
Introduction
to regression

Paul Schrimpf

Introduction to regression

Paul Schrimpf

UBC
Economics 326

January 23, 2018



Introduction
to regression

Paul Schrimpf
Review of last week

• Expectations and conditional expectations
• Linear
• Iterated expectations

• Asymptotics — using large sample distribution to
approximate finite sample distribution of estimators

• LLN: sample moments converge in probability to
population moments,

1
n

n∑

i=1

g(xi)
︸ ︷︷ ︸
sample moment

p→ E[g(x)]︸ ︷︷ ︸
population moment

• CLT: centered and scaled sample moments converge in
distribution to population moments

√
n︸︷︷︸

“scaling”




1
n

n∑

i=1

g(xi) −E[g(x)︸ ︷︷ ︸
“centering”

]



 d→N (0, Var(g(x)))

• Using CLT to calculate p-values
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• Main texts:
• Angrist and Pischke (2014) chapter 2
• Wooldridge (2013) chapter 2
• Stock and Watson (2009) chapter 4-5

• More advanced:
• Angrist and Pischke (2009) chapter 3 up to and including
section 3.1.2 (pages 27-40)

• Bierens (2012)
• Abbring (2001) chapter 3
• Baltagi (2002) chapter 3
• Linton (2017) chapters 16-20, 22

• More introductory:
• Diez, Barr, and Cetinkaya-Rundel (2012) chapter 7
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General problem

• Often interested in relationship between two (or more)
variables, e.g.

• Wages and education
• Minimum wage and unemployment
• Price, quantity, and product characterics

• Usually have:
1 Variable to be explained (dependent variable)
2 Explanatory variable(s) or independent variables or

covariates
Dependent Independent

Wage Education
Unemployment Minimum wage

Quantity Price and product characteristics
Y X

• For now agnostic about causality, but E[Y|X] usually is
not causal
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Example: Growth and GDP
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Years of schooling in 1960 and
growth
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Conditional expectation function
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Conditional expectation
function

• One way to describe relation between two variables is a
function,

Y = h(X)

• Most relationships in data are not deterministic, so
look at average relationship,

Y = E[Y|X]︸ ︷︷ ︸
≡h(X)

+ (Y − E[Y|X])︸ ︷︷ ︸
≡ε

=E[Y|X] + ε

• Note that E[ε] = 0 (by definition of ε and iterated
expectations)

• E[Y|X] can be any function, in particular, it need not be
linear
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Conditional expectation
function

• Unrestricted E[Y|X] hard to work with
• Hard to estimate
• Hard to communicate if X a vector (cannot draw graphs)

• Instead use linear regression
• Easier to estimate and communicate
• Tight connection to E[Y|X]
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Population regression

• The bivariate population regression of Y on X is

(β0, β1) = arg min
b0,b1

E[(Y − b0 − b1X)2]

i.e. β0 and β1 are the slope and intercept that minimize
the expected square error of Y − (β0 + β1X)

• Calculating β0 and β1:
• First order conditions:

[b0] : 0 = ∂
∂b0

E[(Y − b0 − b1X)2]

=E
[

∂
∂b0

(Y − b0 − b1X)2
]

=E [−2(Y − β0 − β1X)] (1)
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Population regression
and

[b1] : 0 = ∂
∂b1

E[(Y − b0 − b1X)2]

=E
[

∂
∂b1

(Y − b0 − b1X)2
]

=E [−2(Y − β0 − β1X)X] (2)

• (1) rearranged gives β0 = E[Y] − β1E[X]
• Substituting into (2)

0 =E [X(−Y + E[Y] − β1E[X] + β1X)]
=E [X(−Y + E[Y])] + β1E [X(X − E[X])]
= − Cov(X, Y) + β1Var(X)

β1 =Cov(X, Y)
Var(X)

• β1 = Cov(X,Y)
Var(X) , β0 = E[Y] − β1E[X]
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Population regression
approximates E[Y|X]

Lemma
The population regression is the minimal mean square error
linear approximation to the conditional expectation function,
i.e.

arg min
b0,b1

E
[
(Y − (b0 + b1X))2

]

︸ ︷︷ ︸
population regression

= arg min
b0,b1

EX

[
(E[Y|X] − (b0 + b1X))2

]
︸ ︷︷ ︸
MSE of linear approximation to E[Y|X]

Corollary
If E[Y|X] = c + mX, then the population regression of Y on X
equals E[Y|X], i.e. β0 = c and β1 = m
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Proof
Proof.

