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1 Running Quantile Regression

In problem set 3, you are asked to reproduce some quantile regression results. I recommend using R and
following the steps described in Koenker’s vignette www.econ.uiuc.edu/~roger/research/rq/vig.pdf.
The paper has the exact commands you need to run to answer question 2 on the problem set.

2 Duration Models

Problem set 3 has a question about duration models. A bit of background should help you appreciate
the question more.

2.1 Proportional Hazard Models

At first, people primarily used proportional hazard models to analyze duration data. These models
specify that the distribution of failures conditional on x is

G(t, x) = 1− exp(−φ(x)z(t))

where t is failure time and x are some observed covariates. z(t) is an increasing function called the
integrated hazard. φ(x) > 0 is often just e−xβ. The hazard rate is defined as the probability of of failing
at time t given survival until time t. Mathematically,

h(t, x) = lim
∆→0

G(t+ ∆, x)−G(t, x)
G(t, x)∆

For proportional hazard models, this is:

h(t, x) = lim
∆→0

1− eφ(x)(z(t+∆)−z(t)

∆
=φ(x)z′(t) ≡ φ(x)λ(t)

so, φ(x) shifts the hazard rate proportionally. thus, the name, “proportional hazard model.” λ(t) is
called the baseline hazard function. We can also write the model as

log z(t) = − log φ(x) + u (1)

where u has a type I extreme value distribution, (Fu(x) = exp(−e−x)). To see this note that

P (t ≤ T |x) =P (u ≤ log(z(t)) + log(φ(x)))
= exp−φ(x)z(t)

just as above.
In applications, people often specify parametric forms for φ(x) and λ(t). Typically, φ(x) = e−xβ .

Common choices for λ(t) include exponential, λ(t) = λ is constant, Weibull, λ(t) = λp(λt)p−1, and Gom-
pertz, λ(t) = exp(λt). The Cox proportional hazard model makes no assumption about the functional
form of λ(t).
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2.2 Mixed Proportional Hazard Models

Even the Cox proportional hazard model is quite restrictive. In econometrics we are always concerned
about unobserved heterogeneity. Here, we might be willing to assume that conditional on individual
characteristics, individuals’ hazard rates are proportional to one another, but we probably do not want
to assume that we observe all relevant characteristics. This leads us to consider the mixed proportional
hazard model. Suppose individual i’s hazard rate is

hi(t, x) = φ(xi)λ(t)αi

where αi is independent of xi. αi is referred to as either frailty or simply unobserved heterogeneity.
Mixed proportional hazard models are identified under fairly general conditions. Elbers and Ridder

(1982) show that in a mixed proportional hazard model with a regressor that takes at least two values,
both the distribution of unobserved heterogeneity and baseline hazard are nonparametrically identified.
Heckman and Singer (1984b) show a similar result, but instead of assuming that α has a finite mean,
they make an assumption about the tail behavior of α. Ridder (1990) discusses the relationship between
these two assumptions.

With censoring, these results cannot be applied directly. Nonetheless, they suggest that the model
can be identified under fairly weak parametric assumptions. For concreteness, we state a slightly modified
version of the main theorem of Elbers and Ridder (1982) that allows for censoring.

Theorem 1. Suppose that the distribution of failure times conditional on x is given by:

G(t, x) = 1−
∫ ∞

0

exp(−φ(x)z(t)α)dFα(α)

Assume that:

1. E[α] <∞

2. z(t) is an integrated hazard function, z(t) =
∫ t

0
λ(s)ds for some non-negative function λ()

3. φ(x) is not constant

Then observing G(t, x) for t ∈ [0, T ] uniquely determines φ(x), z(t) on [0, T ], and the Laplace transform
of α, Lα on [0,maxx∈X φ(x)z(T )] up to the normalizations φ(x0) = 1 and E[α] = 1.

This is a trivial generalization of Elbers and Ridder (1982), and the proof is identical to theirs. I
wrote this proof awhile ago because it was related to something I was working on. You can safely skip
it for this class.

Proof. Let G(t, x0) and G(t, x1) be the observed distributions of failure times at two values of x with
φ(x0) 6= φ(x1). Without loss of generality, let 1 = φ(x0) > φ(x1). Suppose (z(t),Lα, φ(x)) is observa-
tionally equivalent to (z̃(t), L̃α, φ̃(x)) that is,

1−G(t, x0) =
∫ ∞

0

exp(−αz(t))dFα(α) = Lα(z(t)) = L̃α(z̃(t))

1−G(t, x1) =Lα(φ(x1)z(t)) = L̃α(φ̃(x1)z̃(t)) (2)

for t ∈ [0, T ]. We will show that this implies that φ(x) = φ̃(x), z(t) = z̃(t) on [0, T ], and Lα(z) = L̃α(z)
for z ∈ [0,maxx∈X φ(x)z(T )].

