Paul Schrimpf

Setup

Expected value

Variance

Efficiency

Distribution

Inference

Example: growth, GDP, and schooling Confidence interval

Example: Kearney and Levine (2012)

Testing hypotheses involving multiple coefficients

Example: Aron-Dine, Einav, and Finkelstein (2013)

References

Properties of OLS in the multiple regression model

Paul Schrimpf

UBC Economics 326

February 1, 2018

1 Setup

6

Paul Schrimpf

- Setup
- Expected value
- Variance
- Efficiency
- Distribution

Inference

- Example: growth, GDP, and schooling Confidence interval
- Example: Kearney and Levine (2012)
- Testing hypotheses involving multiple coefficients
- Example: Aron-Dine, Einav, and Finkelstein (2013)
- References

- 2 Expected value
- 3 Variance
 - Efficiency
- 5 Distribution

Inference

Example: growth, GDP, and schooling Confidence intervals Example: Kearney and Levine (2012) Testing hypotheses involving multiple coefficients Example: Aron-Dine, Einav, and Finkelstein (2013)

References

model Paul Schrimpf

Properties of OLS in the

multiple regression

- Setup
- Expected value
- Variance
- Efficiency
- Distribution

Inference

- Example: growth, GDP, and schooling Confidence intervals
- Example: Kearney and Levine (2012)
- Testing hypotheses involving multiple coefficients
- Example: Aron-Dine, Einav, and Finkelstein (2013)
- References

- Wooldridge (2013) chapters 3 and 4
- Stock and Watson (2009) chapter 7 and 18
- Angrist and Pischke (2014) chapter 2
- Kasahara's slides
- Bierens (2010)
- Angrist and Pischke (2009) pages 48-69
- Baltagi (2002) chapter 4

Paul Schrimpf

Setup

Expected value

Variance

Efficiency

Distribution

Inference

Example: growth, GDP, and schooling Confidence interval:

Example: Kearney and Levine (2012)

Testing hypotheses involving multiple coefficients

Example: Aron-Dine, Einav, and Finkelstein (2013)

References

Section 1

Setup

Model

regression model Paul Schrimpf

Properties of OLS in the

multiple

Setup

Expected value

Variance

Efficiency

Distribution

Inference

Example: growth, GDP, and schooling Confidence interval Example: Kearney and Levine (2012)

Testing hypotheses involving multiple coefficients

Example: Aron-Dine, Einav, and Finkelstein (2013)

References

$$y_i = \beta_0 + \beta_1 x_{1,i} + \dots + \beta_k x_{k,i} + \epsilon_i$$
(1)

Assumptions:

MLR.1 (linear model) equation 1 holds

MLR.2 (independence) $\{(x_{1,i}, x_{2,i}, y_i)\}_{i=1}^n$ is an independent random sample

MLR.3 (rank condition) no multicollinearity: no $x_{j,i}$ is constant and there is no exact linear relationship among the $x_{j,i}$

MLR.4 (exogeneity) $E[\epsilon_i | x_{1,i}, ..., x_{k,i}] = 0$

Paul Schrimpf

Setup

- Expected value
- Variance
- Efficiency
- Distribution

Inference

- Example: growth, GDP, and schooling Confidence intervals
- Example: Kearney and Levine (2012)
- Testing hypotheses involving multiple coefficients
- Example: Aron-Dine, Einav, and Finkelstein (2013)

References

Discussion of assumptions

- Assumptions MLR.1 (linear model), MLR.2 (independence), and MLR.4 (exogeneity) are the same as in bivariate regression
- MLR.1 (linear model)
 - Only by writing down a model can we talk about bias and exogeneity
 - Linearity is a convenient approximation
- MLR.2 (independence)
 - OLS generally still unbiased with non-independent observations, but variance different
 - Forms of dependence: time series, clustering, spatial
- MLR.4 (exogeneity)
 - Key assumption for OLS to be unbiased

Paul Schrimpf

Setup

- **Expected** value
- Variance
- Efficiency
- Distribution

Inference

- Example: growth, GDP, and schooling Confidence interval
- Example: Kearney and Levine (2012)
- Testing hypotheses involving multiple coefficients
- Example: Aron-Dine, Einav, and Finkelstein (2013)
- References

Discussion of assumpptions

- MLR.3 (rank condition / no perfect collinearity): Wooldridge "None of the independent variables (x's) is constant, and there are no exact linear relationships among the independent variables"
 - Ensures that there is are unique values for β̂₀, ..., β̂_k that solve the first order conditions,

$$\sum_{i=1}^{n} (y_{i} - \hat{\beta}_{0} - \hat{\beta}_{1}x_{1,i} - \dots - \hat{\beta}_{k}x_{k,i}) = 0$$

$$\sum_{i=1}^{n} (y_{i} - \hat{\beta}_{0} - \hat{\beta}_{1}x_{1,i} - \dots - \hat{\beta}_{k}x_{k,i}) \qquad x_{1,i} = 0$$

$$\vdots \qquad \vdots = \vdots$$

$$\sum_{i=1}^{n} (y_{i} - \hat{\beta}_{0} - \hat{\beta}_{1}x_{1,i} - \dots - \hat{\beta}_{k}x_{k,i}) \qquad x_{k,i} = 0$$