• Let b∗
0, b∗

1 be minimizers of MSE of approximation to
E[Y|X]

• Same steps as in population regression formula gives

0 = E [−2(E[Y|X] − b∗
0 − b∗

1X)]

and
0 = E [−2(E[Y|X] − b∗

0 − b∗
1X)X]

• Rearranging and combining,

b∗
0 = E[E[Y|X]] − b∗

1E[X] = E[Y] − b∗
1E[X]

and

0 =E [X(−E[Y|X] + E[Y] + b∗
1E[X] − b∗

1X)]
=E [X(−E[Y|X] + E[Y])] + b∗

1E [X(X − E[X])]
= − Cov(X, Y) + b∗

1Var(X)

b∗
1 =Cov(X, Y)

Var(X)
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Regression interpretation

• Regression = best linear approximation to E[Y|X]
• β0 ≈ E[Y|X = 0]
• β1 ≈ d

dxE[Y|X] ≈ change in average Y per unit change in X

• Not necessarily a causal relationship (usually not)

• Always can be viewed as description of data
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Regression with binary X

• Suppose X is binary (i.e.
can only be 0 or 1)

• We know β0 + β1X =
best linear
approximation to E[Y|X]

• X only takes two values,
so can draw line
connecting E[Y|X = 0]
and E[Y|X = 1], so
β0 + β1X = E[Y|X]

• β0 = E[Y|X = 0]
• β0 + β1 = E[Y|X = 1]
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Sample regression
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Sample regression
• Have sample of observations: {(yi, xi)}ni=1
• The sample regression (or when unambiguous just
“regression”) of Y on X is

(β̂0, β̂1) = arg min
b0,b1

1
n

n∑

i=1

(yi − b0 − b1xi)2

i.e. β̂0 and β̂1 are the slope and intercept that minimize
the sum of squared errors, (yi − (β̂0 + β̂1xi))2

• Same as population regression but with sample average
instead of expectation

• Same calculation as for population regression would
show

β̂1 = Ĉov(X, Y)
V̂ar(X)

=
1
n

∑n
i=1(xi − x̄)(yi − ȳ)

1
n

∑n
i=1(xi − x̄)2

and
β̂0 = ȳ − β̂1x̄
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Sample regression

• Sample regression is an estimator for the population
regression

• Given an estimator we should ask:
• Unbiased?
• Variance?
• Consistent?
• Asymptotically normal?

• We will address these questions in the next week or two
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Regression in R
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Regression in R
1 requ i re ( da tase t s ) ## some datase t s inc luded with R
2 stateDF <− data . frame ( s t a t e . x77 )
3 summary ( stateDF ) ## summary s t a t i s t i c s of data
4

5 ## Sample reg res s ion funct ion
6 r eg re s s <− funct ion ( y , x ) {
7 beta <− vector ( length =2)
8 beta [ 2 ] <− cov ( x , y ) / var ( x )
9 beta [ 1 ] <− mean( y ) − beta [ 2 ] *mean( x )
10 return ( beta )
11 }
12

13 ## Regress l i f e expectancy on income
14 beta <− r eg re s s ( stateDF [ , ” L i f e . Exp ” ] , s tateDF $Income )
15 beta
16

17 ## bu i l t i n reg res s ion
18 lm ( L i f e . Exp ~ Income , data = stateDF )
19 ## more de t a i l e d output
20 summary ( lm ( L i f e . Exp ~ Income , data = stateDF ) )

https://bitbucket.org/paulschrimpf/econ326/src/
master/notes/03/regress.R?at=master

https://bitbucket.org/paulschrimpf/econ326/src/master/notes/03/regress.R?at=master
https://bitbucket.org/paulschrimpf/econ326/src/master/notes/03/regress.R?at=master
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Fitted value and residuals
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Fitted values and residuals

• Fitted values:
ŷi = β̂0 + β̂1xi

• Residuals:
ε̂i = yi − β̂0 − β̂1xi = yi − ŷi

yi = ŷi + ε̂i
• Sample mean of residuals = 0

• First order condition for β̂0,

0 = 1
n

n∑

i=1

(yi − β̂0 − β̂1xi)

0 = 1
n

n∑

i=1

ε̂i

• Sample covariance of x and ε̂ = 0
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Fitted values and residuals