Laplace transforms are invertible, so we may rearrange (2) to obtain:

φ̃(x1)z̃(t) = L̃−1
α (Lα(φ(x1)z(t))) = φ̃(x1)L̃−1

α (Lα(z(t))) (3)

Let f(s) = L̃−1
α (Lα(s)). For any Laplace transform, L, it is true that L(0) = 1, L−1(1) = 0, L(∞) = 0,

and L−1(0) =∞, so f(0) = 0 and lims→∞ f(s) =∞. Moreoever, f ′(s) = L′
α(s)

L̃′
α(f(s))

, and lims→0+ f ′(s) =
L′
α(0)

L̃′
α(0)

= E[α]
E[α̃] = 1. We will use this fact shortly. Rewriting (3) in terms of f gives:

f (φ(x1)s) = φ̃(x1)f(s) ∀ s ∈ [0, z(T )] (4)
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Let s ∈ [0, z(T )], and take s′ = φ(x1)s. Since φ(x1) < 1, s′ ∈ [0, z(T )]. Then (5) implies

f
(
φ(x1)2s

)
= φ̃(x1)2f(s) ∀ s ∈ [0, z(T )] (5)

And by repeating, we have:

f (φ(x1)ns) = φ̃(x1)nf(s) ∀ s ∈ [0, z(T )]

Differentiating gives:

f ′(s) =
(
φ(x1)n

φ̃(x1)

)n
f ′ (φ(x1)ns) (6)

Letting n→∞,

f ′(s) = lim
r→0+

f ′(r) lim
n→∞

(
φ(x1)n

φ̃(x1)

)n
= lim
n→∞

(
φ(x1)n

φ̃(x1)

)n
∀s ∈ [0, z(T )]

For this equation to hold at s = 0, where we know f ′(s) = 1, it must be that φ(x) = φ̃(x1). Then,
we conclude that f ′(s) = 1 ∀s ∈ [0, z(T )]. Therefore, L̃−1

α (Lα(s)) = s ∀s ∈ [0, z(T )], or equivalently
L̃α(s) = Lα(s) on [0, z(T )]. Finally, from (2), z(t) = z̃(t) for t ∈ [0, T ].

With this theorem, it is easy to see what sort of additional assumptions would allow full identification
of the model. The Laplace transform of a distribution is unique, so without censoring the distribution
of α would be identified. Alternatively, if z(t, θ) is parametric and θ can be uniquely determined from
the behavior of z on [0, T ], then θ is identified. Similary, if the distribution of α is parameterized, and
the Laplace transform of α on [0, z(T )] uniquely determines the parameters, then the distribution of α
is identified.

Interestingly, although Elbers and Ridders proved this theorem in 1982, there were no tractable
estimators which did not impose a functional form on either the baseline hazard or the heterogeneity
distribution until 1996. Heckman and Singer (1984) advocated an estimator that involved a parametric
hazard function and nonparametric heterogeneity distribution. They had some simulations that showed
misspecifying the distribution of heterogeneity can lead to badly biased estimates of the hazards. Han
and Hausman (1990) argued for doing the opposite. They described an estimator that allowed a non-
parametric hazard function, but specified a parametric distribution for heterogeneity. Meyer (1990)
proposed a related estimator. Finally, Horowitz (1996) proposed as estimator for the transformation
model described below that allows both the hazard and heterogeneity distribution to be nonparametric,
although it requires that φ(x) = e−xβ . Horowitz (1999) specialized his transformation model estimator
to duration models.

2.3 Accelerated Failure Time Models

Mixed proportional hazard models appear very general, so it is interesting to examine what restrictions
they place on the data. Consider the analog of (1) for a mixed proportional hazard model:

log z(t) = − log φ(x)− log(α) + u

As above, u has a Gumbel distribution. Thus, an implication of the mixed proportional hazard model is
that log z(t) + log φ(x) has a distribution eqaul to the sum of Gumbel random variable and some other
random variable. This is a substantive restriction. For example, − log(α) + u can never be normally
distributed. Thus, a natural generalization of the mixed proportional hazard model is:

log z(t) = − log φ(x) + ε

where ε is allowed to have any distribution. Ridder (1990) calls this model a generalized accelerated
failure time model. The classic accelerated failure time model has z(t) = t and φ(x) = e−xβ . More
generally, the model

T (y) = xβ + ε

is called a transformation model. Horowitz (1996) describes an estimator for T , β, and the distribution
of ε.
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3 Bayesian Methods

This section is borrowed from Anna Mikusheva’s time series lectures with a few small additions.