Paul Schrimpf

Setup

- Expected value
- Variance
- Efficiency
- Distribution

Inference

Example: growth, GDP, and schooling Confidence interval

Example: Kearney and Levine (2012)

Testing hypotheses involving multiple coefficients

Example: Aron-Dine, Einav, and Finkelstein (2013)

References

Discussion of assumpptions

• In the language of linear algebra¹, this condition says that rank of the following $n \times (k + 1)$ matrix of x's,

$$\begin{pmatrix} 1 & x_{1,1} & \cdots & x_{k,1} \\ 1 & x_{1,2} & \cdots & x_{k,2} \\ \cdots & & & \vdots \\ 1 & x_{1,n} & \cdots & x_{k,n} \end{pmatrix}$$

must be k + 1

¹If you have not heard of matrices and their rank before, this bullet point can safely be ignored.

No collinearity

Properties of OLS in the

multiple

Setup

- Expected value
- Variance
- Efficiency
- Distribution

Inference

- Example: growth, GDP, and schooling Confidence interval:
- Example: Kearney and Levine (2012)
- Testing hypotheses involving multiple coefficients
- Example: Aron-Dine, Einav, and Finkelstein (2013)

References

Cloud of points, so there's a unique plane that minimizes squared residuals <u>'Code</u>

Paul Schrimpf

Setup

- Expected value
- Variance
- Efficiency
- Distribution

Inference

- Example: growth, GDP, and schooling Confidence interval:
- Example: Kearney and Levine (2012)
- Testing hypotheses involving multiple coefficients
- Example: Aron-Dine, Einav, and Finkelstein (2013)

References

Perfect collinearity

All points lie in one plane, so there's many planes that minimize squared residuals ¹Code

Paul Schrimpf

Setup

Expected value

Variance

Efficiency

Distribution

Inference

Example: growth, GDP, and schooling Confidence interval

Example: Kearney and Levine (2012)

Testing hypotheses involving multiple coefficients

Example: Aron-Dine, Einav, and Finkelstein (2013)

References

Section 2

Expected value

Paul Schrimpf

OLS is unbiased

_

Expected value

Variance

Efficiency

Distribution

Inference

Example: growth, GDP, and schooling Confidence interval

Example: Kearney and Levine (2012)

Testing hypotheses involving multiple coefficients

Example: Aron-Dine, Einav, and Finkelstein (2013)

References

Theorem Under assumptions MLR.1-4, OLS is unbiased,

$$\mathsf{E}[\hat{eta}_j] = eta_j$$
 for $j = \mathsf{0}, \mathsf{1}, ..., k$.

Paul Schrimpf

Setup

Expected value

Variance

Efficiency

Distribution

Inference

Example: growth, GDP, and schooling Confidence interval:

Example: Kearney and Levine (2012)

Testing hypotheses involving multiple coefficients

Example: Aron-Dine, Einav, and Finkelstein (2013)

References

Proof that OLS is unbiased

• Use partitioned regression formula,

$$\hat{\beta}_{1} = \frac{\sum_{i=1}^{n} \tilde{x}_{1,i} y_{i}}{\sum_{i=1}^{n} \tilde{x}_{1,i}^{2}}$$
(2)

where $\tilde{x}_{1,i}$ is the OLS residual from regressing $x_{1,i}$ on the other controls,

$$\mathbf{x}_{1,i} = \hat{\mathbf{y}}_0 + \hat{\mathbf{y}}_2 \mathbf{x}_{2,i} + \cdots + \hat{\mathbf{y}}_k \mathbf{x}_{k,i} + \tilde{\mathbf{x}}_{1,i}$$

• Substitute
$$y_i = \beta_0 + \beta_1 x_{1,i} + \cdots + \beta_k x_{k,i} + \epsilon_i$$
 in (2)

$$\hat{\beta}_{1} = \frac{\sum_{i=1}^{n} \tilde{x}_{1,i} \left(\beta_{0} + \beta_{1} x_{1,i} + \dots + \beta_{k} x_{k,i} + \epsilon_{i}\right)}{\sum_{i=1}^{n} \tilde{x}_{1,i}^{2}}$$

- Rearrange and use the following properties of residuals $\tilde{x}_{1,i}$ to simplify

Paul Schrimpf

Setup

Expected value

Variance

Efficiency

Distribution

Inference

Example: growth, GDP, and schooling Confidence interval

Example: Kearney and Levine (2012)

Testing hypotheses involving multiple coefficients

Example: Aron-Dine, Einav, and Finkelstein (2013)

References

Proof that OLS is unbiased 1 $\sum_{i=1}^{n} \tilde{x}_{1,i} = 0$ 2 $\sum_{i=1}^{n} \tilde{x}_{1,i} x_{j,i} = 0$ for j = 2, ..., k3 $\sum_{i=1}^{n} \tilde{x}_{1,i} x_{1,i} = \sum_{i=1}^{n} \tilde{x}_{1,i}^2$ and get

$$\hat{\beta}_{1} = \beta_{1} + \frac{\sum_{i=1}^{n} \tilde{x}_{1,i} \epsilon_{i}}{\sum_{i=1}^{n} \tilde{x}_{1,i}^{2}}$$
(3)

