Paul Schrimpf

Introduction to regression

Paul Schrimpf

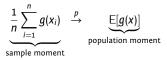
UBC Economics 326

January 23, 2018

Paul Schrimpf

Review of last week

- Expectations and conditional expectations
 - Linear
 - Iterated expectations
- Asymptotics using large sample distribution to approximate finite sample distribution of estimators
 - LLN: sample moments converge in probability to population moments,



• CLT: centered and scaled sample moments converge in distribution to population moments

$$\underbrace{\sqrt{n}}_{\text{"scaling"}} \left(\frac{1}{n} \sum_{i=1}^{n} g(x_i) \underbrace{-\mathsf{E}[g(x)]}_{\text{"centering"}} \right) \xrightarrow{d} N(0, \operatorname{Var}(g(x)))$$

Using CLT to calculate p-values

Paul Schrimpf

Motivation

Conditiona expectatior function

Population regression

Sample regression

Regression ir R

Part I

Definition and interpretation of regression

Paul Schrimpf

Motivation

Conditional expectation function

Population regression Interpretation

Sample regressior

Regression in R

1 Motivation

2 Conditional expectation function

3 Population regression Interpretation

References

Paul Schrimpf

Introduction to regression

- Conditional expectation function
- Population regression Interpretation
- Sample regression
- Regression in R

• Main texts:

- Angrist and Pischke (2014) chapter 2
- Wooldridge (2013) chapter 2
- Stock and Watson (2009) chapter 4-5
- More advanced:
 - Angrist and Pischke (2009) chapter 3 up to and including section 3.1.2 (pages 27-40)
 - Bierens (2012)
 - Abbring (2001) chapter 3
 - Baltagi (2002) chapter 3
 - Linton (2017) chapters 16-20, 22
- More introductory:
 - Diez, Barr, and Cetinkaya-Rundel (2012) chapter 7

Paul Schrimpf

Motivation

Conditiona expectation function

Population regression Interpretation

Sample regressior

Regression ir R

Section 1

Motivation

Paul Schrimpf

Motivation

- Conditional expectation function
- Population regression Interpretation
- Sample regression
- Regression ir R

- Often interested in relationship between two (or more) variables, e.g.
 - Wages and education
 - Minimum wage and unemployment
 - Price, quantity, and product characterics
- Usually have:
 - **1** Variable to be explained (dependent variable)
 - 2 Explanatory variable(s) or independent variables or covariates
 - DependentIndependentWageEducationUnemploymentMinimum wageQuantityPrice and product characteristicsγX
- For now agnostic about causality, but $\mathbb{E}[Y|X]$ usually is not causal

General problem

Paul Schrimpf

Motivation

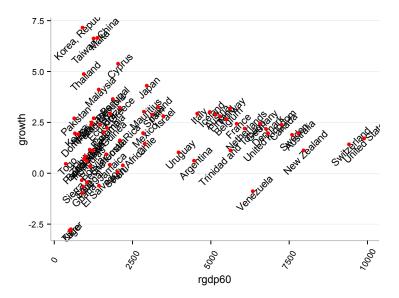
Conditional expectation function

Population regression Interpretation

Sample regressio

Regression in R

Example: Growth and GDP



Paul Schrimpf

Motivation

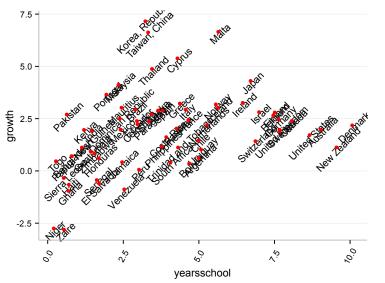
Conditional expectation function

Population regression Interpretation

Sample regressior

Regression in R

Years of schooling in 1960 and growth



Paul Schrimpf

Motivation

Conditional expectation function

Population regression Interpretation

Sample regression

Regression ir R

Section 2

Conditional expectation function

Paul Schrimpf

Motivation

Conditional expectation function

Population regression Interpretation

Sample regression

Regression i R

Conditional expectation function

• One way to describe relation between two variables is a function,

$$Y = h(X)$$

• Most relationships in data are not deterministic, so look at average relationship,

$$Y = \underbrace{\mathsf{E}[Y|X]}_{\equiv h(X)} + \underbrace{(Y - \mathsf{E}[Y|X])}_{\equiv \epsilon}$$
$$= \mathsf{E}[Y|X] + \epsilon$$

- Note that $\mathsf{E}[\epsilon]=\mathbf{0}$ (by definition of ϵ and iterated expectations)
- E[Y|X] can be any function, in particular, it need not be linear

Paul Schrimpf

Motivation

Conditional expectation function

- Population regression
- Sample regression
- Regression ii R

Conditional expectation function

- Unrestricted E[Y|X] hard to work with
 - Hard to estimate
 - Hard to communicate if X a vector (cannot draw graphs)
- Instead use linear regression
 - Easier to estimate and communicate
 - Tight connection to E[Y|X]

Paul Schrimpf

Motivation

Conditiona expectation function

Population regression

Interpretation

Sample regression

Regression ir R

Section 3

Population regression

Paul Schrimpf

Motivation

Conditiona expectatior function

Population regression

Interpretation

Sample regressior

Regression R

Population regression

• The bivariate population regression of Y on X is

$$(\beta_0, \beta_1) = \operatorname*{arg\,min}_{b_0, b_1} \mathbb{E}[(Y - b_0 - b_1 X)^2]$$

i.e. β_0 and β_1 are the slope and intercept that minimize the expected square error of $Y - (\beta_0 + \beta_1 X)$

- Calculating β_0 and β_1 :
 - First order conditions:

$$[b_0]: 0 = \frac{\partial}{\partial b_0} \mathbb{E}[(Y - b_0 - b_1 X)^2]$$
$$= \mathbb{E}\left[\frac{\partial}{\partial b_0}(Y - b_0 - b_1 X)^2\right]$$
$$= \mathbb{E}\left[-2(Y - \beta_0 - \beta_1 X)\right]$$
(1)

Paul Schrimpf

Motivation

Conditiona expectation function

Population regression

Interpretation

Sample regressior

Regression in R

Population regression

and

$$\begin{aligned} [b_1] &: \mathbf{0} = \frac{\partial}{\partial b_1} \mathbb{E}[(Y - b_0 - b_1 X)^2] \\ &= \mathbb{E}\left[\frac{\partial}{\partial b_1}(Y - b_0 - b_1 X)^2\right] \\ &= \mathbb{E}\left[-2(Y - \beta_0 - \beta_1 X)X\right] \end{aligned}$$

$$0 = \mathbb{E} [X(-Y + \mathbb{E}[Y] - \beta_1 \mathbb{E}[X] + \beta_1 X)]$$

= $\mathbb{E} [X(-Y + \mathbb{E}[Y])] + \beta_1 \mathbb{E} [X(X - \mathbb{E}[X])]$
= $- \operatorname{Cov}(X, Y) + \beta_1 \operatorname{Var}(X)$
 $\beta_1 = \frac{\operatorname{Cov}(X, Y)}{\operatorname{Var}(X)}$

