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1 Midterm

Average was 97.62.

1.1 Bootstrap

In part (a), the best answers to the question about whether the bootstrap is a good idea was: yes,
especially if you bootstrap a pivotal statistic; or maybe: yes, but it would be better to use parametric
bootstrap.

1.2 Test Scores

You want to evaluate the effect of an after school program on test scores. You have a data set with the
following information: test scores, y, whether the child attended the after school program, d, and some
other covariates, x, for example, family income and whether the child lives with one or both parents.
Participation in the after school program was completely voluntary, but before the program began, the
school sent a random subset of students detailed information extolling the benefits of the program. You
observe an indicator for whether a student received this information, z.

(a) (15 min) Describe how you could estimate the effect of the program. Propose a test for the hypothesis
that the program had zero effect.
An answer is IV.

(b) (15 min) Due to no child left behind, adminstrators especially care about the effect of the program
on the low end of test scores. Describe how you could estimate this effect. Briefly discuss how you
could compute your estimator.
The intended answer was quantile IV. Most people got that, but not everyone wrote down the
objective function correctly. The moment condition for quantile IV is:

E [τ − 1(y ≤ xβ(τ) + α(τ)d)|x, z] = 0

which gives us the objective function

Q(α, β) =
1
n

∑
(τ − 1(yi ≤ xiβ(τ) + α(τ)d))′ w′

iAwi (τ − 1(yi ≤ xiβ(τ) + α(τ)d))

The estimates can be computed by using quasi-Bayesian methods as on the last problem set.

(c) (15 min) Suppose a large portion of students received a perfect score on the test. How would you
modify your estimator(s)?

The way to modify quantile IV is tricky. The invariance principle that works for quantile regression
does exactly not apply here. The reason is that we must condition on z instead of d, as we would
in exogenous quantile regression. Let’s start from the first order condition.

τ = P (y∗ ≤ xβ(τ) + α(τ)d)|x, z)

1



where y∗ is the uncensored test score. The censored test score, y = min{y∗, 100} is less than or
equal to y∗, so

τ ≤ P (y ≤ xβ(τ) + α(τ)d|x, z)

Similarly, we know that
1− τ = P (y∗ > xβ(τ) + α(τ)d|x, z)

and
1− τ ≥ P (y > xβ(τ) + α(τ)d|x, z)

These two conditional moment inequalities can be combined into an objective function and set
inference can be done.

2 HAC

To estimate the asymptotic variance of GMM or do efficient GMM, we need to estimate Ω = lim V ar(
√

nĝ(β0)).
When the data is iid estimation of Ω is straightforward, we can just use its sample analog. When the data
is autocorrelated, estimation is more complicated. Newey and West (1987) developed a heteroskedasticity
and auto-correlation consistent (HAC) covariance estimator.

We have a series {zt}, and we want to estimate its long-run variance, J = lim var
(

1√
T

∑
zt

)
. If we

assume that zt is covariance stationary, so that cov(zt, zt+k) only depends on k and not t, and denote
the kth autocovariance as γk = cov(zt, zt+k), then we have J =

∑∞
−∞ γk.

2.1 A näıve approach

J is the sum of all auto-covariance. We can estimate T − 1 of these, but not all. What if we just use
the ones we can estimate, i.e.

J̃ =
T−1∑

k=T−1

γ̂k , γ̂k =
1
T

T−k∑
j=1

zjzj+k

It turns out that this is very bad.

J̃ =
T−1∑

k=T−1

γ̂k

=
1
T

T−1∑
k=T−1

T−k∑
j=1

zjzj+k

=
1
T

(
T∑

t=1

zt)2

=(
1√
T

T∑
t=1

zt)2

⇒N(0,J )2

so J̃ is not consistent; it converges to a distribution instead of a point. The problem is that we’re
summing too many imprecisely estimated covariances.

2.2 Truncated sum of sample covariances

What if we don’t use all the covariances?

J̃2 =
ST∑

k=−ST

γ̂k
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where ST < T and ST →∞ as T →∞, but more slowly.
This estimator is consistent, but it has poor small sample properties. In particular, it may lead to

J̃2 < 0 (or in vector case, J̃2 not positive definite)

Example 1. Take ST = 1, then J̃2 = γ̂0 + 2γ̂1. In small samples, we may find γ̂1 < −1/2γ̂0.

2.3 Weighted, truncated sum of sample covariances

Ĵ =
ST∑

j=−ST

kT (j)γ̂j

We need conditions on ST and kT () to give us consistency and positive-definiteness.