14.384 Time Series Analysis, Fall 2007
Professor Anna Mikusheva

Paul Schrimpf, scribe
Novemeber 29, 2007

Lecture 23

Reasons to be Bayesian

Bayesian econometrics is based on two pieces:

1. A parametric model, giving a distribution, f(YT |θ), for the data given parameters

2. A prior distribution for the parameters, p(θ)

From these, we can form the joint distribution of the data and parameters,

p(YT , θ) = f(YT |θ)p(θ)

and the marginal distribution of the data

p(YT ) =
∫
f(YT |θ)p(θ)dθ

Finally, using Baye’s rule, we can form the posterior distribution of the parameters given the data

p(θ|YT ) =
f(YT |θ)p(θ)

p(YT )

One can make inferences based on the posterior distribution. For example, we can report the mode (or
the mean) as a parameter estimate. Any set of posterior measure biggen than 1 − α is called an 1 − α
credible set. Hypotheses can be tested based on posterior odds.

3.1 Differences between Bayesian and Frequentist Approaches

Frequentist

• θ is fixed, but unkown

• Uncertainty comes from sampling uncertainty. That is, from the fact that we can get different
samples.

• All probabilistic statements are statements about sampling uncertainty. For example,

– Eθ θ̂(YT ) = θ (unbiasedness) means in average over all possible repeated samples, one receives
the true value

– Pθ{θ ∈ C(YT )} = 1−α coverage probability of confidence sets is a statement about the ratio
(in repeated samples) of sets containing θ. Once we observe a sample, θ is either in the set
or not; there is no probability, after realization of a sample. The coverage probability is a
statement about ex-ante probability.

Bayesian

• θ is random

• YT is treated as fixed after observed

• uncertainty = “beliefs” about θ

• All probabilistic statements are about uncertainty about θ.

– Pθ{θ ∈ C(YT )} = 1− α coverage probability is the probability that θ is in the set.
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4 Reasons to be Bayesian

4.1 Reason 1 – Philosophical

Example 2. Two observations, y1, y2 ∼ iid.

Pθ(yi = θ − 1) =
1
2

= Pθ(yi = θ + 1)

Consider a confidence set:

C(y1, y2) =

{
y1+y2

2 y1 6= y2

y1 − 1 y1 = y2

If we observe y1 6= y2, which will happen 1/2 the time, we know θ = C(y1, y2). Otherwise, we have
a probability of 1/2 that θ = C(y1, y2). From a frequentist perspective, then the coverage of this set
is 1/2 + 1/2 ∗ 1/2 = 75%. Now, suppose we observe y1 6= y2. Then we know θ with certainty. Why
would we then report a coverage of 75% (ex-ante coverage) rather than the ex-post accuracy of 100%?
Frequentists average probabilities over all situations that may have been realized, but were not. Bayesians
are conditioning on the realization. As this example shows, conditioning on observation may be justified.

This example might appear artificial. However, especially in time series, there are fundamental reasons
to be Bayesian. Perhaps the frequentist perspective makes sense in a cross section. In a cross section,
we can imagine taking different samples and repeating our “experiment” (idea of repeated samples).
However, in time series we often have only one realization, and it is difficult to imagine where we would
obtain another sample. For example, if our data is U.S. inflation, then we would need another world to
get another sample.

Another philosophical reason to be Bayesian is that we do have prior beliefs about parameters and
we should incorporate them in a coherent way. Some people criticize Bayesians for imposing too much
parametric structure and prior beliefs. Bayesians argue that even frequentists implicitly impose priors
by choosing which models to estimate and which results to report. At least the role of priors is more
aparent in Bayesian econometrics.

4.1.1 Conjugate Priors

When a prior and a posterior are in the same family of distributions, then the prior is called the conjugate
prior for the distribution of the data. There are a handful of well behaved cases, which are very convenient
and easier to work with.