• $\beta_1 = \frac{\operatorname{Cov}(X,Y)}{\operatorname{Var}(X)}, \ \beta_0 = \operatorname{E}[Y] - \beta_1 \operatorname{E}[X]$

(2)

Paul Schrimpf

Population regression

Population regression approximates E[Y|X]

Lemma

The population regression is the minimal mean square error linear approximation to the conditional expectation function, i.e.

$$\underset{b_{0},b_{1}}{\operatorname{arg\,min}} \mathbb{E}\left[\left(Y - (b_{0} + b_{1}X)\right)^{2}\right] = \underset{b_{0},b_{1}}{\operatorname{arg\,min}} \underset{b_{0},b_{1}}{\operatorname{E}_{X}\left[\left(\mathbb{E}[Y|X] - (b_{0} + b_{1}X)\right)^{2}\right]} \underbrace{\operatorname{Res}_{D}\left[\left(\mathbb{E}[Y|X] - (b_{0} + b_{1}X)\right)^{2}\right]}_{MSE \text{ of linear approximation to } \mathbb{E}[Y|X]}$$

population regression

Corollary

If E[Y|X] = c + mX, then the population regression of Y on X equals E[Y|X], i.e. $\beta_0 = c$ and $\beta_1 = m$

Paul Schrimpf

Motivation

Conditional expectation function

Population regression

Interpretation

Sample regression

Regression ir R

Proof.

- Let b_0^*, b_1^* be minimizers of MSE of approximation to $\mathbb{E}[Y|X]$
- Same steps as in population regression formula gives

$$0 = E[-2(E[Y|X] - b_0^* - b_1^*X)]$$

and

$$0 = E[-2(E[Y|X] - b_0^* - b_1^*X)X]$$

• Rearranging and combining,

$$b_0^* = \mathsf{E}[\mathsf{E}[Y|X]] - b_1^*\mathsf{E}[X] = \mathsf{E}[Y] - b_1^*\mathsf{E}[X]$$

and

$$\begin{split} \mathbf{0} &= \mathbb{E} \left[X(-\mathbb{E}[Y|X] + \mathbb{E}[Y] + b_1^* \mathbb{E}[X] - b_1^* X) \right] \\ &= \mathbb{E} \left[X(-\mathbb{E}[Y|X] + \mathbb{E}[Y]) \right] + b_1^* \mathbb{E} \left[X(X - \mathbb{E}[X]) \right] \\ &= -\operatorname{Cov}(X, Y) + b_1^* \operatorname{Var}(X) \\ &b_1^* = \frac{\operatorname{Cov}(X, Y)}{\operatorname{Var}(X)} \end{split}$$

Proof

Paul Schrimpf

Motivation

Conditional expectation function

Population regression

Interpretation

Sample regression

Regression ii R

Regression interpretation

- Regression = best linear approximation to E[Y|X]
- $\beta_0 \approx \mathsf{E}[Y|X=0]$
- $\beta_1 \approx \frac{d}{dx} \mathbb{E}[Y|X] \approx$ change in average Y per unit change in X
- Not necessarily a causal relationship (usually not)
- · Always can be viewed as description of data

Paul Schrimpf

Motivation

Conditional expectation function

Population regression

Interpretation

Sample regressior

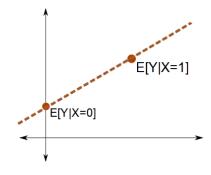
Regression i R

Regression with binary X

- Suppose X is binary (i.e. can only be 0 or 1)
- We know $\beta_0 + \beta_1 X =$ best linear approximation to E[Y|X]
- X only takes two values, so can draw line connecting E[Y|X = 0]and E[Y|X = 1], so $\beta_0 + \beta_1 X = E[Y|X]$

•
$$\beta_0 = E[Y|X = 0]$$

• $\beta_0 + \beta_1 = E[Y|X = 1]$



Paul Schrimpf

Motivation

Conditiona expectation function

Population regression Interpretation

Sample regression

Regression i R

Section 4

Sample regression

Paul Schrimpf

Motivation

Conditional expectation function

Population regression Interpretation

Sample regression

Regression i R

Sample regression

- Have sample of observations: {(y_i, x_i)}ⁿ_{i=1}
- The sample regression (or when unambiguous just "regression") of *Y* on *X* is

$$(\hat{\beta}_0, \hat{\beta}_1) = \operatorname*{arg\,min}_{b_0, b_1} \frac{1}{n} \sum_{i=1}^n (y_i - b_0 - b_1 x_i)^2$$

- i.e. $\hat{\beta}_0$ and $\hat{\beta}_1$ are the slope and intercept that minimize the sum of squared errors, $(y_i - (\hat{\beta}_0 + \hat{\beta}_1 x_i))^2$
 - Same as population regression but with sample average instead of expectation
- Same calculation as for population regression would show

$$\hat{\beta}_1 = \frac{\widehat{\operatorname{Cov}}(X,Y)}{\widehat{\operatorname{Var}}(X)} = \frac{\frac{1}{n}\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\frac{1}{n}\sum_{i=1}^n (x_i - \bar{x})^2}$$

and

$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$$

Paul Schrimpf

Motivation

- Conditional expectation function
- Population regression Interpretation
- Sample regression
- Regression ir R

Sample regression

- Sample regression is an estimator for the population regression
- Given an estimator we should ask:
 - Unbiased?
 - Variance?
 - Consistent?
 - Asymptotically normal?
- We will address these questions in the next week or two

Paul Schrimpf

Motivation

Conditiona expectation function

Population regression Interpretation

Sample regressior

Regression in R

Section 5

Regression in R

Paul Schrimpf

Motivatior

Conditiona expectatior function

Population regression Interpretation

Sample regressio

Regression in R

Regression in R

```
1 require(datasets) ## some datasets included with R
 stateDF <- data.frame(state.x77)</pre>
  summary(stateDF) ## summary statistics of data
 3
 4
  ## Sample regression function
 5
   regress <- function(y, x) {
 6
     beta <- vector(length=2)</pre>
 7
     beta[2] \leftarrow cov(x,y)/var(x)
 8
     beta[1] \leftarrow mean(y) - beta[2] + mean(x)
 9
     return (beta)
10
11
12
  ## Regress life expectancy on income
13
   beta <- regress(stateDF[, "Life.Exp"], stateDF$Income)</pre>
14
   beta
15
16
  ## builtin regression
17
  lm(Life.Exp ~ Income, data=stateDF)
18
  ## more detailed output
  summary (lm(Life.Exp ~ Income, data=stateDF))
20
https://bitbucket.org/paulschrimpf/econ326/src/
master/notes/03/regress.R?at=master
```

Paul Schrimpf

Fitted value and residuals

Statistical properties Unbiased Variance Distribution Discussion of

Examples

Inference Examples (continued) Estimating σ_e^2 Confidence intervals

Efficiency

References

Part II

Properties of regression

Paul Schrimpf

Fitted value and residuals

Statistical properties Unbiased Variance Distribution Discussion of assumptions

Examples

- Inference Examples (continued) Estimating σ_e^2 Confidence intervals
- Efficiency
- References