• Take expectations of (3) and use iterated expectations

$$E[\hat{\beta}_{1}] = E\left[E[\hat{\beta}_{1}|X]\right]$$
$$= \beta_{1} + E\left[E\left[\frac{\sum_{i=1}^{n} \tilde{x}_{1,i}\epsilon_{i}}{\sum_{i=1}^{n} \tilde{x}_{1,i}^{2}} \middle| X\right]\right]$$

• Use MLR.4 to conclude

$$E[\hat{\beta}_1] = \beta_1$$

• Identical argument works for j = 2, ..., k

Paul Schrimpf

Setup

Expected value

Variance

Efficiency

Distribution

Inference

Example: growth, GDP, and schooling Confidence interval

Example: Kearney and Levine (2012)

Testing hypotheses involving multiple coefficients

Example: Aron-Dine, Einav, and Finkelstein (2013)

References

Section 3

Variance

Paul Schrimpf

Setup

Variance

MLR.5 (homoskedasticity) $Var(\epsilon_i | X) = \sigma_{\epsilon}^2$

Theorem

Under assumptions MLR.1-5, the variance of OLS conditional on the controls is

$$\operatorname{Var}(\hat{\beta}_j|\mathbf{X}) = \frac{\sigma_{\epsilon}^2}{\sum_{i=1}^n \tilde{x}_{j,i}^2}.$$

Confidence interva Example: Kearney

and Levine (2012) Testing hypotheses

involving multiple coefficients

Example: Aron-Dine, Einav, and Finkelstein (2013)

References

Also, the covariance of \hat{eta}_j and \hat{eta}_ℓ conditional on the controls is

$$\operatorname{Cov}(\hat{\beta}_{j}, \hat{\beta}_{\ell} | X) = \sigma_{\epsilon}^{2} \frac{\sum_{i=1}^{n} \tilde{x}_{j,i} \tilde{x}_{\ell,i}}{\left(\sum_{i=1}^{n} \tilde{x}_{j,i}^{2}\right) \left(\sum_{i=1}^{n} \tilde{x}_{\ell,i}^{2}\right)}$$

Variance

Paul Schrimpf

Setup

Expected value

Variance

Efficiency

Distribution

Inference

Example: growth, GDP, and schooling Confidence intervals

Example: Kearney and Levine (2012)

Testing hypotheses involving multiple coefficients

Example: Aron-Dine, Einav, and Finkelstein (2013)

References

Proof of OLS variance

5

Use

So

$$\hat{\beta}_j = \beta_j + \frac{\sum_{i=1}^n \tilde{x}_{j,i} \epsilon_i}{\sum_{i=1}^n \tilde{x}_{j,i}^2}$$

$$\hat{\beta}_j - \mathsf{E}[\hat{\beta}_j] = \hat{\beta}_j - \beta_j = \frac{\sum_{i=1}^n \tilde{x}_{j,i} \epsilon_i}{\sum_{i=1}^n \tilde{x}_{j,i}^2}$$

• Then,

(

$$Cov(\hat{\beta}_{j}, \hat{\beta}_{\ell}) = \mathbb{E}\left[(\hat{\beta}_{j} - \mathbb{E}[\hat{\beta}_{j}])(\hat{\beta}_{\ell} - \mathbb{E}[\hat{\beta}_{\ell}])|X\right]$$
$$= \mathbb{E}\left[\frac{\sum_{i=1}^{n} \tilde{x}_{j,i}\epsilon_{i}}{\sum_{i=1}^{n} \tilde{x}_{j,i}^{2}} \frac{\sum_{i=1}^{n} \tilde{x}_{\ell,i}\epsilon_{i}}{\sum_{i=1}^{n} \tilde{x}_{\ell,i}^{2}} \middle| X\right]$$

• Use MLR.5 to get desired result

Paul Schrimpf

- Setup
- Expected value
- Variance
- Efficiency
- Distribution
- Inference
- Example: growth, GDP, and schooling Confidence interval
- Example: Kearney and Levine (2012)
- Testing hypotheses involving multiple coefficients
- Example: Aron-Dine, Einav, and Finkelstein (2013)
- References

Alternative expression for the variance

· From above we have

$$\operatorname{Var}(\hat{\beta}_j|\mathbf{X}) = \frac{\sigma_{\epsilon}^2}{\sum_{i=1}^n \tilde{\mathbf{x}}_{j,i}^2}$$

and

$$\operatorname{Cov}(\hat{\beta}_{j}, \hat{\beta}_{\ell} | \mathbf{X}) = \sigma_{\epsilon}^{2} \frac{\sum_{i=1}^{n} \tilde{\mathbf{X}}_{j,i} \tilde{\mathbf{X}}_{\ell,i}}{\left(\sum_{i=1}^{n} \tilde{\mathbf{X}}_{j,i}^{2}\right) \left(\sum_{i=1}^{n} \tilde{\mathbf{X}}_{\ell,i}^{2}\right)}$$

- The dominator, $\sum_{i=1}^{n} \tilde{x}_{j,i}^2$, is the sum of squared residuals from regression $x_{j,i}$ on the other x's
- Recall $R^2 = \frac{SSE}{SST} = 1 \frac{SSR}{SST}$, so

$$R_j^2 = 1 - \frac{\sum_{i=1}^n \bar{X}_{j,i}^2}{\sum_{i=1}^n (x_{i,i} - \bar{x}_j)^2}$$
$$\sum_{i=1}^n \tilde{X}_{j,i}^2 = (1 - R_j^2) \sum_{i=1}^n (x_{j,i} - \bar{x}_j)^2$$
$$= (1 - R_j^2) n \widehat{Var}(x_j)$$