Example 3. OLS The model is
yt = xtθ + ut

with ut ∼ iidN(0, 1). In matrix form we’ll write Y = Xθ + U . The distribution of the data is

f(Y |X, θ) = (2π)−T/2 exp
(
−1

2
(Y −Xθ)′(Y −Xθ)

)
If we choose a normal prior, θ ∼ N(0, τ2Ik),

p(θ) = (2πτ2)−k/2 exp
(
−1
2τ
θ′θ

)
then the posterior is

p(θ|Y,X) ∝ exp
(
−1

2

[
−Y ′Xθ − θ′X ′Y + θ′X ′Xθ +

1
τ2
θ′θ

])
∝ exp

(
−1

2

[
−Y ′Xθ − θ′X ′Y + θ′(X ′X +

Ik
τ2

)θ
])

∝ exp

(
−1

2

[(
θ − (X ′X +

Ik
τ2

)−1X ′Y

)′
(X ′X +

Ik
τ2

)−1

(
θ − (X ′X +

Ik
τ2

)−1X ′Y

)])
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so θ|Y,X ∼ N(θ̃, Σ̃) with

θ̃ =(X ′X +
Ik
τ2

)−1X ′Y

Σ̃ =(X ′X +
Ik
τ2

)−1

Also, we see that as τ →∞ (uninformative prior), θ̃ → (X ′X)−1X ′Y = θ̂ML, and as τ → 0, θ̃ → 0, the
prior dominates. Furthermore, if we fix τ and T → ∞ with X′X

T → QXX , then θ̃ → θ0, the frequentist
limit. This result is more general.

4.2 Reason 2

Theorem 4. Suppose

1. Prior is absolutely continuous wrt to Lebesgue measure (i.e. prior puts positive probability on all
sets with positive Lebesgue measure)

2. Uniform convergence of likelihood 1
T log f(YT |θ)→a.s. l(θ) uniformly in θ

3. l(θ) is continuous and has a unique maximum at θ∗

Then for any open neighborhood, ε(θ∗),

lim
T→∞

P (θ ∈ ε(θ∗)|YT ) = 1 a.s.

There’s a similar theorem that shows asymptotic normality of the Bayesian estimator. These two
theorems sort of say what happens when you use Bayesian methods in a frequentist world. One inter-
pretation is that the prior vanishes asymptotically.
Cautions:

• Condition 3 is an identification condition. If you are not identified, then where the Bayesian
estimator converges depends on your prior.

• Prior should not restrict parameter space (condition 1)

• Condition 2 is like a LLN, it may not be satisfied with non-stationarity

• The theorem is about asymptotics. However, the prior can influence inferences in finite samples.

4.3 Reason 3 – Decision Theory

Suppose we have a loss function L(a, θ), where θ is a parameter and a is some action that we want to
choose. For example, if we just want to estimate θ, we might have a = θ̂ and L(a, θ) = (a − θ)2. Our
goal is to come up with a decision rule a(YT ) that depends on some sample YT . Let our expected loss
for a given value of θ be

Ra(θ) = EθL(a(YT ), θ)

We would like a(YT ) to minimize our expected loss. However, in general, the solution will depend on θ.

Definition 5. A decision rule, a(), is admissible if there exists no ã() such that Ra(θ) ≥ Rã(θ)∀θ with
strict inequality for some θ0.

Theorem 6. All Bayesian decision rules are admissible. Also, under some conditions, all admissible
decision rules are Bayesian.
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Definition 7. A Bayesian Decision Rule solves

min
a

∫
Ra(θ)p(θ)dθ = min

a

∫
EθL(a(YT ), θ)p(θ)dθ

= min
a

∫ ∫
L(a(YT ), θ)f(YT |θ)p(θ)dθdYT

= min
a

∫ [∫
L(a(YT ), θ)p(θ|YT )dθ

]
p(YT )dYT

for some prior distribution p(θ)

4.4 Reason 4 – Nuisance Parameters

Let ω = h(θ). Let C(YT ) be a set such that P (ω ∈ C(YT )|YT ) = 1 − α. It is very easy to go from
p(θ|YT ) to p(ω|YT ). For example, suppose θ = (θ1, θ2) and ω = θ1, then

p(θ1|YT ) =
∫
p(θ1, θ2|YT )dθ2

This example is especially relevant because there are many examples in econometrics where we want
to eliminate nuisance parameters. Here, θ2 would be the nuisance parameters. The Bayesian approach
makes it very easy to deal with the nuisance parameters. Whereas in the frequentist world, nuisance
parameters are an extremely difficult problem.

4.5 Reason 5 – Easier to Implement

In some cases it can be easier to compute Bayesian estimates than frequentist ones. For example, in the
last lecture, we saw how it can be difficult to estiate DSGE models by MLE. The main difficulty is in
multidimensional optimization. In some cases, it can be easier to estimate these models using Bayesian
methods and MCMC.

Two situations where Bayesian methods have big advantages over frequentist ones are when the
objective function is badly behaved, and in models with latent variables. In lecture, Victor talked about
how MCMC and the Metropolis-Hastings algorithm can be used to produce Bayesian estimates of a
model with a badly behaved objective function. Below, we will describe how Gibbs sampling and data
augmentation can be used for latent variable models.