Section 6

Fitted value and residuals

Paul Schrimpf

Fitted value and residuals

Statistical properties Unbiased Variance Distribution Discussion of assumptions

Examples

- Inference Examples (continued) Estimating σ_c^2 Confidence intervals
- Efficiency
- References

Fitted values and residuals

• Fitted values:

$$\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$$

• Residuals:

$$\hat{\epsilon}_i = y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i = y_i - \hat{y}_i$$
$$v_i = \hat{v}_i + \hat{\epsilon}_i$$

- Sample mean of residuals = 0
 - First order condition for \hat{eta}_0 ,

$$0 = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i)$$
$$0 = \frac{1}{n} \sum_{i=1}^{n} \hat{\epsilon}_i$$

• Sample covariance of x and $\hat{\epsilon} = 0$

Paul Schrimpf

Fitted value and residuals

- Statistical properties Unbiased Variance Distribution
- Examples
- Inference Examples (continued) Estimating σ_c^2 Confidence intervals
- Efficiency
- References

Fitted values and residuals

• First order condition for $\hat{\beta}_1$,

$$0 = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i) x_i$$
$$0 = \frac{1}{n} \sum_{i=1}^{n} \hat{\epsilon}_i x_i$$

Paul Schrimpf

Fitted value and residuals

Statistical properties Unbiased Variance Distribution Discussion of assumptions

Examples

Inference Examples (continued) Estimating σ_c^2 Confidence intervals

Efficiency

References

Fitted values and residuals

Sample mean of
$$\hat{y}_i = \bar{y} = \hat{\beta}_0 + \hat{\beta}_1 \bar{x}$$

 $\frac{1}{n}$

$$\sum_{i=1}^{n} y_i = \frac{1}{n} \sum_{i=1}^{n} \hat{y}_i + \hat{\epsilon}_i$$
$$= \frac{1}{n} \sum_{i=1}^{n} \hat{y}_i$$
$$= \frac{1}{n} \sum_{i=1}^{n} \hat{\beta}_0 + \hat{\beta}_1 x_i$$
$$= \hat{\beta}_0 + \hat{\beta}_1 \bar{x}$$

Paul Schrimpf

Fitted value and residuals

Statistical properties Unbiased Variance Distribution Discussion of assumptions

Examples

- Inference Examples (continued Estimating σ_c^2 Confidence intervals
- Efficiency
- References

Fitted values and residuals

• Sample covariance of y and $\hat{\epsilon}$ = sample variance of $\hat{\epsilon}$:

$$\frac{1}{n}\sum_{i=1}^{n} y_i(\hat{\epsilon}_i - \bar{\hat{\epsilon}}) = \frac{1}{n}\sum_{i=1}^{n} y_i\hat{\epsilon}_i$$
$$= \frac{1}{n}\sum_{i=1}^{n} (\hat{\beta}_0 + \hat{\beta}_1 x_i + \hat{\epsilon}_i)\hat{\epsilon}_i$$
$$= \hat{\beta}_0 \frac{1}{n}\sum_{i=1}^{n} \hat{\epsilon}_i + \beta_1 \frac{1}{n}\sum_{i=1}^{n} x_i\hat{\epsilon}_i + \frac{1}{n}\sum_{i=1}^{n} \hat{\epsilon}_i^2$$
$$= \frac{1}{n}\sum_{i=1}^{n} \hat{\epsilon}_i^2$$

Paul Schrimpf

Fitted value and residuals

Statistical properties Unbiased Variance Distribution Discussion of assumptions

Examples

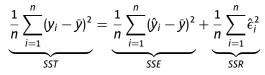
- Inference Examples (continued Estimating σ_c^2 Confidence intervals
- Efficiency
- References

• Decompose *y*_i

$$y_i = \hat{y}_i + \hat{\epsilon}_i$$

 R^2

• Total sum of squares = explained sum of squares + sum of squared residuals



• **R-squared**: fraction of sample variation in *y* that is explained by *x*

$$R^{2} = \frac{SSE}{SST} = 1 - \frac{SSR}{SST} = o\widehat{Corr}(y, \hat{y})$$

- $0 \leq R^2 \leq 1$
- If all data on regression line, then $R^2 = 1$
- Magnitude of *R*² does not have direct bearing on economic importance of a regression

Paul Schrimpf

Fitted value and residuals

Statistical properties

Unbiased Variance Distribution Discussion o assumptions

Examples

- Inference Examples (continued) Estimating σ_c^2 Confidence intervals
- Efficiency
- References

Section 7

Statistical properties

Unbiased

Fitted value and residuals

Introduction to regression

Paul Schrimpf

Statistical properties

Unbiased

Variance Distributior

Discussion of assumptions

Examples

Inference Examples (continued) Estimating σ_e^2 Confidence intervals

Efficiency

References

- $E[\hat{\beta}] = ?$
- Assume:
 - **SLR.1** (linear model) $y_i = \beta_0 + \beta_1 x_i + \epsilon_i$
- SLR.2 (independence) $\{(x_i, y_i)\}_{i=1}^n$ is independent random sample
- SLR.3 (rank condition) $\widehat{Var}(X) > 0$
- SLR.4 (exogeneity) $E[\epsilon|X] = 0$
- Then, $\mathsf{E}[\hat{eta}_1]=eta_1$ and $\mathsf{E}[\hat{eta}_0]=eta_0$

Variance

Fitted value and residuals

Introduction to regression

Paul Schrimpf

Statistical properties

Unbiased

Variance

Distribution Discussion of assumptions

Examples

Inference Examples (continued) Estimating σ_c^2 Confidence intervals

References

- Var(β̂)?
- Assume SLR.1-4 and
- SLR.5 (homoskedasticity) $Var(\epsilon | X) = \sigma^2$
- Then,

$$\operatorname{Var}(\hat{\beta}_1|\{x_i\}_{i=1}^n) = \frac{\sigma^2}{\sum_{i=1}^n (x_i - \bar{x})^2}$$

and

$$\operatorname{Var}(\hat{\beta}_{0}|\{x_{i}\}_{i=1}^{n}) = \frac{\sigma^{2}\frac{1}{n}\sum_{i=1}^{n}x_{i}^{2}}{\sum_{i=1}^{n}(x_{i}-\bar{x})^{2}}$$

Paul Schrimpf

Fitted value and residuals

- Statistical properties
- Unbiased
- Distribution
- Discussion of assumptions
- Examples
- Inference Examples (continued Estimating σ_c^2 Confidence intervals
- Efficiency
- References

Distribution with normal errors

- Assume SLR.1-SLR.5 and SLR.6 (normality) $\epsilon_i | x_i \sim N(0, \sigma^2)$
- Then $Y|X \sim N(eta_0 + eta_1 X, \sigma^2)$, and

$$\hat{eta}_1|\{x_i\}_{i=1}^n \sim N\left(eta_1, rac{\sigma^2}{\sum_{i=1}^n (x_i - ar{x})^2}
ight)$$