• So,

$$\operatorname{Var}(\hat{\beta}_j|\mathbf{X}) = \frac{\sigma_{\epsilon}^2}{\sum_{i=1}^n \tilde{x}_{j,i}^2} = \frac{\sigma_{\epsilon}^2}{(1-R_j^2)n\widehat{\operatorname{Var}}(x_j)}$$

Paul Schrimpf

- Setup
- Expected value
- Variance
- Efficiency
- Distribution

Inference

- Example: growth, GDP, and schooling Confidence intervals
- Example: Kearney and Levine (2012)
- Testing hypotheses involving multiple coefficients
- Example: Aron-Dine, Einav, and Finkelstein (2013)

References

Variance and omitted variables

Suppose

$$y_i = \beta_0 + \beta_1 x_{1,i} + \beta_2 x_{2,i} + \epsilon_i$$

and MLR1-5 hold

- What are the bias of $\hat{\beta}_1^s$ and $\hat{\beta}_1$?
- What are $Var(\hat{\beta}_1^s)$ and $Var(\hat{\beta}_1)$? Which is larger?
- What is the mean square error (MSE) of $\hat{\beta}_1^s$ and $\hat{\beta}_1$?
- If we want to minimize MSE, what is better $\hat{\beta}_1^s$ or $\hat{\beta}_1$?

Paul Schrimpf

Setup

Expected value

Variance

Efficiency

Distribution

Inference

Example: growth, GDP, and schooling Confidence interval:

Example: Kearney and Levine (2012)

Testing hypotheses involving multiple coefficients

Example: Aron-Dine, Einav, and Finkelstein (2013)

References

Section 4

Efficiency

Paul Schrimpf

Setup

Expected value

Variance

Efficiency

Distribution

Inference

Example: growth, GDP, and schooling Confidence intervals

Example: Kearney and Levine (2012)

Testing hypotheses involving multiple coefficients

Example: Aron-Dine, Einav, and Finkelstein (2013)

References

Gauss-Markov theorem

Theorem

Under assumptions MLR.1-5, OLS is the best linear unbiased estimator

 By best linear unbiased estimator, we mean that OLS has the lowest variance for any linear combination of the coefficients,

$$\operatorname{Var}(\sum_{j=1}^k \lambda_j \hat{\beta}_j) \leq \operatorname{Var}(\sum_{j=1}^k \lambda_j \tilde{\beta}_j)$$

where $\tilde{\beta}_i$ are any other linear unbiased estimators

- Linear: $\tilde{\beta}_j = \sum_{i=1}^n w_i y_i$
- Unbiased: $E[\tilde{\beta}_j] = \beta_j$

Paul Schrimpf

- Setup
- Expected value
- Variance
- Efficiency

Distribution

Inference

- Example: growth, GDP, and schooling Confidence intervals
- Example: Kearney and Levine (2012)
- Testing hypotheses involving multiple coefficients
- Example: Aron-Dine, Einav, and Finkelstein (2013)
- References

Section 5

Distribution

Distribution

model Paul Schrimpf

Properties of OLS in the

multiple regression

Setup

Expected value

Variance

Efficiency

Distribution

Inference

Example: growth, GDP, and schooling Confidence interval

Example: Kearney and Levine (2012)

Testing hypotheses involving multiple coefficients

Example: Aron-Dine, Einav, and Finkelstein (2013)

References

MLR.6 $\epsilon_i | X \sim N(0, \sigma_{\epsilon}^2)$

Theorem Under assumptions MLR.1-6, OLS is normally distributed

$$\begin{pmatrix} \hat{\beta}_{0} \\ \hat{\beta}_{1} \\ \vdots \\ \hat{\beta}_{k} \end{pmatrix} | \mathbf{X} \sim \mathbf{N} \begin{pmatrix} \beta_{0} \\ \beta_{1} \\ \vdots \\ \beta_{k} \end{pmatrix}, \begin{pmatrix} \operatorname{Var}(\hat{\beta}_{0}|\mathbf{X}) & \operatorname{Cov}(\hat{\beta}_{0}, \hat{\beta}_{1}|\mathbf{X}) & \cdots & \operatorname{Cov}(\hat{\beta}_{0}, \hat{\beta}_{k}|\mathbf{X}) \\ \operatorname{Cov}(\hat{\beta}_{1}, \hat{\beta}_{0}|\mathbf{X}) & \operatorname{Var}(\hat{\beta}_{1}|\mathbf{X}) & \cdots & \operatorname{Cov}(\hat{\beta}_{1}, \hat{\beta}_{k}|\mathbf{X}) \\ \vdots & \vdots & \ddots & \vdots \\ \operatorname{Cov}(\hat{\beta}_{k}, \hat{\beta}_{0}|\mathbf{X}) & \operatorname{Cov}(\hat{\beta}_{k}, \hat{\beta}_{1}|\mathbf{X}) & \cdots & \operatorname{Var}(\hat{\beta}_{k}|\mathbf{X}) \end{pmatrix} \end{pmatrix}$$