4.6 Reason 6 – Not Fully Identified, Priors add Identification

This is probably a bad reason to be Bayesian. If your model is not identified, then your estimates will
be strongly influenced by your prior.
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Lecture 24

More Bayesian Metrics

Today our focus will be on testing in a Bayesian setting. We will see that even in nice, simple cases
Bayesian tests have different results than frequentists tests.

Our setup is the same as last time. We have:

• Likelihood f(YT |θ)

• Prior p(θ)

which give the posterior

p(θ|YT ) =
f(YT |θ)p(θ)∫
f(YT |θ)p(θ)dθ

In addition, we have a decision theory setup:

• A – action space

• decision rule δ(YT ) ∈ A, mapping observations to the action space

• Loss function: L(δ, θ) : A⊗Θ→ <

• Bayesian decision rule:
δ(YT ) = arg min

δ∈A
E(L(δ, θ)|YT )

Most things we might be interested in estimating can be put into a decision theory framework.

4.7 Point Estimation

Our action is to choose an estimate, A = Θ. There are a number of loss functions we could use:

1. If Θ is discrete, the loss function could be

L(δ, θ) =

{
1 δ 6= θ

0 δ = θ

The optimal decision rule is then

δ(YT ) = arg max
θ′

P (θ = θ′|YT ), which is the mode

In the continuous case, ∀ε > 0,
L(δ, θ; ε) = 1− 1{θ∈Nε(δ)}

Let δε denote the optimal decision rule for this loss function. Then limε→0 δε = the mode of the
posterior distribution.

2. Quadratic loss function:
L(δ, θ) = (δ − θ)′Q(δ − θ)

For some positive definite Q. Then δ̂ = E(θ|YT )

3. Check function:
L(δ, θ) = (1− q)(δ − θ)1{θ<δ} + q(θ − δ)1θ>δ

Then δ̂ is the q-th quantile of the posterior distribution of θ.
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4.8 Testing

The null hypothesis is H0 : θ ∈ Θ0, and the alternative is H1 : θ ∈ Θ1. Our action space is A = {0 =
reject, 1 = accept}. In a frequentists setting, the null and alternative hypotheses are not treated equally.
The null is accepted unless there is strong evidence against it. In a Bayesian setting, the way the null
and alternative are treated depends on the loss function. Consider the following loss function:

L(δ, θ) =


0 if correct
a1 δ = 0, θ ∈ Θ0 (type 1 error)
a2 δ = 1, θ ∈ Θ1 (type 2 error)

Then the optimal decision rule is

δ(YT ) =

{
1 if P (θ ∈ Θ0|YT ) ≥ a1

a1+a2

0 otherwise

That is, we accept if the expected posterior loss from a type 1 error is bigger than the expected loss of
a type 2 error

a1P (θ ∈ Θ0|YT ) ≥a2P (θ ∈ Θ1|YT )
P (θ ∈ Θ0|YT )
P (θ ∈ Θ1|YT )

≥ a2

a1

from which we see that the null and alternative are treated symmetrically (one could easily relabel the
null and alternative).

Example 8. Θ = {0, 1}, we observe y ∈ {0, 1, 2}. The distribution of y given θ is:

y 0 1 2
Pθ=0 0.89 0.04 0.07
Pθ=1 0.959 0.04 0.001

In a frequentist world, if we observe y = 1 and test H0 : θ = 1, we will reject because the P (y ≥ 1|θ =
1) < 0.05. In a Bayesian, world we condition our test on the observed value of y and y = 1 is not
informative about whether θ = 1 or not (the posterior equals the prior, p(θ = 1|y = 1) = p(θ = 1)).

4.9 OLS

As in the previous lecture, the model is:
yt = θX + U

with U ∼ iidN . The prior is θ ∼ N(0, τ2Ik). Then the posterior is θ|Y,X ∼ N(θ̃, Σ̃) with

θ̃ =(X ′X +
Ik
τ2

)−1X ′Y

Σ̃ =(X ′X +
Ik
τ2

)−1

Inequality test: We want to test H0 : θ < 0 vs H1 : θ ≥ 0. Assume a1 = a2, we would accept H0 if:

P (θ < 0|YT ) =P

(
θ − θ̃√

Σ̃
< − θ̃√

Σ̃
|YT

)
>

1
2

=Φ

(
− θ̃√

Σ̃

)
>

1
2

θ̃ < 0
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With α = 5%, the frequentist test is based on:

θ̃√
(X ′X)−1

< 1.64

θ̃ < 1.64
√

(X ′X)−1

The Bayesian test of this hypothesis is consistent in the sense that as the sample size grows, we get the
correct answer with probability 1. In a frequentist world, the probability of getting the right answer for
a test approaches 1− α.