• Even without assuming normality, the central limit theorem implies $\hat{\beta}$ is asymptotically normal (details in a later lecture)

Summary

Introduction to regression

Paul Schrimpf

Fitted value and residuals

- Statistical properties Unbiased
- Variance Distribution
- Discussion of assumptions

Examples

- Inference Examples (continued) Estimating a_e^2 Confidence intervals
- Linciency
- References

- Simple linear regression model assumptions:
 - **SLR.1** (linear model) $Y_i = \beta_0 + \beta_1 x_i + \epsilon_i$
 - SLR.2 (independence) $\{(x_i, y_i)\}_{i=1}^n$ is independent random sample
 - SLR.3 (rank condition) $\widehat{Var}(X) > 0$
 - **SLR.4** (exogeneity) $E[\epsilon|X] = 0$
 - SLR.5 (homoskedasticity) $Var(\epsilon | X) = \sigma^2$
 - SLR.6 (normality) $\epsilon_i | x_i \sim N(0, \sigma^2)$
- $\hat{\beta}$ unbiased if SLR.1-SLR.4
- If also SLR.5, then $Var(\hat{\beta}_1 | \{x_i\}_{i=1}^n) = \frac{\sigma^2}{\sum_{i=1}^n (x_i \bar{x})^2}$
- If also SLR.6, then $\hat{\beta}_1 | \{x_i\}_{i=1}^n \sim N\left(\beta_1, \frac{\sigma^2}{\sum_{i=1}^n (x_i \bar{x})^2}\right)$

Paul Schrimpf

Fitted value and residuals

Statistical properties Unbiased Variance Distribution

Discussion of assumptions

Examples

Inference Examples (continued) Estimating σ_e^2 Confidence intervals

Efficiency

References

Discussion of assumptions

SLR.1 Having a linear model makes it easier to state the other assumptions, but we could instead start by saying let $\beta_1 = \frac{\text{Cov}(X,Y)}{\text{Var}(X)}$ and $\beta_0 = \mathbb{E}[Y] - \beta_1 \mathbb{E}[X]$ be the population regression coefficients and define $\epsilon_i = y_i - \beta_0 - \beta_1 x_i$

Paul Schrimpf

Fitted value and residuals

Statistical properties Unbiased Variance Distribution

Discussion of assumptions

Examples

Inference Examples (continued Estimating σ_e^2 Confidence intervals

Efficiency

References

Discussion of assumptions

- SLR.2 Independent observations is a good assumption for data from a simple random sample
 - Common situations where it fails in economics are when we have a time series of observations, e.g. $\{(x_t, y_t)\}_{t=1}^n$ could be unemployment and GDP of Canada for many different years; and clustering, e.g. the data could be students test scores and hours studying and our sample consists of randomly chosen courses or schools—students in the same course would not be independent, but across different courses they might be.
 - Still have $E[\hat{\beta}_1] = \beta_1$ with non-independent observations as long as $E[\epsilon_i|x_1, ..., x_n] = 0$
 - The variance of $\hat{\beta}_{1}$ will change with non-independent observations
 - Simulation code

Paul Schrimpf

Fitted value and residuals

Statistical properties Unbiased Variance Distribution

Discussion of assumptions

Examples

Inference Examples (continued Estimating σ_e^2 Confidence intervals

Efficiency

References

Discussion of assumptions

SLR.3 If $\widehat{Var}(X) = 0$, then $\hat{\beta}_1$ involves dividing by 0

• If there is no variation in *X*, then we cannot see how *Y* is related to *X*

Paul Schrimpf

Fitted value and residuals

Statistical properties Unbiased Variance Distribution

assumptions

Examples

Inference Examples (continued) Estimating σ_e^2 Confidence intervals

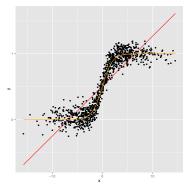
Emclency

References

Discussion of assumptions

SLR.4 To think about mean independence of ϵ from x we should have a model motivating the regression

• If the model we want is just a population regression, then automatically $E[\epsilon X] = 0$, and $E[\epsilon | X] = 0$ if the conditional expectation function is linear; if conditional expectation nonlinear maybe still a useful approximation



Code

Paul Schrimpf

Fitted value and residuals

- Statistical properties Unbiased Variance
- Discussion of assumptions

Examples

- **nference** Examples (continued) Estimating a_{ϵ}^2 Confidence intervals
- Efficiency

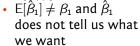
References

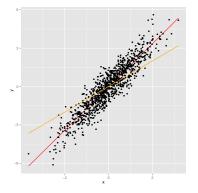
Discussion of assumptions

- SLR.4 To think about mean independence of ϵ from x we should have a model motivating the regression
 - If the model we want is anything else, then maybe E[εX] ≠ 0 (and E[ε|X] ≠ 0), e.g.
 - Demand curve

$$p_i = \beta_0 + \beta_1 q_i + \epsilon_i$$

 ϵ_i = everything that affects price other than quantity. q_i determined in equilibrium implies $E[\epsilon_i|q_i] \neq 0$





Code

Paul Schrimpf

Fitted value and residuals

Statistical properties Unbiased Variance Distribution

Discussion of assumptions

Examples

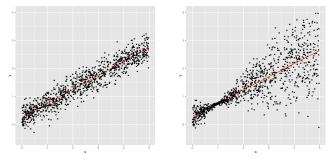
Inference Examples (continued) Estimating σ_e^2 Confidence intervals

Efficiency

References

Discussion of assumptions

SLR.5 Homoskedasticity: variance of ϵ does not depend on XHomoskedasticHeteroskedastic



Code

- Heteroskedasticity is when Var(e|X) varies with X
- If there is heteroskedasticity, the variance of $\hat{\beta}_1$ is different, but we can fix it

Paul Schrimpf

Fitted value and residuals

Statistical properties Unbiased Variance Distribution

Discussion of assumptions

Examples

Inference Examples (continued) Estimating σ_c^2 Confidence intervals

Efficiency

References

Discussion of assumptions

 "robust standard errors" / "heteroscedasticity-consistent (HC) standard errors" / "Eicker-Huber-White standard errors"

Paul Schrimpf

Fitted value and residuals

Statistical properties Unbiased Variance

Discussion of assumptions

Examples

- Inference Examples (continued) Estimating σ_e^2 Confidence intervals
- Efficiency
- References

Discussion of assumptions

SLR.6 If $\epsilon_i | x_i \sim N$, then $\hat{\beta}_1 \sim N$

- What if ϵ_i not normally distributed?
- We will see that \hat{eta}_1 still asymptotically normal
- Simulation

Paul Schrimpf

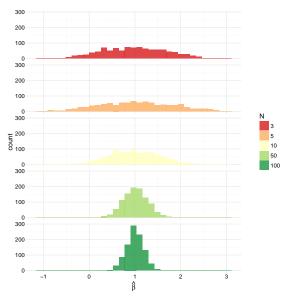
Fitted value and residual

Statistical properties Unbiased Variance Distribution Discussion of assumptions

Examples

Inference Examples (continued) Estimating σ_c^2 Confidence intervals Efficiency References