Paul Schrimpf

- Setup
- Expected value
- Variance
- Efficiency

Distribution

Inference

- Example: growth, GDP, and schooling Confidence interval
- Example: Kearney and Levine (2012)
- Testing hypotheses involving multiple coefficients
- Example: Aron-Dine, Einav, and Finkelstein (2013)
- References

Standard bivariate normal density

Paul Schrimpf

- Setup
- Expected value
- Variance
- Efficiency

Distribution

Inference

- Example: growth, GDP, and schooling Confidence interval
- Example: Kearney and Levine (2012)
- Testing hypotheses involving multiple coefficients
- Example: Aron-Dine, Einav, and Finkelstein (2013)
- References

Bivariate normal density with correlation

Paul Schrimpf

- Setup Expect
- Variance
- Efficiency
- Distribution

Inference

- Example: growth, GDP, and schooling Confidence intervals
- Example: Kearney and Levine (2012)
- Testing hypotheses involving multiple coefficients
- Example: Aron-Dine, Einav, and Finkelstein (2013)
- References

Section 6

Inference

Paul Schrimpf

- Setup
- Expected value
- Variance
- Efficiency
- Distribution

Inference

- Example: growth, GDP, and schooling Confidence intervals
- Example: Kearney and Levine (2012)
- Testing hypotheses involving multiple coefficients
- Example: Aron-Dine, Einav, and Finkelstein (2013)

References

Inference with normal errors

- Regression estimates depend on samples, which are random, so the regression estimates are random
 - Some regressions will randomly look "interesting" due to chance
- Logic of hypothesis testing: figure out probability of getting an interesting regression estimate due solely to change
- Null hypothesis, H₀ : the regression is uninteresting
 - If we mainly care about the *j*th control, then

$$H_0: \beta_j = 0$$

• If we care about all the regressors, then maybe

$$H_0: eta_1 = 0, eta_2 = 0, ..., eta_k = 0$$

Paul Schrimpf

- Setup
- Expected value
- Variance
- Efficiency
- Distribution

Inference

- Example: growth, GDP, and schooling Confidence interval
- Example: Kearney and Levine (2012)
- Testing hypotheses involving multiple coefficients
- Example: Aron-Dine, Einav, and Finkelstein (2013)

References

Inference with normal errors

• With assumptions MLR.1-MLR.6 and under $H_0: \beta_j = \beta_j^*$, we know

$$\hat{eta}_j \sim \mathsf{N}\left(eta_j^*, rac{\sigma_{\epsilon}^2}{\sum_{i=1}^n ilde{x}_{j,i}^2}
ight)$$

or equivalently,

$$z\equiv rac{\hateta_j-eta_j^*}{\sigma_{\epsilon}/\sqrt{\sum_{i=1}^n ilde{x}_{j,i}^2}}\sim N(0,1)$$

- We do not know $\sigma_{\epsilon}^{\rm 2},$ so estimate it using residuals,

$$\hat{\sigma}_{\epsilon}^2 = \frac{1}{n - (k+1)} \sum_{i=1}^n \hat{\epsilon}_i^2$$

Paul Schrimpf

- Setup
- Expected value
- Variance
- Efficiency
- Distribution

Inference

- Example: growth, GDP, and schooling Confidence intervals
- Example: Kearney and Levine (2012)
- Testing hypotheses involving multiple coefficients
- Example: Aron-Dine, Einav, and Finkelstein (2013)

References

Inference with normal errors

- We divided by n (k + 1) instead of n because \hat{e}_i depends on k + 1 estimated parameters $(\hat{\beta}_0, \hat{\beta}_1, ..., \hat{\beta}_k)$
- Because of estimated $\hat{\sigma}_{\epsilon}^{\rm 2},$ test statistic has t distribution instead of normal,

$$t\equiv rac{\hat{eta}_j-eta_j^*}{\hat{o}_\epsilon/\sqrt{\sum_{i=1}^n ilde{x}_{j,i}^2}}\sim t\left(n-(k+1)
ight)$$

- P-value: the probability of getting a regression estimate as or more "interesting" than the one we have
 - As or more interesting = as far or further away from β_i^*
 - If we are only interested when β̂_j is on one side of β^{*}_j, then we have a one sided alternative, e.g. H_a : β_j > β^{*}_i
 - If we are equally interested in either direction, then $H_a: \beta_j \neq \beta_j^*$

Paul Schrimpf

- Setup Expected val Variance
- Distribution

Inference

- Example: growth, GDP, and schooling Confidence intervals
- Example: Kearney and Levine (2012)
- Testing hypotheses involving multiple coefficients
- Example: Aron-Dine, Einav, and Finkelstein (2013)

References

Paul Schrimpf

- Setup Expected val Variance
- Distribution

Inference

- Example: growth, GDP, and schooling Confidence intervals
- Example: Kearney and Levine (2012)
- Testing hypotheses involving multiple coefficients
- Example: Aron-Dine, Einav, and Finkelstein (2013)

References

Paul Schrimpf

- Setup
- Expected value
- Variance
- Efficiency
- Distribution

Inference

- Example: growth, GDP, and schooling Confidence intervals
- Example: Kearney and Levine (2012)
- Testing hypotheses involving multiple coefficients
- Example: Aron-Dine, Einav, and Finkelstein (2013)