Point null: If we want to test H0 : θ = 0 vs H1 : θ 6= 0 and we use a continuous prior, then we
will always reject the null. The solution is to specify a prior with a point mass of λ on 0. Take some
continuous prior p(θ), let

p∗(θ) = λ∆θ=0 + (1− δ)p(θ)

where ∆θ=0 is Dirac measure, then

p(YT ) =λf(YT |0) + (1− λ)
∫
f(YT |θ)p(θ)dθ

p(θ = 0|YT ) =
λf(YT |θ = 0)

p(YT )

The posterior odds ratio of the null to the alternative is

λf(YT |θ = 0)
(1− λ)

∫
f(YT |θ)p(θ)dθ

One difficulty here is in taking the integral in the denominator. Instead we can use the following trick: in
the model without a mass point, we had p(Yt) =

∫
f(YT |θ)p(θ)dθ = f(YT |θ)p(θ)

p(θ|YT ) . Since we the posterior

normal with mean θ̃ and variance Σ̃, we can plug it in. After some calculation we can obtain that the
posterior odds is equal to

λf(YT |θ = 0)
(1− λ)

∫
f(YT |θ)p(θ)dθ

=τk|X ′X +
I

τ2
|1/2 exp

(
−1

2

(
Y ′X

(
X ′X + +

I

τ2

)
X ′Y

))
We will compare this test to the frequentist by studying the asymptotics of the log posterior odds

ratio as T →∞. Assume that X′X
T → Q

log(po) =k ln τ +
k

2
lnT +

1
2

ln |X
′X

T
+

I

Tτ2
| − 1

2

(
Y ′X

(
X ′X + +

I

τ2

)
X ′Y

)
k ln τ is a constant, and 1

2 ln |X
′X
T + I

Tτ2 | converges to a constant so we may ignore them. We are
interesting in whether lim log(po) > 0. Suppose θ0 = 0. Then,

Y ′X

(
X ′X + +

I

τ2

)
X ′Y =

Y ′X√
T

(
X ′X

T
+

I

Tτ2

)
X ′Y√
T

⇒N(Q)−1N ′

This last expression is asymptotically bounded, so k lnT dominates and we accept the null asymptotically.
Now suppose θ0 6= 0. Then Y ′X

T → θ0
X′X
T → θ0Q, so

Y ′X

(
X ′X + +

I

τ2

)
X ′Y =T

Y ′X

T

(
X ′X

T
+

I

Tτ2

)
X ′Y

T

→Tθ0Q(Q)−1Q′θ′0

→Tθ0Qθ
′
0
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so this term (which is negative in ln po) asymptotically dominates and we reject the null asymptotically.
Again, this test is asymptotically consistent, but frequentist tests are not. Consider what the frequentist
test would be in this situation. The likelihood ratio is:

LR =2 ln
f(Y |X, θ̂ML)
f(Y |X, θ = 0)

=Y ′X(X ′X)1X ′Y ⇒ χ2

In particular, both Bayesian and frequentist test look at Y ′X(X ′X)1X ′Y and reject if it is greater than
some number, but Bayesians use k lnT and frequentists use χ2 critical value. To understand why the
Bayesian test is consistent and the frequentist one is not, we need two asymptotic facts,

1. CLT: 1√
T

∑
yt ⇒ N(0, 1)

2. Law of iterated logarithm: 1√
2T ln lnT

∑
yt is almost surely asyptotically in ∈ [−1, 1], meaning that

this sum does not converge, but for any number in [−1, 1], we can find a subsequence converging
to that number, and the limits of all converging subsequences are in [−1, 1]. In particular, almost
surely (for any realization) there are infinitely many T such that 1√

2T ln lnT

∑T
t=1 yt > 1− δ for any

δ, so we can always find infinitely many samples that will reject a null if we use frequentist a test.
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A good reference is Chib and Greenberg (The American Statistician 1995).
Recall that the key object in Bayesian econometrics is the posterior distribution:

p(θ|YT ) =
f(YT |θ)p(θ)∫
f(YT |θ̃)dθ̃

It is often difficult to compute this distribution. In particular, the integral in the denominator is difficult.
So far, we have gotten around this by using conjugate priors – classes of distributions for which we know
the form of the posterior. Generally, it’s easy to compute the numerator, f(YT |θ)p(θ), but it is hard
to compute the normalizing constant, the integral in the denominator,

∫
f(YT |θ̃)dθ̃. One approach is

to try to compute this integral in some clever way. Another, more common approach is Markov Chain
Monte-Carlo (MCMC). The goal here is to generate a random sample θ1, .., θN from p(θ|YT ). We can
then use moments from this sample to approximate moments of the posterior distribution. For example,

E(θ|YT ) ≈ 1
N

∑
θn

There are a number of methods for generating random samples from an arbitrary distribution.