Discussion of assumptions



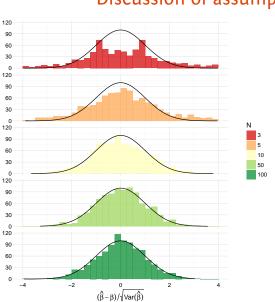
Paul Schrimpf

Fitted value and residual

Statistical properties Unbiased Variance Distribution Discussion of assumptions

Examples

Inference Examples (continued) Estimating σ_c^2 Confidence intervals Efficiency count



Discussion of assumptions

Paul Schrimpf

Fitted value and residuals

Statistical properties Unbiased Variance Distribution Discussion of assumptions

Examples

Inference Examples (continued) Estimating σ_c^2 Confidence intervals

Efficiency

References

Section 8

Examples

Paul Schrimpf

Fitted value and residuals

Statistical properties Unbiased Variance Distribution Discussion of assumptions

Examples

- Inference Examples (continued) Estimating σ_c^2 Confidence intervals
- References

Example: smoking and cancer

- Data on per capita number of cigarettes sold and death rates per thousand from cancer for U.S. states in 1960
- http://lib.stat.cmu.edu/DASL/Datafiles/ cigcancerdat.html
- Death rates from: lung cancer, kidney cancer, bladder cancer, and leukemia Code

Paul Schrimpf

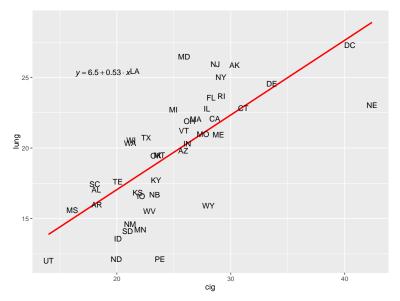
Fitted value and residuals

Statistical properties Unbiased Variance Distribution Discussion of assumptions

Examples

- Inference Examples (continued) Estimating σ_c^2 Confidence intervals Efficiency
- References

Smoking and lung cancer



Paul Schrimpf

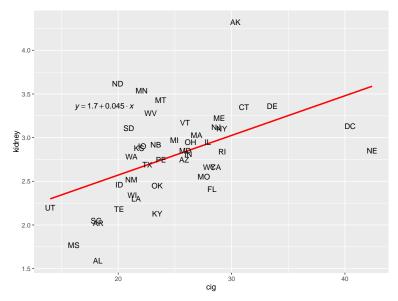
Fitted value and residuals

Statistical properties Unbiased Variance Distribution Discussion of assumptions

Examples

Inference Examples (continued) Estimating σ_c^2 Confidence intervals Efficiency

Smoking and kidney cancer



Paul Schrimpf

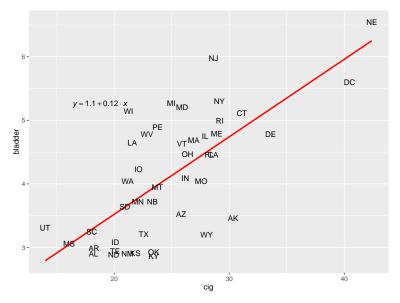
Fitted value and residuals

Statistical properties Unbiased Variance Distribution Discussion of assumptions

Examples

Inference Examples (continued) Estimating σ_c^2 Confidence intervals Efficiency References

Smoking and bladder cancer



Paul Schrimpf

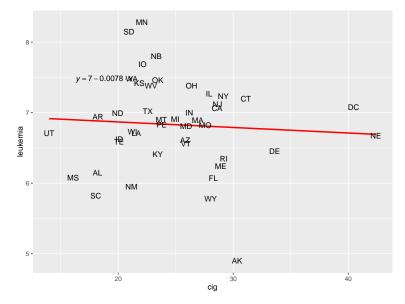
Fitted value and residuals

Statistical properties Unbiased Variance Distribution Discussion of assumptions

Examples

Inference Examples (continued Estimating σ_c^2 Confidence intervals Efficiency

Smoking and leukemia



Paul Schrimpf

Fitted value and residuals

Statistical properties Unbiased Variance Distribution Discussion of assumptions

Examples

- Inference Examples (continued) Estimating σ_c^2 Confidence intervals
- Efficiency
- References

Example: convergence in growth

- Data on average growth rate from 1960-1995 for 65 countries along with GDP in 1960, average years of schooling in 1960, and other variables
- From http://wps.aw.com/aw_stock_ie_2/50/13016/ 3332253.cw/index.html, originally used in Beck, Levine, and Loayza (2000)
- Question: has there been in convergence, i.e. did poorer countries in 1960 grow faster and catch-up?
- Code

Paul Schrimpf

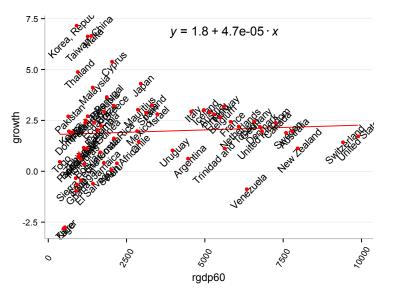
Fitted value and residuals

Statistical properties Unbiased Variance Distribution Discussion of assumptions

Examples

- Inference Examples (continued Estimating σ_c^2 Confidence intervals Efficiency
- References

GDP in 1960 and growth



Paul Schrimpf

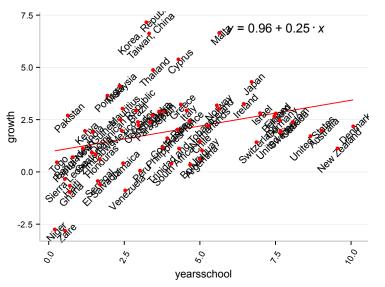
Fitted value and residuals

Statistical properties Unbiased Variance Distribution Discussion of assumptions

Examples

Inference Examples (continued Estimating σ_t^2 Confidence intervals Efficiency References

Years of schooling in 1960 and growth



Paul Schrimpf

Fitted value and residuals

Statistical properties Unbiased Variance Distribution Discussion of assumptions

Examples

Inference Examples (continued) Estimating σ_e^2 Confidence intervals

Efficiency

References

• Things look different 1995-2014

• Code to download and recreate results using updated growth data through 2014 from the World Bank

Paul Schrimpf

Fitted value and residuals

Statistical properties Unbiased Variance Distribution Discussion of assumptions

Examples

Inference

Examples (continued) Estimating σ_c^2 Confidence intervals

Efficiency

References

Section 9

Inference

Paul Schrimpf

Fitted value and residuals

Statistical properties Unbiased Variance Distribution Discussion of assumptions

Examples

Inference

- Examples (continued) Estimating σ_c^2 Confidence intervals
- Efficiency

References

Inference with normal errors

- Regression estimates depend on samples, which are random, so the regression estimates are random
 - Some regressions will randomly look "interesting" due to chance
- Logic of hypothesis testing: figure out probability of getting an interesting regression estimate due solely to change
- Null hypothesis, H_0 : the regression is uninteresting, usually $\beta_1 = 0$