• First order condition for β̂1,

0 = 1
n

n∑

i=1

(yi − β̂0 − β̂1xi)xi

0 = 1
n

n∑

i=1

ε̂ixi
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Fitted values and residuals

• Sample mean of ŷi = ȳ = β̂0 + β̂1x̄

1
n

n∑

i=1

yi = 1
n

n∑

i=1

ŷi + ε̂i

= 1
n

n∑

i=1

ŷi

= 1
n

n∑

i=1

β̂0 + β̂1xi

=β̂0 + β̂1x̄
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Fitted values and residuals

• Sample covariance of y and ε̂ = sample variance of ε̂:

1
n

n∑

i=1

yi(ε̂i − ¯̂ε) = 1
n

n∑

i=1

yiε̂i

= 1
n

n∑

i=1

(β̂0 + β̂1xi + ε̂i)ε̂i

=β̂0
1
n

n∑

i=1

ε̂i + β1
1
n

n∑

i=1

xiε̂i + 1
n

n∑

i=1

ε̂2i

= 1
n

n∑

i=1

ε̂2i



Introduction
to regression

Paul Schrimpf

Fitted value
and residuals

Statistical
properties
Unbiased

Variance

Distribution

Discussion of
assumptions

Examples

Inference
Examples (continued)

Estimating σ 2
ε

Confidence intervals

Efficiency

References

R2

• Decompose yi
yi = ŷi + ε̂i

• Total sum of squares = explained sum of squares + sum
of squared residuals

1
n

n∑

i=1

(yi − ȳ)2

︸ ︷︷ ︸
SST

= 1
n

n∑

i=1

(ŷi − ȳ)2

︸ ︷︷ ︸
SSE

+ 1
n

n∑

i=1

ε̂2i
︸ ︷︷ ︸

SSR

• R-squared: fraction of sample variation in y that is
explained by x

R2 = SSE
SST

= 1 − SSR
SST

= oĈorr(y, ŷ)

• 0 ≤ R2 ≤ 1
• If all data on regression line, then R2 = 1
• Magnitude of R2 does not have direct bearing on
economic importance of a regression



Introduction
to regression

Paul Schrimpf

Fitted value
and residuals

Statistical
properties
Unbiased

Variance

Distribution

Discussion of
assumptions

Examples

Inference
Examples (continued)

Estimating σ 2
ε

Confidence intervals

Efficiency

References

Section 7

Statistical properties
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Unbiased

• E[β̂] =?
• Assume:
SLR.1 (linear model) yi = β0 + β1xi + εi
SLR.2 (independence) {(xi, yi)}ni=1 is independent random

sample

SLR.3 (rank condition) V̂ar(X) > 0

SLR.4 (exogeneity) E[ε|X] = 0

• Then, E[β̂1] = β1 and E[β̂0] = β0
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Variance

• Var(β̂)?
• Assume SLR.1-4 and
SLR.5 (homoskedasticity) Var(ε|X) = σ 2

• Then,

Var(β̂1|{xi}ni=1) = σ 2
∑n

i=1(xi − x̄)2

and

Var(β̂0|{xi}ni=1) =
σ 2 1

n

∑n
i=1x

2
i∑n

i=1(xi − x̄)2
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Distribution with normal errors

• Assume SLR.1-SLR.5 and
SLR.6 (normality) εi|xi ∼ N(0, σ 2)

• Then Y|X ∼ N(β0 + β1X, σ 2), and

β̂1|{xi}ni=1 ∼ N
(

β1,
σ 2

∑n
i=1(xi − x̄)2

)

• Even without assuming normality, the central limit
theorem implies β̂ is asymptotically normal (details in a
later lecture)
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Summary

• Simple linear regression model assumptions:
SLR.1 (linear model) Yi = β0 + β1xi + εi
SLR.2 (independence) {(xi, yi)}ni=1 is independent random

sample
SLR.3 (rank condition) V̂ar(X) > 0
SLR.4 (exogeneity) E[ε|X] = 0
SLR.5 (homoskedasticity) Var(ε|X) = σ 2

SLR.6 (normality) εi|xi ∼ N(0, σ 2)
• β̂ unbiased if SLR.1-SLR.4

• If also SLR.5, then Var(β̂1|{xi}ni=1) = σ2
∑n

i=1(xi−x̄)2

• If also SLR.6, then β̂1|{xi}ni=1 ∼ N
(

β1, σ2
∑n

i=1(xi−x̄)2

)
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Discussion of assumptions

SLR.1 Having a linear model makes it easier to state the other
assumptions, but we could instead start by saying let
β1 = Cov(X,Y)