Remark 2. kT () is called a kernel.

Behavior of ST gives consistency – need ST →∞, but slower than T →∞.
kT () guarantees positive-definiteness by down-weighting high lag covariances. Also need kT () → 1 for
consistency.

2.3.1 Consistency

Theorem 3. Ĵ is consistent if we assume:

•
∑∞

−∞ |γj | < ∞

• kT (j) → 1 as T →∞ and |kT (j)| < 1 ∀j

• ξt,j (defined below) are sationary for all j and supj

∑
k |Cov(ξt,j , ξt+k,j | < C for some constant C

(limited dependence)

• ST →∞ and S3
T

T → 0

Proof. This is an informal “proof” that sketches the ideas, but isn’t completely rigorous.

Ĵ − J =−
∑

|j|>ST

γj +
ST∑

j=−ST

(kT (j)− 1)γj +
ST∑

j=−ST

kT (j)(γ̂j − γj

We can interprete these three terms as follows;

1.
∑

|j|>ST
γj is truncation error

2.
∑ST

j=−ST
(kT (j)− 1)γj is error from using the kernel

3.
∑ST

j=−ST
kT (j)(γ̂j − γj is error from estimating the covariances

Terms 1 and 2 are non-stochastic. They represent bias. The third term is stochastic; it is responsible
for uncertainty. We will face a bias-variance tradeoff.

We want to show that each of these terms goes to zero

1. Disappears as long as ST →∞, since we assumed
∑∞

−∞ |γj | < ∞.

2.
∑ST

j=−ST
(kT (j)− 1)γj ≤

∑ST

j=−ST
|kT (j)− 1||γj | This will converge to zero as long as kT (j) → 1 as

T →∞ and |kT (j)| < 1 ∀j.

3. Notice that for the first two terms we wanted ST big enough to eliminate them. Here, we’ll want
ST to be small enough.

First, note that γ̂j ≡ 1
T

∑T−j
k=1 zkzk+j is not unbiased. Eγ̂j = T−j

T γj = γ̃j . However, it’s clear that
this bias will disappear as T →∞.
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Let ξt,j = ztzt+j−γj , so γ̂j− γ̃j = 1
T

∑T−j
τ=1 ξτ,j . We need to show that the sum of ξt,j goes to zero.

E(γ̂j − γ̃j)2 =
1

T 2

T−j∑
k=1

T−j∑
t=1

Cov(ξk,j , ξt,j)

≤ 1
T 2

T−j∑
k=1

T−j∑
t=1

|Cov(ξk,j , ξt,j)|

We need an assumption to guarantee that the covariances of ξ disappear. The assumption that
ξt,j are sationary for all j and supj

∑
k |Cov(ξt,j , ξt+k,j)| < C for some constant C implies that

1
T 2

T−j∑
k=1

T−j∑
t=1

|Cov(ξk,j , ξt,j)| ≤
C

T

By Chebyshev’s inequality we have:

P (|γ̂j − γ̃j | > ε) ≤ E(γ̂j − γ̃j)2

ε2
≤ C

ε2T

Then adding these together:

P (
ST∑
−ST

|γ̂j − γ̃j | > ε) ≤
ST∑
−ST

P (|γ̂j − γ̃j | >
ε

2ST + 1
)

≤
ST∑
−ST

E(γ̂j − γj)2

ε2
(2ST + 1)2

≤
ST∑
−ST

C

T
(2ST + 1)2 ≈ C1

S3
T

T

so, it is enough to assume S3
T

T → 0 as T →∞.

2.3.2 Positive Definiteness

Under appropriate conditions on the kernel, kT (j), the estimate of the long run variance is guaranteed
to be positive definite.

Assume kT (j) is an inverse Fourier transform of KT (l), i.e.

kT (j) =
T−1∑

l=−(T−1)

KT (l)e−i 2πjl
T

Lemma 4. Ĵ is non-negative with probability 1 if and only if KT (l) ≥ 0 and KT (l) = KT (−l)

Common Kernels

Definition 5. Bartlett kernel kT (j) = k(j/ST ) where k(x) =

{
1− |x| x ∈ [0, 1]
0 otherwise

Newey-West (1987) (this is one of the most cited papers in economics)

Definition 6. Parzen kernel k(x) =


1− σx2 − σ|x|2 0 ≤ x ≤ 1/2
2(1− |x|)3 1/2 < x ≤ 1
0 otherwise
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Keifer & Vogelsang Keifer & Vogelsang (2002) consider setting ST = T−1. This gives Ĵ inconsistent
(it converges to a distribution). However, Ĵ usually isn’t what we care about. We care about testing β̂,
say by looking at the t statistic. We can use Ĵ with T = ST to compute t = β̂

se(β̂)
, which will converge

to some (non-normal) distribution without any nuisance parameters, and we can use this distribution
for testing. The motivation for doing this is that Newey-West often works poorly in small samples.