Paul Schrimpf

Fitted value and residuals

Statistical properties Unbiased Variance Distribution Discussion of assumptions

Examples

Inference

- Examples (continued Estimating σ_c^2 Confidence intervals
- Efficiency

References

Inference with normal errors

• With assumptions SR.1-SR.6 and under $H_0: \beta_1 = \beta_1^*$, we know

$$\hat{\beta} \sim N\left(\beta_1^*, \frac{\sigma_{\epsilon}^2}{\sum_{i=1}^n (x_i - \bar{x})^2}\right)$$

or equivalently,

$$t\equiv rac{\hat{eta}-eta_1^*}{\sigma_\epsilon/\sqrt{\sum_{i=1}^n(x_i-ar{x})^2}}\sim N(0,1)$$

- P-value: the probability of getting a regression estimate as or more "interesting" than the one we have
 - As or more interesting = as far or further away from β_1^*
 - If we are only interested when β₁ is on one side of β₁^{*}, then we have a one sided alternative, e.g. H_a : β₁ > β₁^{*}
 - If we are equally interested in either direction, then $H_a: \beta_1 \neq \beta_1^*$

Paul Schrimpf

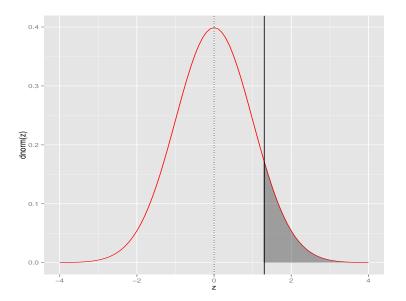
Fitted value and residuals

Statistical properties Unbiased Variance Distribution Discussion of assumptions

Examples

Inference Examples (continued) Estimating σ_c^2 Confidence intervals Efficiency

References



Paul Schrimpf

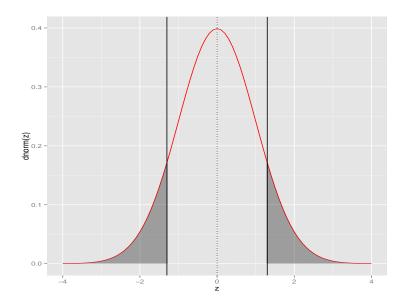
Fitted value and residuals

Statistical properties Unbiased Variance Distribution Discussion of assumptions

Examples

Inference Examples (continued) Estimating σ_c^2 Confidence intervals Efficiency

References



Paul Schrimpf

Fitted value and residuals

Statistical properties Unbiased Variance Distribution Discussion of assumptions

Examples

Inference

- Examples (continued) Estimating σ_c^2 Confidence intervals
- Efficiency
- References

Inference with normal errors

- One-sided p-value: $p = \Phi(-|t|) = 1 \Phi(|t|)$
- Two-sided p-value: $p = 2\Phi(-|t|) = 2(1 \Phi(|t|))$
- Interpretation:
 - The probability of getting an estimate as strange as the one we have if the null hypothesis is true.
 - It is *not* about the probability of β_1 being any particular value. β_1 is not a random variable. It is some unknown number. The data is what is random. In particular, the p-value is *not* the probability that that H_0 is false given the data.
- Hypothesis testing: we must make a decision (usually reject or fail to reject H₀)
 - Choose significance level α (usually 0.05 or 0.10)
 - Construct procedure such that if H_0 is true, we will incorrectly reject with probability α
 - Reject null if p-value less than α

Paul Schrimpf

Fitted value and residuals

properties
Unbiased
Variance
Distribution
Discussion of

Examples

Inference

Examples (continued)

Estimating σ_c^* Confidence interval

Efficiency

References

Smoking and cancer

	Model 1	Model 2	Model 3	Model 4
(Intercept)	1.09*	6.47**	1.66***	7.03***
	(0.48)	(2.14)	(0.32)	(0.45)
cig	0.12***	0.53***	0.05***	-0.01
	(0.02)	(0.08)	(0.01)	(0.02)
R ²	0.50	0.49	0.24	0.00
Adj. R ²	0.48	0.47	0.22	-0.02
Num. obs.	44	44	44	44
RMSE	0.69	3.07	0.46	0.64

***p < 0.001, **p < 0.01, *p < 0.05

Table: Smoking and cancer

Growth and GDP

	Model 1	Model 2
(Intercept)	1.80***	0.96*
	(0.38)	(0.42)
rgdp60	0.00	
	(0.00)	
yearsschool		0.25**
		(0.09)
R ²	0.00	0.11
Adj. R ²	-0.01	0.10
Num. obs.	65	65
RMSE	1.91	1.80

***p < 0.001, **p < 0.01, *p < 0.05

Table: Growth and GDP and education in 1960

Introduction to regression

Paul Schrimpf

Fitted value and residuals

Statistical properties Unbiased Variance Distribution Discussion of assumptions

Examples

Inference

Examples (continued)

Estimating σ_c^2 Confidence intervals

Efficiency

References

Paul Schrimpf

Fitted value and residuals

Statistical properties Unbiased Variance Distribution Discussion of assumptions

Examples

- Inference
- Examples (continued) Estimating σ_c^2 Confidence intervals
- Efficiency

References

Caution: multiple testing

- We just looked at 6 regressions, if H₀ : β₁ = 0 is true in all of them the probability that correctly fail to reject all 6 null hypotheses with a 5% test is 0.95⁶ = 0.74 (assuming the 6 tests are independent)
- A quarter of the time if we look at 6 regressions, we will randomly find at least significant relationship; if we look at 14 regressions the probability that we incorrectly reject a null is more than 0.5

Paul Schrimpf

Fitted value and residuals

Statistical properties Unbiased Variance Distribution Discussion of assumptions

Examples

Inference

Examples (continued)

Estimating σ_c^2 Confidence intervals

Efficiency

References

Caution: economic significance \neq statistical significance

Paul Schrimpf

Fitted value and residuals

Statistical properties Unbiased Variance Distribution Discussion of assumptions

Examples

Inference Examples (continued Estimating σ_c^2 Confidence intervals Efficiency

Estimating σ_{ϵ}^2

• Recall that
$$\operatorname{Var}(\hat{\beta}|x_1, ..., x_n) = \frac{\sigma_{\epsilon}^2}{\sum_{i=1}^n (x_i - \bar{x})^2} = \frac{\sigma_{\epsilon}^2}{n \operatorname{Var}(x)}$$

- σ_{ϵ}^2 unknown
- We estimate σ_{ϵ}^2 using the residuals,

$$\hat{\sigma}_{\epsilon}^{2} = \frac{1}{n-2} \sum_{i=1}^{n} \underbrace{\hat{\epsilon}_{i}^{2}}_{=(y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1}x_{i})^{2}}$$