Var(X) and β0 = E[Y] − β1E[X] be the population
regression coefficients and define εi = yi − β0 − β1xi
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Discussion of assumptions

SLR.2 Independent observations is a good assumption for
data from a simple random sample

• Common situations where it fails in economics are
when we have a time series of observations, e.g.
{(xt, yt)}nt=1 could be unemployment and GDP of Canada
for many different years; and clustering, e.g. the data
could be students test scores and hours studying and
our sample consists of randomly chosen courses or
schools—students in the same course would not be
independent, but across different courses they might be.

• Still have E[β̂1] = β1 with non-independent observations
as long as E[εi|x1, ..., xn] = 0

• The variance of β̂1 will change with non-independent
observations

• Simulation code

https://bitbucket.org/paulschrimpf/econ326/src/master/notes/03/dependent.R?at=master
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SLR.4 To think about mean independence of ε from x we
should have a model motivating the regression

• If the model we want is
just a population
regression, then
automatically E[εX] = 0,
and E[ε|X] = 0 if the
conditional expectation
function is linear; if
conditional expectation
nonlinear maybe still a
useful approximation
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SLR.4 To think about mean independence of ε from x we

should have a model motivating the regression

• If the model we want is
anything else, then
maybe E[εX] ̸= 0 (and
E[ε|X] ̸= 0), e.g.

• Demand curve

pi = β0 + β1qi + εi

εi = everything that
affects price other
than quantity. qi
determined in
equilibrium implies
E[εi|qi] ̸= 0

• E[β̂1] ̸= β1 and β̂1

does not tell us what
we want
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SLR.5 Homoskedasticity: variance of ε does not depend on X
Homoskedastic Heteroskedastic
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• Heteroskedasticity is when Var(ε|X) varies with X
• If there is heteroskedasticity, the variance of β̂1 is
different, but we can fix it

https://bitbucket.org/paulschrimpf/econ326/src/master/notes/03/skedastic.R?at=master
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SLR.6 If εi|xi ∼ N, then β̂1 ∼ N
• What if εi not normally distributed?
• We will see that β̂1 still asymptotically normal
• Simulation

https://bitbucket.org/paulschrimpf/econ326/src/master/notes/03/reg-clt.R?at=master
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Example: smoking and cancer

• Data on per capita number of cigarettes sold and death
rates per thousand from cancer for U.S. states in 1960

• http://lib.stat.cmu.edu/DASL/Datafiles/
cigcancerdat.html

• Death rates from: lung cancer, kidney cancer, bladder
cancer, and leukemia Code

http://lib.stat.cmu.edu/DASL/Datafiles/cigcancerdat.html
http://lib.stat.cmu.edu/DASL/Datafiles/cigcancerdat.html
https://bitbucket.org/paulschrimpf/econ326/src/master/notes/03/smoking.R?at=master
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Smoking and bladder cancer
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Example: convergence in
growth

• Data on average growth rate from 1960-1995 for 65
countries along with GDP in 1960, average years of
schooling in 1960, and other variables

• From http://wps.aw.com/aw_stock_ie_2/50/13016/
3332253.cw/index.html, originally used in Beck,
Levine, and Loayza (2000)

• Question: has there been in convergence, i.e. did poorer
countries in 1960 grow faster and catch-up?

• Code

http://wps.aw.com/aw_stock_ie_2/50/13016/3332253.cw/index.html
http://wps.aw.com/aw_stock_ie_2/50/13016/3332253.cw/index.html
https://bitbucket.org/paulschrimpf/econ326/src/master/notes/03/growth.R?at=master
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GDP in 1960 and growth
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• Things look different 1995-2014

• Code to download and recreate results using updated
growth data through 2014 from the World Bank

https://bitbucket.org/paulschrimpf/econ326/src/master/notes/03/growth-updated.R?at=master
https://bitbucket.org/paulschrimpf/econ326/src/master/notes/03/growth-updated.R?at=master
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Inference with normal errors

• Regression estimates depend on samples, which are
random, so the regression estimates are random

• Some regressions will randomly look “interesting” due
to chance

• Logic of hypothesis testing: figure out probability of
getting an interesting regression estimate due solely to
change