2.4 Parametric HAC Estimation

Assume zt is AR(p)
Estimate by OLS

zt = a1zt−1 + ... + apzt−p + et

then use â(L) = 1− â1 − ..− âp to construct Ĵ ,

Ĵ =
σ̂2

â(1)2

where σ̂2 = 1
T

∑
ê2
t

Two questions:

• What p? – model selection criteria, BIC (Bayesian informaiton criteria)

• What if zt is not AR(p)?

The second question is still an open question. Den Haan and Levin (1997) showed that if zt is AR(p),
then the convergence of the parameteric estimator is faster than the kernel estimator described below.

2.5 Prewhitening

Nonparametric HAC performs poorly when the series is persistent. Parametric HAC performs poorly if
the model is wrong. Prewhitening combines the two. From the above we know that if et is white noise
with variance Σ, then when A(L)zt = B(L)et, the long-run variance of zt is

Jz = A(1)−1B(1)ΣB(1)′A(1)1
′

Similarly if et is not white noise, but has long-run variance Je, then

Jz = A(1)−1B(1)JeB(1)′A(1)1
′

The prewhitened nonparametric estimate of Jz is then simply:

Ĵz = Â(1)−1B̂(1)ĴeB̂(1)′Â(1)1
′

where Â and B̂ are estimated by OLS or Kalman filtering, and Ĵe is estimated by doing nonparametric
HAC hat êt.

Practical Advice This summer, Mark Watson gave a lecture on HAC
http://nber15.nber.org/c/2008/si2008/TSE/Lecture9.pdf
and this is a short summary of what he recommended. When doing HAC, you have to choose which of
the three methods to use, and then if you choose ARMA, the lag lengths, or if you choose nonparametric,
the kernel and bandwidth. In this discussion, the goal is to do inference on β̂

• Simulations show large size distortions for all methods (reject at 5% level far more than 5% of
time). Tests work worse when

– Sample size is smaller

– Data is more persistent (e.g. an AR(1) with coefficient near one)
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• If it is the correct model, parametric ARMA works best. Sometimes theory suggests an ARMA
(den Haan and Levin 1997).

• Kiefer-Vogelsang leads to smaller size distortions, but has less power than kernel methods

• For kernel methods:

– The theoretically optimal1 kernel is called the quadratic-spectral (QS) kernel. In practice, all
common kernels perform similarly.

– For inference, it is not necessarily best to minimize MSE of Ĵ
∗ See Sun, Philips, and Jin (2008) for a more formal discussion
∗ Intuition: suppose z ∼ N(µ, σ2) (think of z as

√
n(β − β̂0)) and σ̂2 is an estimate of σ2.

For testing H0 : µ = 0 at level α, we would compute a critical value, c, from the normal
distribution such that P (|z/σ| < c) = α. If we don’t know σ, then this how well this test
would work depends on how close P

(
z2

σ̂2 < c2
)

is to P
(

z2

σ2 < c2
)
. Very loosely:

P

(
z2

σ̂2
< c2

)
=E

[
1(z2 < σ̂2c2)

]
= E

[
g(σ̂2)

]
(1)

≈E

[
g(σ2) + (σ̂2 − σ2)g′(σ2) +

1
2
(σ̂2 − σ)2g′′(σ2)

]
(2)

≈Eg(σ2) + Bias(σ̂2)g′ +
1
2
MSE(σ̂2)g′′ (3)

So the error in the test depends on a combination of the bias and MSE of Ĵ . The best
choice of ST for testing shouldn’t minimize MSE; it should minimize this combination of
bias and MSE. Since bias decreases with ST , the best ST for testing is greater than the
best ST for MSE.

∗ Andrews (1991) gives formula for minimal MSE choice of ST .
· For inference: use larger ST

· For a GMM weighting matrix, minimal MSE seems like a good choice
∗ Similar reasoning suggests (maybe) using a longer lag length for an ARMA model than

suggested by BIC or AIC.

1In the sense that it minimizes MSE of Ĵ
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