References

Inference with normal errors

- One-sided p-value: $p = F_{t,n-k-1}(-|t|) = 1 F_{t,n-k-1}(|t|)$
- Two-sided p-value:

$$p = 2F_{t,n-k-1}(-|t|) = 2(1 - F_{t,n-k-1}(|t|))$$

- Interpretation:
 - The probability of getting an estimate as strange as the one we have if the null hypothesis is true.
 - It is *not* about the probability of β_j being any particular value. β_j is not a random variable. It is some unknown number. The data is what is random. In particular, the p-value is *not* the probability that that H_0 is false given the data.
- Hypothesis testing: we must make a decision (usually reject or fail to reject H₀)
 - Choose significance level α (usually 0.05 or 0.10)
 - Construct procedure such that if H₀ is true, we will incorrectly reject with probability α
 - Reject null if p-value less than α

Example: growth, GDP, and schooling

Properties of OLS in the multiple regression model

Paul Schrimpf

- Setup
- Expected value
- Variance
- Efficiency
- Distribution

Inference

Example: growth, GDP, and schooling

- Confidence intervals
- Example: Kearney and Levine (2012)
- Testing hypotheses involving multiple coefficients
- Example: Aron-Dine, Einav, and Finkelstein (2013)
- References

1Codo

Example: growth, GDP, and schooling

	Model 1	Model 2	Model 3	
(Intercept)	1.796***	0.958*	0.895*	
	(0.378)	(0.418)	(0.389)	
rgdp60	0.047		-0.485**	
	(0.095)		(0.146)	
yearsschool		0.247**	0.640***	
		(0.089)	(0.144)	
R ²	0.004	0.110	0.244	
Adj. R²	-0.012	0.095	0.219	
Num. obs.	65	65	65	
RMSE	1.908	1.804	1.676	

****p < 0.001, **p < 0.01, *p < 0.05

Table: Growth and GDP and education in 1960

Properties of OLS in the multiple regression model

Paul Schrimpf

Setup

Expected value

Variance

Efficiency

Distribution

Inference

Example: growth, GDP, and schooling

Confidence intervals

Example: Kearney and Levine (2012)

Testing hypotheses involving multiple coefficients

Example: Aron-Dine, Einav, and Finkelstein (2013)

References

Paul Schrimpf

Setup

- Expected value
- Variance
- Efficiency

Distribution

Inference

Example: growth, GDP, and schooling

Confidence intervals

Example: Kearney and Levine (2012)

Testing hypotheses involving multiple coefficients

Example: Aron-Dine, Einav, and Finkelstein (2013)

References

Confidence intervals

A 1 - α confidence interval, CI_{1-α} = [LB_{1-α}, UB_{1-α}] is an interval estimator for β_j such that

$$\mathsf{P}\left(\beta_{j}\in \mathsf{CI}_{1-\alpha}\right)=1-\alpha$$

($CI_{1-\alpha}$ is random; β_j is not)

• $1 - \alpha$ confidence interval

$$\hat{\beta}_j \pm \sqrt{\operatorname{Var}(\hat{\beta}_j)} \Phi^{-1}(\alpha/2)$$

• With estimated $\hat{\sigma}_{\epsilon}^2$, use t distribution instead of normal

$$\hat{\beta}_j \pm \sqrt{\widehat{\operatorname{Var}}(\hat{\beta}_j)} F_{t,n-2}^{-1}(\alpha/2)$$

 $F_{t,n-2}^{-1}$ = inverse CDF of t(n-2) distribution

Paul Schrimpf

- Setup
- Expected value
- Variance
- Efficiency
- Distribution
- Inference
- Example: growth, GDP, and schoolin
- Confidence intervals
- Example: Kearney and Levine (2012)
- Testing hypotheses involving multiple coefficients
- Example: Aron-Dine, Einav, and Finkelstein (2013)
- References

Confidence intervals

Paul Schrimpf

Setup

- Expected value
- Variance
- Efficiency
- Distributio
- Inference
- Example: growth, GDP, and schooling Confidence interva
- Example: Kearney and Levine (2012)
- Testing hypotheses involving multiple coefficients
- Example: Aron-Dine, Einav, and Finkelstein (2013)

References

Example: Kearney and Levine (2012)

Figure 1 International Comparison of Teen Birth Rates, 2009

Sources: UNECE Statistical Database and United Nations Demographic Yearbook, 2009-2010.