• Null hypothesis, H0 : the regression is uninteresting,
usually β1 = 0
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Inference with normal errors
• With assumptions SR.1-SR.6 and under H0 : β1 = β∗

1 , we
know

β̂ ∼ N
(

β∗
1 , σ 2

ε∑n
i=1(xi − x̄)2

)

or equivalently,

t ≡ β̂ − β∗
1

σε/
√∑n

i=1(xi − x̄)2
∼ N(0, 1)

• P-value: the probability of getting a regression estimate
as or more “interesting” than the one we have

• As or more interesting = as far or further away from β∗
1

• If we are only interested when β̂1 is on one side of β∗
1 ,

then we have a one sided alternative, e.g. Ha : β1 > β∗
1

• If we are equally interested in either direction, then
Ha : β1 ̸= β∗

1
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Inference with normal errors

• One-sided p-value: p = Φ(− |t|) = 1 − Φ(|t|)
• Two-sided p-value: p = 2Φ(− |t|) = 2(1 − Φ(|t|))
• Interpretation:

• The probability of getting an estimate as strange as the
one we have if the null hypothesis is true.

• It is not about the probability of β1 being any particular
value. β1 is not a random variable. It is some unknown
number. The data is what is random. In particular, the
p-value is not the probability that that H0 is false given
the data.

• Hypothesis testing: we must make a decision (usually
reject or fail to reject H0)

• Choose significance level α (usually 0.05 or 0.10)
• Construct procedure such that if H0 is true, we will
incorrectly reject with probability α

• Reject null if p-value less than α
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Smoking and cancer

Model 1 Model 2 Model 3 Model 4
(Intercept) 1.09∗ 6.47∗∗ 1.66∗∗∗ 7.03∗∗∗

(0.48) (2.14) (0.32) (0.45)
cig 0.12∗∗∗ 0.53∗∗∗ 0.05∗∗∗ −0.01

(0.02) (0.08) (0.01) (0.02)
R2 0.50 0.49 0.24 0.00
Adj. R2 0.48 0.47 0.22 -0.02
Num. obs. 44 44 44 44
RMSE 0.69 3.07 0.46 0.64
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

Table: Smoking and cancer
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Growth and GDP

Model 1 Model 2
(Intercept) 1.80∗∗∗ 0.96∗

(0.38) (0.42)
rgdp60 0.00

(0.00)
yearsschool 0.25∗∗

(0.09)
R2 0.00 0.11
Adj. R2 -0.01 0.10
Num. obs. 65 65
RMSE 1.91 1.80
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

Table: Growth and GDP and education in 1960
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Caution: multiple testing

• We just looked at 6 regressions, if H0 : β1 = 0 is true in
all of them the probability that correctly fail to reject all
6 null hypotheses with a 5% test is 0.956 = 0.74
(assuming the 6 tests are independent)

• A quarter of the time if we look at 6 regressions, we will
randomly find at least significant relationship; if we
look at 14 regressions the probability that we
incorrectly reject a null is more than 0.5
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Caution: economic significance
̸= statistical significance
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Estimating σ 2
ε

• Recall that Var(β̂|x1, ..., xn) = σ2
ε∑n

i=1(xi−x̄)2 = σ2
ε

nV̂ar(x)

• σ 2
ε unknown

• We estimate σ 2
ε using the residuals,

σ̂ 2
ε = 1

n − 2

n∑

i=1

ε̂2i︸︷︷︸
=(yi−β̂0−β̂1xi)2

• If SLR.1-SLR.5, E[σ̂ 2
ε ] = σ 2

ε
• Using 1

n−2 instead of 1
n makes σ̂ 2

ε unbiased

• ε̂i depends on 2 estimated parameters, β̂0 and β̂1, so
only n − 2 degrees of freedom

• Estimate Var(β̂1|x1, ..., xn) by

V̂ar(β̂1|x1, ..., xn) = σ̂ 2
ε∑n

i=1(xi − x̄)2
=

1
n−2

∑n
i=1ε̂2i∑n

i=1(xi − x̄)2
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Estimating σ 2
ε

• Standard error of β̂1 is
√

V̂ar(β̂1|x1, ..., xn)

• If SLR.1-SLR.6, t-statistic with estimated V̂ar(β̂1|x1, ..., xn)
has a t(n − 2) distribution instead of N(0, 1)

t = β̂1 − β1√
V̂ar(β̂1|x1, ..., xn)