4.10 Acceptance-Rejection Method (AR)

The goal is to simulate ξ ∼ π(x). We can calculate for each the value of a function, f(x), such that
π(x) = f(x)

k . The constant k is unknown. We have some candidate pdf h(x) that we can simulate draws
from, and there is a known constant c such that

f(x) ≤ ch(x)

We simulate draws from π(x) as follows:

1. Draw z ∼ h(x), u ∼ U [0, 1]

2. If u ≤ f(z)
ch(z) , then ξ = z. Otherwise repeat (1)

The intuition of the procedure is the following: Let v = uch(z) and imagine the joint distribution of
(v, z). It will have support under the graph of ch(z) and above the z = 0 axis with a uniform density (it
is uniform on {(v, z) : z ∈ Spt(h), 0 ≤ v ≤ ch(z)}). Then, it is fairly easy to see that if we accept ξ = z,
the joint distribution of (v, ξ) will be uniform with support {(v, ξ) : ξ ∈ Spt(π), f(ξ) ≥ v ≥ 0} and be
uniform. Then (for the same reason that h(z) is the marginal density of (v, z)), the marginal density of
ξ will be f(ξ)

k . More formally,
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Proof. Let ρ be the probability of rejecting a single draw. Then,

P (ξ ≤ x) =P (z1 ≤ x, u1 ≤
z1

ch(z1)
)(1 + ρ+ ρ2 + ...)

=
1

1− ρ
P (z1 ≤ x, u1 ≤

z1

ch(z1)
)

=
1

1− ρ
Ez

[
P (u ≤ z

ch(z)
|z)1{z≤x}

]
iterated expectations

=
1

1− ρ

∫ x

−∞

f(z)
ch(z)

h(z)dz

=
∫ x

−∞

f(z)
c(1− ρ)

dz
f(z)

c(1− ρ)
is a distribution, so c(1− ρ) = k and

=
∫ x

−∞
π(z)dz

A major drawback of this method is that is may lead us to reject many draws before we finally accept
one. This can make the procedure inefficient. If we choose c and h(z) poorly, then f(z)

ch(z) could be very
small for many z. It will be especially difficult to choose a good c and h() when we do not know much
about π(z).

5 Markov Chains

A Markov Chain is a stochastic process where the distribution of xt+1 only depends on xt, P (xt+1 ∈
A|xt, xt−1, ...) = P (xt+1 ∈ A|xt) ∀A.

Definition 9. A transition kernel is a function, P (x,A), which is a probability measure in the second
argument. It gives the probability of moving from x into the set A.

We want to study the behavior of a sequence of draws x1 → x2 → ... where we move around according
to a transition kernel. Suppose the distribution of xk is π∗, then the distribution of y = xk+1 is

π̃(y)dy =
∫
<
π∗(x)P (x, dy)dx

Definition 10. It is an invariant measure (with respect to transition kernel P (x,A)) if π̃ = π∗

Under some regularity conditions, the distribution of a Markov chain converges to its unique invariant
distribution.

In MCMC the goal is to simulate a draw from π. We need to find a transition kernel P (x, dy) such
that π is its invariant measure. Let’s suppose that π is continuous. We will consider the class of kernels

P (x, dy) = p(x, y)dy + r(x)∆x(dy)

i.e. we can stay at x with probability r(x), otherwise y is distributed according to some pdf (times
probability of moving. p(x, y) isn’t exactly a density because it doesn’t integrate to 1. (

∫
P (x, dy) = 1 =∫

p(x, y)dy + r(x);
∫
p(x, y)dy ≤ 1)).

Definition 11. A transition kernel is reversible if π(x)p(x, y) = π(y)p(y, x)

Theorem 12. If a transition kernel is reversible, then π is invariant.