Paul Schrimpf

Setup

- Expected value
- Variance
- Efficiency
- Distributior
- Inference
- Example: growth, GDP, and schooling Confidence interva

Example: Kearney and Levine (2012)

- Testing hypotheses involving multiple coefficients
- Example: Aron-Dine, Einav, and Finkelstein (2013)
- References

Example: Kearney and Levine (2012)

Figure 2 Trends in the Teen Pregnancy, Abortion, and Birth Rate

Paul Schrimpf

Table 1

Setup

Expected value

Variance

Efficiency

Distribution

Inference

Example: growth, GDP, and schooling Confidence interval

Example: Kearney and Levine (2012)

Testing hypotheses involving multiple coefficients

Example: Aron-Dine, Einav, and Finkelstein (2013)

References

Example: Kearney and Levine (2012)

Teen Birth Rates (Birth per 1,000 Females Age 15–19), 2009

State	Teen birth rate	State	Teen birth rate	State	Teen birth rate	
Low		Moderate		High		
New Hampshire	16.4	Michigan	32.7	North Carolina	44.9	
Vermont	17.4	Oregon	33.1	Wyoming	45.0	
Massachusetts	19.6	Nebraska	34.6	Nevada	47.4	
Connecticut	21.0	Delaware	35.3	Washington, DC	47.7	
New Jersey	22.7	Idaho 35.9 Georgia		Georgia	47.7	
Minnesota	24.3	Illinois 36.1 South Carolina		South Carolina	49.1	
Maine	24.4	California	36.6	West Virginia	49.8	
New York	24.4	South Dakota	38.4	Arizona	50.6	
Rhode Island	26.8	Colorado	olorado 38.5 Tennessee		50.6	
North Dakota	27.9	Montana	38.5 Alabama		50.7	
Pennsylvania	29.3	Ohio	Ohio 38.9 Kentucky		51.3	
Wisconsin	29.4	Florida	ida 39.0 Louisiana		52.7	
Utah	30.7	Hawaii 40.9 Arkansas		Arkansas	59.2	
Virginia	31.0	Missouri	41.6	Oklahoma	60.1	
Maryland	31.3	Indiana	42.5	Texas	60.7	
Washington	31.9	Kansas	43.8	New Mexico	63.9	
Iowa	32.1	Alaska	44.5	Mississippi	64.2	

Paul Schrimpf

- Setup
- Expected value
- Variance
- Efficiency
- Distribution

Inference

Example: growth, GDP, and schooling Confidence interval

Example: Kearney and Levine (2012)

Testing hypotheses involving multiple coefficients

Example: Aron-Dine, Einav, and Finkelstein (2013)

References

Example: Kearney and Levine (2012)

Table 2

Rates of Pregnancy, Birth, and Abortion across Countries and States in the United States

	Pregnancies (per 1,000)	Births (per 1,000)	Abortions (per 1,000)	% of pregnancies aborted
Denmark (2003)	24	5	15	63.2
Germany (2003)	23	12	7	31.1
New Hampshire (2005)	33	18	11	33.3
United Kingdom (2003)	59	27	23	38.8
United States (2005)	70	40	19	27.1
Mississippi (2005)	85	61	11	12.9

Sources: State data are from Guttmacher Institute (2010). International birth data are from the UNECE statistical database. International abortion data are from Sedgh, Henshaw, Singh, Bankole, and Drescher (2007).

Paul Schrimpf

Setup

- Expected value
- Variance
- Efficiency
- Distribution
- Inference
- Example: growth, GDP, and schooling Confidence interva
- Example: Kearney and Levine (2012)
- Testing hypotheses involving multiple coefficients
- Example: Aron-Dine, Einav, and Finkelstein (2013)

References

Example: Kearney and Levine (2012)

Figure 4

Rates of Sexual Activity and Contraceptive Use among School-Aged (14-18) Girls

Source: Authors calculations from the 2007 and 2009 Youth Risky Behavior Surveillance survey state microdata.

Paul Schrimpf

Setup

Expected value

Variance

Efficiency

Distribution

Inference

Example: growth, GDP, and schooling Confidence interval

Example: Kearney and Levine (2012)

Testing hypotheses involving multiple coefficients

Example: Aron-Dine, Einav, and Finkelstein (2013)

References

Example: Kearney and Levine (2012)

Table 3 Mechanical Correlations with Teen Fertility

(standard errors in parentheses)

Sexual activity and use of any contraception		Sexual activity and specific forms of contraception		
% Any sexual activity in past 3 months	0.162 (0.017)	% Any sexual activity in past 3 months	0.151 (0.019)	
% Used any contraception if sexually active	-0.186 (0.030)	% Used pill if sexually active	-0.156 (0.028)	
		% Used condom if sexually active	-0.120 (0.023)	
		% Used Depo or other if sexually active	-0.018 (0.043)	
		% Used withdrawal if sexually active	0.022 (0.062)	
<i>R</i> ² Number of states∕years	$0.64 \\ 167$	R^2 Number of states/years	$0.71 \\ 167$	

Source: Authors using data from the Youth Risky Behavior Surveillance survey and Vital Statistics natility data.

Notes: We estimate regression models of the state-year teen birth rate as a function of measures of sexual activity and contraceptive use by state-year. The dependent variable in each model is the probability of giving birth as a teen in a year. The independent variables are share of teenagers in a state in a given year who have engaged in sexual activity in the previous three months along with measures of alternative contraceptive choices. All regressions are weighted by the population of women age 15 to 19 in each state-year. Withdrawal is counted as a form of contraception.

