iδ/
√
nψτ (ui) +

∑ ∫ x′
iδ/
√

n

0

1(ui ≤ s)− 1(ui ≤ 0)ds (8)

We can deal with these two terms separately. Let Z1n(δ) = −
∑
x′iδ/

√
nψτ (ui) and Z2n(δ) =

∑∫ x′
iδ/
√

n

0
1(ui ≤

s)− 1(ui ≤ 0)ds.
A standard CLT applies to Z1n(δ). It is a sum of independent terms with expectation 0 (because

E[ψτ (u)|xi] = 0) and variance

E[x′iδψτ (ui)2δ′xi] =E[x′iδE[ψτ (ui)2|xi]δ′xi]
=τ(1− τ)δ′E[x′ixi]δ (9)

so,

Z1n(δ) −δ′W where W ∼ N(0, τ(1− τ)D0) (10)

Now, let Z2ni(δ) =
∫ x′

iδ/
√

n

0
1(ui ≤ s)− 1(ui ≤ 0)ds. Note that P (ui < s) = Fi(ξi + s) (ui < s means

that the difference between yi and its τth quantile is less than s, i.e. yi−ξi < s or yi < ξi +s). Therefore,

∑
EZ2ni(δ) =

∑ ∫ x′
iδ/
√

n

0

Fi(ξi + s)− Fi(ξi)ds

=
1
n

∑ ∫ x′
iδ

0

√
n

(
Fi(ξi + t/

√
n)− Fi(ξi)

)
dt

=
1
n

∑ ∫ x′
iδ

0

fi(ξi)tdt+ o(1)

=
1
2n

∑
fi(ξi)δ′xix

′
iδ + o(1) (11)

→1
2
δ′D1(τ)δ (12)

Furthermore, the variance of (Z2n(δ)) is bounded by:

V (Z2n(δ)) ≤ 1√
n

max
i
|x′iδ|

∑
EZ2ni(δ) (13)

1This identity is easily verified by plugging in the definitions of the various functions. Begin with the right side:

−vψτ (u) +

Z v

0
(1(u ≤ s)− 1(u ≤ 0))ds =− v(τ − 1(u < 0))− v1(u < 0) +

Z v

0
1(u ≤ s)ds

=− vτ +

8>>><>>>:
v u < 0, v > u

0 u < 0, v < u

(v − u) u > 0, v > u

0 u > 0, v < u

=− vτ + (v − u)1(v > u) + u1(u < 0)

=(u− v)(τ − 1(u− v < 0))− u(τ − 1(u < 0))

=ρτ (u− v)− ρτ (u)
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By assumption 0c, V (Z2n(δ)) → 0, so Z2n(δ)
p→ EZ2n(δ) and we can conlude that

Zn(δ) Z0(δ) = −δ′W +
1
2
δ′D1δ (14)

Finally, we obtain a limiting distribution for β̂(τ) by noting that (ignoring some details)
√
n(β̂(τ)− β(τ)) =δ̂n = arg minZn(δ)

 arg minZ0(δ) = δ̂0 = D−1
1 W ∼ N

(
0, D−1

1 D0D
−1
1 τ(1− τ)

)
(15)

1.3 Inference in Practice

We can apply the above result to perform Wald or t-tests. The primary difficulty is that we must estimate
the inverse of the conditional density (aka the sparsity) at the τth quantile, fi(ξi(τ))−1 = s(τ). One
option would be to use a standard kernel density estimator. Powell suggested using

D̂1(τ)
1
nhn

∑
K(ûi(τ)/hn)xix

′
i

Another approach recognizes that d
dtF

−1(t|x) = x′ d
dtβ(t) = s(t). Then we can use, e.g. (as in Siddiqui

(1960))

ŝn(t) =
x′(β̂(t+ hn)− β̂(t− hn))

2hn

where hn → 0 as n→∞. More complicated ways of approximating the derivative are also possible.

Bootstrap To avoid having to estimate the sparsity function, one can also use the bootstrap for
inference. Note that if we do not estimate the sparsity function, we will be bootstrapping a statistic that
is not asymptotically pivotal. This has led to a number of papers about variants of the bootstrap and
their rates. The residual bootstrap converges slower than standard asymptotic distribution. Smoothed
variants of the bootstrap do as well as the standard asymptotic distribution. Another approach based
on resampling of the subgradient condition has attractive computational properties, especially for non-
convex problems such as censored quantile regression. See Koenker (2005) for more information.

Rank Based FIXME: rank based inference

Inference on β(·) Some interesting hypotheses depend on the entire function β(·) instead of just
β(τ) at some fixed τ . For example, we might want to test whether x has an effect at any quantile,
H0 : β(τ) = 0∀τ , or whether x has a constant effect, H0 : β(τ) = β(0.5)∀τ . To test hypotheses of this
form, we need to derive the limit distribution of

√
n(hatβ(τ) − β(τ)) veiwed as a function of τ . From

the result above we know that for a finite set of points,
√
nD

−1/2
0 D1

β̂(τ1)− β(τ1)
...