- If SLR.1-SLR.5, $\mathsf{E}[\hat{\sigma}_{\epsilon}^2] = \sigma_{\epsilon}^2$
- Using $\frac{1}{n-2}$ instead of $\frac{1}{n}$ makes $\hat{\sigma}_{\epsilon}^2$ unbiased
 - $\hat{\epsilon}_i$ depends on 2 estimated parameters, $\hat{\beta}_0$ and $\hat{\beta}_1$, so only n 2 degrees of freedom
- Estimate $Var(\hat{\beta}_1 | x_1, ..., x_n)$ by

$$\widehat{\operatorname{Var}}(\hat{\beta}_1|x_1,...,x_n) = \frac{\hat{\sigma}_{\epsilon}^2}{\sum_{i=1}^n (x_i - \bar{x})^2} = \frac{\frac{1}{n-2} \sum_{i=1}^n \hat{\epsilon}_i^2}{\sum_{i=1}^n (x_i - \bar{x})^2}$$

Paul Schrimpf

Fitted value and residuals

Statistical properties Unbiased Variance Distribution Discussion of assumptions

Examples

Inference Examples (continued) Estimating σ_e^2 Confidence intervals

Emclency

References

Estimating σ_{ϵ}^2

- Standard error of $\hat{\beta}_1$ is $\sqrt{\widehat{Var}(\hat{\beta}_1|x_1,...,x_n)}$
- If SLR.1-SLR.6, t-statistic with estimated $\widehat{Var}(\hat{\beta}_1|x_1, ..., x_n)$ has a t(n - 2) distribution instead of N(0, 1)

$$t = \frac{\hat{\beta}_1 - \beta_1}{\sqrt{\widehat{\operatorname{Var}}(\hat{\beta}_1 | x_1, \dots, x_n)}} \sim t(n-2)$$

Paul Schrimpf

Fitted value and residuals

Statistical properties Unbiased Variance Distribution Discussion of assumptions

Examples

- Inference Examples (continued) Estimating σ_e^2 Confidence intervals Efficiency
- References

Confidence intervals

- $\hat{\beta}_1$ is random
- $\widehat{Var}(\hat{\beta}_1)$, p-values, and hypthesis tests are ways of expressing how random is $\hat{\beta}_1$
- Confidence intervals are another
- A 1α confidence interval, $CI_{1-\alpha} = [LB_{1-\alpha}, UB_{1-\alpha}]$ is an interval estimator for β_1 such that

$$\mathsf{P}(\beta_1 \in \mathsf{CI}_{1-\alpha} = 1-\alpha)$$

- ($CI_{1-\alpha}$ is random; β_1 is not)
- Recall: if SLR.1-SLR.6, then

$$\hat{eta}_1 \sim oldsymbol{N}\left(eta_1, extsf{Var}(\hat{eta}_1)
ight)$$

Paul Schrimpf

Fitted value and residuals

Statistical properties Unbiased Variance Distribution Discussion of assumptions

Examples

Inference Examples (continued) Estimating σ_c^2 Confidence intervals Efficiency

Confidence intervals

Implies

$$\mathsf{P}\left(\hat{\beta}_{1} < \beta_{1} + \sqrt{\mathsf{Var}(\hat{\beta}_{1})}\Phi^{-1}(\alpha/2)\right) = \alpha/2$$
$$\mathsf{P}\left(\hat{\beta}_{1} - \sqrt{\mathsf{Var}(\hat{\beta}_{1})}\Phi^{-1}(\alpha/2) < \beta_{1}\right) = \alpha/2$$

and

$$P\left(\hat{\beta}_{1} > \beta_{1} + \sqrt{\operatorname{Var}(\hat{\beta}_{1})}\Phi^{-1}(1 - \alpha/2)\right) = \alpha/2$$
$$P\left(\hat{\beta}_{1} - \sqrt{\operatorname{Var}(\hat{\beta}_{1})}\Phi^{-1}(1 - \alpha/2) > \beta_{1}\right) = \alpha/2$$

Paul Schrimpf

Fitted value and residuals

Statistical properties Unbiased Variance Distribution Discussion of assumptions

Examples

Inference Examples (continued Estimating σ_e^2 Confidence intervals Efficiency

References

Confidence intervals

so

$$\begin{split} & \mathsf{P}\left(\hat{\beta}_{1} + \sqrt{\mathsf{Var}(\hat{\beta}_{1})} \Phi^{-1}(\alpha/2) < \beta_{1} \\ & \beta_{1} < \hat{\beta} + \sqrt{\mathsf{Var}(\hat{\beta}_{1})} \Phi^{-1}(1 - \alpha/2) \right) = \\ & = 1 - \mathsf{P}\left(\hat{\beta}_{1} + \sqrt{\mathsf{Var}(\hat{\beta}_{1})} \Phi^{-1}(\alpha/2) < \beta_{1} \right) - \\ & - \mathsf{P}\left(\hat{\beta}_{1} + \sqrt{\mathsf{Var}(\hat{\beta}_{1})} \Phi^{-1}(1 - \alpha/2) > \beta_{1} \right) \\ & = 1 - \alpha \end{split}$$

• For lpha= 0.05, $\Phi^{-1}(0.025)pprox -$ 1.96, $\Phi^{-1}(0.975)pprox$ 1.96

• For
$$lpha=$$
 0.1, $\Phi^{-1}($ 0.05 $)pprox-$ 1.64

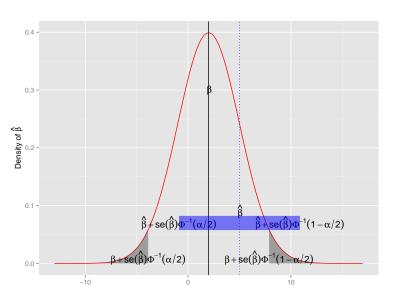
Paul Schrimpf

Fitted value and residuals

Statistical properties Unbiased Variance Distribution Discussion of assumptions

Examples

Inference Examples (continued Estimating σ_c^2 Confidence intervals Efficiency References



Confidence intervals

Paul Schrimpf

Fitted value and residuals

Statistical properties Unbiased Variance Distribution Discussion of assumptions

Examples

Inference Examples (continued) Estimating σ_e^2 Confidence intervals Efficiency

References

Confidence intervals

• $1 - \alpha$ confidence interval

$$\hat{eta}_1 \pm \sqrt{\operatorname{Var}(\hat{eta}_1)} \Phi^{-1}(lpha/2)$$

- With estimated $\hat{\sigma}_{\epsilon}^{2}$, use t distribution instead of normal

$$\hat{eta}_1 \pm \sqrt{\widehat{\operatorname{Var}}(\hat{eta}_1)} F_{t,n-2}^{-1}(lpha/2)$$

 $F_{t,n-2}^{-1}$ = inverse CDF of t(n-2) distribution $F_{t,n-2}(1-\alpha/2)$ n-2 $\alpha/2$ 5 10 20 50 100 ∞ 0.025 2.57 2.23 1.98 1.96 2.09 2.01 1.81 1.68 1.66 1.64 0.05 2.02 1.72