∼ t(n − 2)
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Confidence intervals

• β̂1 is random

• V̂ar(β̂1), p-values, and hypthesis tests are ways of
expressing how random is β̂1

• Confidence intervals are another

• A 1 − α confidence interval, CI1−α = [LB1−α ,UB1−α ] is an
interval estimator for β1 such that

P(β1 ∈ CI1−α = 1 − α)

(CI1−α is random; β1 is not)

• Recall: if SLR.1-SLR.6, then

β̂1 ∼ N
(

β1, Var(β̂1)
)
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Confidence intervals

• Implies

P
(

β̂1 < β1 +
√

Var(β̂1)Φ−1(α/2)
)

=α/2

P
(

β̂1 −
√

Var(β̂1)Φ−1(α/2) < β1)
)

=α/2

and

P
(

β̂1 > β1 +
√

Var(β̂1)Φ−1(1 − α/2)
)

=α/2

P
(

β̂1 −
√

Var(β̂1)Φ−1(1 − α/2) > β1

)
=α/2
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Confidence intervals

so

P



 β̂1 +
√

Var(β̂1)Φ−1(α/2) < β1

β1 < β̂ +
√

Var(β̂1)Φ−1(1 − α/2)



 =

=1 − P
(

β̂1 +
√

Var(β̂1)Φ−1(α/2) < β1

)
−

− P
(

β̂1 +
√

Var(β̂1)Φ−1(1 − α/2) > β1

)

=1 − α

• For α = 0.05, Φ−1(0.025) ≈ −1.96, Φ−1(0.975) ≈ 1.96
• For α = 0.1, Φ−1(0.05) ≈ −1.64
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Confidence intervals

β + se(β̂)Φ−1(α 2) β + se(β̂)Φ−1(1 − α 2)

β

β̂
β̂ + se(β̂)Φ−1(α 2) β̂ + se(β̂)Φ−1(1 − α 2)
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Confidence intervals

• 1 − α confidence interval

β̂1 ±
√

Var(β̂1)Φ−1(α/2)

• With estimated σ̂ 2
ε , use t distribution instead of normal

β̂1 ±
√

V̂ar(β̂1)F−1
t,n−2(α/2)

F−1
t,n−2 = inverse CDF of t(n − 2) distribution

Ft,n−2(1 − α/2)
n − 2

α/2 5 10 20 50 100 ∞
0.025 2.57 2.23 2.09 2.01 1.98 1.96
0.05 2.02 1.81 1.72 1.68 1.66 1.64
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Example: GDP in 1960 and
growth
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Example: Years of schooling in
1960 and growth
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Gauss-Markov theorem
• The sample regression estimator,

(β̂0, β̂1) = arg min
n∑

i=1

(yi − b0 − b1xi)2

β̂1 =
∑n

i=1(xi − x̄)yi∑n
i=1(xi − x̄)2

also called Ordinary Least Squares (OLS) is not the only
unbiased estimator of

yi = β0 + β1xi + εi

• Gauss-Markov theorem: if SLR.1-SLR.5, then OLS is the
Best Linear Unbiased Estimator

• Linear means linear in y, β̂1 =
∑n

i=1ciyi with
ci = (xi−x̄)∑n

i=1(xi−x̄)2

• Unbiased means E[β̂1] = β1

• Best means that among all linear unbiased estimators,
OLS has the smallest variance
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Proof: setup

• Let β̃1 be a linear unbiased estimator of β1

• Linear: β̃1 =
∑n

i=1ciyi
• Unbiased: E[β̃1|x1, ..., xn] = β1 (for all possible β0, β1)

• We will show that

Var(β̃1|x1, ..., xn) ≥ Var(β̂1|x1, ..., xn)
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Proof: outline

1 Show that
∑n

i=1ci = 0 and
∑n

i=1cixi = 1

2 Show Cov(β̃1, β̂1|x1, ..., xn) = Var(β̂1|x1, ..., xn)
3 Show Var(β̃1|x1, ..., xn) ≥ Var(β̂1|x1, ..., xn)
4 Show Var(β̃1|x1, ..., xn) = Var(β̂1|x1, ..., xn) only if β̃1 = β̂1

0We will go over the proof in class. See Marmer’s slides or Wooldridge
(2013) 3A for details

http://faculty.arts.ubc.ca/vmarmer/econ326/326_05_gauss_markov_handout.pdf
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