There are more general conditions under which a Markov Chain converges. Generally, if the transition
kernel is irreducible (it can reach any point from any other point) and aperiodic (not periodic, i.e. the
greatest common denominator of {n : y can be reached from x in n steps} is 1), then it converges to an
invariant distribution.
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5.1 Metropolis-Hastings

Suppose we have a Markov chain in state x. We want to simulate a draw from the transition kernel
p(x, y) with invariant measure π, but we do not know the form of p(x, y). We do know how to compute
a function proportional to π, f(x) = kπ(x). Assume that we can draw y ∼ q(x, y), a pdf wrt y (so∫
q(x, y)dy = 1). Consider using this q as a transition kernel. Notice that if

π(x)q(x, y) > π(y)q(y, x)

then we would move from x to y too often. This suggests that rather than always moving to the new y
we draw, we should only move with some probability, α(x, y). If we construct α(x, y) such that

π(x)q(x, y)α(x, y) = π(y)q(y, x)α(y, x)

then we will have a reversible transition kernel with invariant measure π. We can take:

α(x, y) = min{1, π(y)q(y, x)
π(x)q(x, y)

}

We can calculate α(x, y) because although we do not know π(x), we do know f(x) = kπ(x), so we can
compute the ratio. In summary, the Metropolis-Hastings algorithm is: given xj we move to xj+1 by

1. Generate a draw, y, from q(xj , ·)

2. Calculate α(xj , y)

3. Draw u ∼ U [0, 1]

4. If u < α(xj , y), then xj+1 = y. Otherwise xj+1 = xj

Then the marginal distribution of xj will converge to π. In practice, we begin the chain at an arbitrary
x0, run the algorithm many, say M times, then use the last N < M draws as a sample from π. Note that
although the marginal distribution of the xj is π, the xj are autocorrelated. This is not a problem for
computing moments from the draws (although the higher the autocorrelation, the more draws we need
to get the same accuracy), but if we want to put standard errors on these moments, we need to take the
autocorrelation into account.

5.1.1 Choice of q()

• Random walk chain: q(x, y) = q1(y − x), i.e. y = x+ ε, ε ∼ q1. This can be nice choice because
if q1 is symmetric, q1(z) = q1(−z) and q(x,y)

q(y,x) drops out of α(x, y). Popular such q1 are normal
and U [−a, a]. Note that there is a tradeoff between step-size in the chain and rejection probability
when choosing σ2 = Eε2. Choosing σ2 too large will lead to many draws of yfrom low probability
areas (low π), and as a result we will reject lots of draws. Choosing σ2 too small will lead us to
accept most draws, but not move very much, and we will have difficulty covering the whole support
of π. In either case, the autocorrelation in our draws will be very high and we’ll need more draws
to get a good sample from π.

• Independence chain: q(x, y) = q1(y)

• π(y) ∝ ψ(y)h(y) and can sample from q(x, y) = h(y). This also simplifies α()

• Autocorrelated y = a+B(x− a) + ε with B < 0, this leads to negative autocorrelation in y. The
hope is that this reverses some of the positive autocorrelation inherent in the procedure.
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6 Gibbs Sampling

Gibbs sampling is a way to break up sampling from a complicated multi-dimensional distribution into
a sequence of draws from simpler distributions. Suppose you want to sample (x, y) ∼ f(x, y), but the
joint density, f(x, y), is difficult to draw from. Fortunately, the conditional distribution of x given y,
f(x|y), and y given x, f(y|x), are easy to simulate. Also, suppose we cannot draw from the marginal
distributions of x or y. We can still simulate draws from f(x, y) as follows:

1. Initially pick any x0

2. Draw yt ∼ f(y|xt−1)

3. Draw xt ∼ f(x|yt)

4. Repeat

This is called Gibbs sampling. More generally, if we want to sample from f(X), we can break X into as
many components as we want, say X(1), X(2), ..., X(k) and repeatedly draw from f(X(i)|X(−i)).

Gibbs sampling can be especially advantageous in models with latent variables, such as discrete choice
models and models with random effects. In these models, the distribution of the parameters given the
observed data, f(θ|x), is often complicated because it involves integrating out the unobserved latent
variables. However, if we condition on the latent variables, say u, then f(θ|x, u) is very simple. When
latent variables are drawn as part of Gibbs sampling, it is called data augmentation. The probit provides
a simple example. Conditional on y∗i , we just have a standard regression model and β is easy to sample.
Furthermore, given β we can sample y∗i from a truncated normal distribution. In other words, we:

• Pick an initial β0

• For t = 1, ...

1. For each i, draw y∗i,t from a N(xiβt−1, 0) truncated on (0,∞) if yi = 1, or (−∞, 0) if yi = 0

2. Draw βt ∼ N(X ′X + Ik
τ2 )−1X ′Yt, (X ′X + Ik

τ2 )−1)

Although a probit is easy enough to estimate with classical methods, the Bayesian methods become
more advantageous in more complicated models. For example, multinomial probits with correlated
errors are difficult to estimate by MLE because the likelihood involves a high dimensional integral, but
with Bayesian methods estimating a multinomial probit is not much more complicated than a binomial
probit. xs
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