Paul Schrimpf

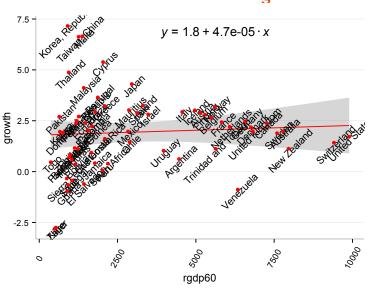
Fitted value and residuals

Statistical properties Unbiased Variance Distribution Discussion of assumptions

Examples

Inference Examples (continued Estimating σ_i^2 Confidence intervals Efficiency References

Example: GDP in 1960 and growth



Paul Schrimpf

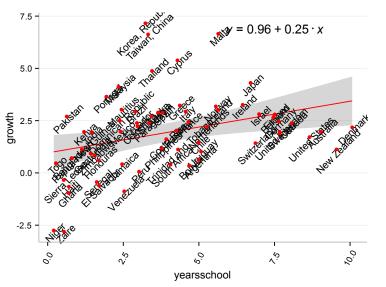
Fitted value and residuals

Statistical properties Unbiased Variance Distribution Discussion of assumptions

Examples

Inference Examples (continued Estimating σ_c^2 Confidence intervals Efficiency References

Example: Years of schooling in 1960 and growth



Paul Schrimpf

Fitted value and residuals

Statistical properties Unbiased Variance Distribution Discussion of assumptions

Examples

Inference Examples (continued) Estimating σ_e^2 Confidence intervals

Efficiency

References

Section 10

Efficiency

Paul Schrimpf

Fitted value and residuals

Statistical properties Unbiased Variance Distribution Discussion of assumption

Examples

Inference Examples (continued) Estimating σ_e^2 Confidence intervals

Efficiency

References

Gauss-Markov theorem

The sample regression estimator,

$$(\hat{\beta}_{0}, \hat{\beta}_{1}) = \arg\min \sum_{i=1}^{n} (y_{i} - b_{0} - b_{1}x_{i})^{2}$$
$$\hat{\beta}_{1} = \frac{\sum_{i=1}^{n} (x_{i} - \bar{x})y_{i}}{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}$$

also called Ordinary Least Squares (OLS) is not the only unbiased estimator of

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i$$

- Gauss-Markov theorem: if SLR.1-SLR.5, then OLS is the Best Linear Unbiased Estimator
 - Linear means linear in y, $\hat{\beta}_1 = \sum_{i=1}^n c_i y_i$ with

$$c_i = \frac{(x_i - \bar{x})}{\sum_{i=1}^n (x_i - \bar{x})^2}$$

- Unbiased means E[β̂₁] = β₁
- Best means that among all linear unbiased estimators, OLS has the smallest variance

Proof: setup

Fitted value and residuals

Introduction to regression

Paul Schrimpf

Statistical properties Unbiased Variance Distribution Discussion of assumptions

Examples

Inference Examples (continued) Estimating σ_e^2 Confidence intervals

Efficiency

References

- Let $ilde{eta}_1$ be a linear unbiased estimator of eta_1
 - Linear: $\tilde{\beta}_1 = \sum_{i=1}^n c_i y_i$
 - Unbiased: $E[\tilde{\beta}_1|x_1,...,x_n] = \beta_1$ (for all possible β_0,β_1)
- We will show that

$$\operatorname{Var}(\hat{eta}_1|x_1,\ldots,x_n) \geq \operatorname{Var}(\hat{eta}_1|x_1,\ldots,x_n)$$

Paul Schrimpf

Proof: outline

Fitted value and residuals

Statistical properties Unbiased Variance Distribution Discussion of assumptions

Examples

Inference Examples (continued) Estimating a_e^2 Confidence intervals

Efficiency

References

- 1 Show that $\sum_{i=1}^{n} c_i = 0$ and $\sum_{i=1}^{n} c_i x_i = 1$ 2 Show $Cov(\tilde{\beta}_1, \hat{\beta}_1 | x_1, ..., x_n) = Var(\hat{\beta}_1 | x_1, ..., x_n)$ 3 Show $Var(\tilde{\beta}_1 | x_1, ..., x_n) \ge Var(\hat{\beta}_1 | x_1, ..., x_n)$
- O Show $\operatorname{Var}(\tilde{\beta}_1|x_1,...,x_n) = \operatorname{Var}(\hat{\beta}_1|x_1,...,x_n)$ only if $\tilde{\beta}_1 = \hat{\beta}_1$

^oWe will go over the proof in class. See Marmer's slides or Wooldridge (2013) 3A for details

References

Introduction to regression

Paul Schrimpf

Fitted value and residuals

Statistical properties Unbiased Variance Distribution Discussion of assumptions

Examples

Inference Examples (continued) Estimating σ_c^2 Confidence intervals

Efficiency

References

Abbring, Jaap. 2001. "An Introduction to Econometrics: Lecture notes." URL http://jabbring.home.xs4all.nl/ courses/b44old/lect210.pdf.

Angrist, J.D. and J.S. Pischke. 2009. *Mostly harmless* econometrics: An empiricist's companion. Princeton University Press.

Angrist, Joshua D and Jörn-Steffen Pischke. 2014. *Mastering* '*Metrics: The Path from Cause to Effect*. Princeton University Press.

Baltagi, BH. 2002. *Econometrics*. Springer, New York. URL http:

//gw2jh3xr2c.search.serialssolutions.com/?sid= sersol&SS_jc=TC0001086635&title=Econometrics.

Paul Schrimpf

Fitted value and residuals

Statistical properties Unbiased Variance Distribution Discussion of assumptions

Examples

Inference Examples (continued) Estimating σ_e^2 Confidence intervals

fficiency

References

References

Beck, T., R. Levine, and N. Loayza. 2000. "Finance and the Sources of Growth." *Journal of financial economics* 58 (1):261–300. URL http://www.sciencedirect.com/ science/article/pii/S0304405X00000726.

Bierens, Herman J. 2012. "The Two-Variable Linear Regression Model." URL

http://personal.psu.edu/hxb11/LINREG2.PDF.

Diez, David M, Christopher D Barr, and Mine Cetinkaya-Rundel. 2012. *OpenIntro Statistics*. OpenIntro. URL http://www.openintro.org/stat/textbook.php.

Linton, Oliver B. 2017. *Probability, Statistics and Econometrics*. Academic Press. URL

http://gw2jh3xr2c.search.serialssolutions.com/
?sid=sersol&SS_jc=TC0001868500&title=
Probability%2C%20statistics%20and%20econometrics.

Paul Schrimpf

References

Fitted value and residuals

Statistical properties Unbiased Variance Distribution Discussion of assumptions

Examples

- Inference Examples (continued) Estimating σ_c^2 Confidence intervals
- Efficiency

References

Stock, J.H. and M.W. Watson. 2009. *Introduction to Econometrics*, 2/E. Addison-Wesley.

Wooldridge, J.M. 2013. *Introductory econometrics: A modern approach*. South-Western.