β̂(τk)− β(τk)

, is asymptotically

normal with variances τj(1− τj) and covariances given by:

Eψτj
(ui)ψτk

(ui) =E [(τj − 1(yi − xβ(τj) ≤ 0))(τk − 1(yi − xβ(τk) ≤ 0))]
=(τj ∧ τk)− τjτk

In fact, this convergence is true for all τ .
√
nD

−1/2
0 D1(hatβ(τ)− β(τ)) converges to a random function,

ν(τ), which is normally distributed at any finite set of points with the variance above. This sort of
random function is called a Brownian bridge. The sense in which this convergence occurs is called
weak convergence, and is often denoted by  or ⇒. One definition of weak convergence is that for
all bound continuous functions, f : T → R (where T is the space in which ν(·) lies. In this case,
T = {g : [ε, 1−ε] → <k, g continuous} with the `∞ metric), Ef(

√
nD

−1/2
0 D1(hatβ(·)−β(·))) → Ef(ν(·)).
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In fact, we already relied on this sort of convergence when we said the limit distribution of β̂(τ) is
the distribution of the minimum of the limiting objective function. For the problem at hand, weak
convergence implies that

sup
τ
n(β̂(τ)− β(τ))′D′1D

−1
0 D1(β̂(τ)− β(τ)) d→ sup

τ
ν(τ)′ν(τ)

The distribution of the later can be simulated to obtain critical values. This result can be used to test
the hypothesis of no effect, H0 : β(τ) = 0∀τ . Testing the hypothesis of constant effect is slightly more
complicated since it involves the value of the constant effect as a nuisance parameter.

2 Applications and Extensions

2.1 Decomposition of Distribution Changes

One popular application of quantile regression has been the analysis of the change in inequality. During
the 80s and 90s, income inequality increased in the US and much of the rest of the world. Labor
economists have been interested in the mechanism through which this happened. One way of thinking
about the increase in inequality is to try to break it into (1) changes in the observed distribution of
characteristics, (2) changes in the prices of worker characteristics, and (3) residual changes. If I recall
correctly, Katz and Murphy (1992?) were the first to consider this sort of decomposition, but they had a
rather crude and ad-hoc method. DiNardo, Fortin, and, Lemieux (1996?) proposed a more complicated
method based on kernel reweighting. Autor, Katz, and Kearney (2008) use a similar method. Machado
and Mata (2005) use quantile regression to perform the decomposition. In a quantile regression,

yit = xitβt(τ)

xit are the observed characteristics, βt are the prices, and τ captures residual changes. For each year, t,
we can estimate βt(τ). We can use these estimates to simulate what yit would have been had x’s been
distributed as in year s,

ŷit|s = xisβ̂t(τ)

We can seperate out residual inequality by looking at the distribution of

ûit|s = ŷit|s − E[ŷit|s|xis] = xis(β̂t(τ)− β̂1/2(τ))

Angrist, Chernozhukov, and Fernandez-Val (2006) is, in part, about how to interpret this sort of quantile
regression if the true conditional quantile is not linear. A main result is that the xβ(τ) minimizes a
weighted squared difference from the true conditional quantile function. Victor also has a recent paper
with Fernandez-Val and Melly about how to do inference on counterfactual distributions estimated in
this way.

2.2 Selection

Consider the selection discussed in recitation 3, you have an outcome, y, that is a function of some
regressors, x,

y = µ(x) + ε (16)

but you do not observe y for the entire population, instead you only observed y if

g(z)− ν > 0 (17)

where ν and ε are potentially correlated. Assume that ν and ε are independent of x and z. We stated that
it is possible to identify this model without making any parametric assumptions about the distribution
of ν and ε. The key to showing identification is to assume that there is a set of values of z, Z∞ that
occur with positive probability such that P (g(z) > ν|z ∈ Z∞) = 1. In this set, there is no selection
problem since the fact that z ∈ Z∞ and y is observed tells us nothing about the value of ν. This means
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that µ(x) could be consistently estimated by standard methods using just the observations with z ∈ Z∞.
Given µ(x), the rest of the parameters are easy to identify.

This sort of identification argument is often referred to identification at infinity because it relies on
pushing z off to an extreme value. It is a fairly common method of proving identification. Unfortunately,
at least for selection models, it is quite fragile. If there is no z with P (g(z) > ν) = 1, then identification
completely breaks down and there is no finite bound on µ(x). In practice this means that estimating the
model nonparametrically can be very sensitive to the exact choice of method.

Manski (1989) pointed out that though we cannot bound the conditional mean of y, we can always
bound the conditional distribution. We can write the conditional distribution of y given x as:

F (y|x) = F (y|x, z = 1)P (z = 1|x) + F (y|x, z = 0)P (z = 0|x)

The only unobserved part of the right side of the equation is F (y|x, z = 0). Without some assumptions,
all we know about F (y|x, z = 0) is that it is between 0 and 1. This suggests the following bound on the
conditional distribution of y given x:

F (y|x, z = 1)P (z = 1|x) ≤ F (y|x) ≤ F (y|x, z = 1)P (z = 1|x) + P (z = 0|x) (18)

We can invert these bounds on the distribution function to obtain a bound on the conditional quantile
function of y. I first heard about this idea in some lecture notes by Koenker that Victor showed. I don’t
think anyone has actually implemented it. The lower bound, Q0(τ |x) solves:

τ =F (Q0|x, z = 1)P (z = 1|x) + P (z = 0|x)
τ − P (z = 0|x)
P (z = 1|x)

=F (Q0|x, z = 1)

Q0(τ |x) =

{
QY

(
τ−P (z=0|x)

P (z=1|x) |x, z = 1
)

if τ ≥ P (z = 0|x)
y otherwise

(19)

where y is the smallest possible value of y (possibly −∞). Similarly, the upper bound is

Q1(τ |x) =

{
QY

(
τ

P (z=1|x) |x, z = 1
)

if τ ≤ P (z = 1|x)
y otherwise

(20)
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