Paul Schrimpf

- Setup
- Expected value
- Variance
- Efficiency
- Distribution

Inference

Example: growth, GDP, and schooling Confidence interval

Example: Kearney and Levine (2012)

Testing hypotheses involving multiple coefficients

Example: Aron-Dine, Einav, and Finkelstein (2013)

References

Hypothesis tests for multiple coefficients

- Sometimes we want to test a hypothesis that involves multiple coefficients
 - 1 Single restriction on a linear combinations of coefficients, e.g.

$$H_0:\beta_1=\beta_2$$

same as

$$H_0:\beta_1-\beta_2=0$$

2 Multiple restrictions, e.g.

$$H_0$$
: $\beta_1 = 0$ and $\beta_2 = 0$

Paul Schrimpf

- Setup
- Expected value
- Variance
- Efficiency
- Distribution

Inference

Example: growth, GDP, and schooling Confidence interval

Example: Kearney and Levine (2012)

Testing hypotheses involving multiple coefficients

Example: Aron-Dine, Einav, and Finkelstein (2013)

References

Hypothesis tests for linear combination of coefficients

- $H_0: \lambda_1 \beta_1 + \cdots + \lambda_k \beta_k = 0$
- To simplify notation, focus on $H_0: \beta_1 \beta_2 = 0$
- We know that

$$\begin{pmatrix} \hat{\beta}_1 \\ \hat{\beta}_2 \end{pmatrix} \sim N\left(\begin{pmatrix} \beta_1 \\ \beta_2 \end{pmatrix}, \begin{pmatrix} \operatorname{Var}(\hat{\beta}_1) & \operatorname{Cov}(\hat{\beta}_1, \hat{\beta}_2) \\ \operatorname{Cov}(\hat{\beta}_1, \hat{\beta}_2) & \operatorname{Var}(\hat{\beta}_2) \end{pmatrix} \right)$$

so

$$\hat{eta}_1 - \hat{eta}_2 \sim N\left(eta_1 - eta_2, ext{Var}(\hat{eta}_1) + ext{Var}(\hat{eta}_2) - 2 ext{Cov}(\hat{eta}_1, \hat{eta}_2)
ight)$$

and under H_0 : $\beta_1 = \beta_2$,

$$t \equiv \frac{\hat{\beta}_1 - \hat{\beta}_2}{\sqrt{\widehat{\operatorname{Var}}(\hat{\beta}_1) + \widehat{\operatorname{Var}}(\hat{\beta}_2) - 2\widehat{\operatorname{Cov}}(\hat{\beta}_1, \hat{\beta}_2)}} \sim t(n-k-1)$$

Paul Schrimpf

Setup

Expected value

.

Variance

Efficiency

Distribution

Inference

Example: growth, GDP, and schooling Confidence interval

Example: Kearney and Levine (2012)

Testing hypotheses involving multiple coefficients

Example: Aron-Dine, Einav, and Finkelstein (2013)

References

Hypothesis tests for linear combination of coefficients

• Example: Kearney and Levine (2012) test $H_0: \beta_{sex} + \beta_{protection} = 0$

$$t = \frac{\hat{\beta}_{sex} + \hat{\beta}_{protection}}{\sqrt{\widehat{\operatorname{Var}}(\hat{\beta}_1) + \widehat{\operatorname{Var}}(\hat{\beta}_2) + 2\widehat{\operatorname{Cov}}(\hat{\beta}_1, \hat{\beta}_2)}}$$
$$= \frac{0.162 + -0.186}{\sqrt{0.017^2 + 0.03^2 + \operatorname{Cov}}}$$

• Cov not reported, but we can consider the possible range

• Cov = 0:
$$t = \frac{-0.024}{0.034} = 0.68$$

• Cov = $+\sqrt{\widehat{\operatorname{Var}}(\hat{\beta}_1)\widehat{\operatorname{Var}}(\hat{\beta}_2)}$: $t = \frac{-0.024}{0.047} = 0.51$
• Cov = $-\sqrt{\widehat{\operatorname{Var}}(\hat{\beta}_1)\widehat{\operatorname{Var}}(\hat{\beta}_2)}$: $t = \frac{-0.024}{0.013} = 1.85$

Paul Schrimpf

- Setup
- Expected value
- Variance
- Efficiency
- Distribution

Inference

- Example: growth, GDP, and schooling Confidence interval
- Example: Kearney and Levine (2012)

Testing hypotheses involving multiple coefficients

Example: Aron-Dine, Einav, and Finkelstein (2013)

References

Hypothesis tests for linear combination of coefficients

 Another approach to testing linear combinations of coefficients is to re-specify the model so that the null hypothesis is about a single coefficient

• E.g. instead of

$$y_i = \beta_0 + \beta_1 x_{1,i} + \beta_2 x_{2,i} + \epsilon_i$$

with H_0 : $\beta_1 - \beta_2 = 0$, write

$$y_{i} = \beta_{0} + \underbrace{\beta_{1}}_{=\theta_{1}} (x_{1,i} + x_{2,i}) + \underbrace{(\beta_{2} - \beta_{1})}_{=\theta_{2}} x_{2,i} + \epsilon_{i}$$
$$= \theta_{0} + \theta_{1} (x_{1,i} + x_{2,i}) + \theta_{2} x_{2,i} + \epsilon_{i}$$

then test H_0 : $\theta_2 = 0$.

Paul Schrimpf

- Setup
- Expected value
- Variance
- Efficiency
- Distribution

Inference

- Example: growth, GDP, and schooling Confidence interval:
- Example: Kearney and Levine (2012)

Testing hypotheses involving multiple coefficients

Example: Aron-Dine, Einav, and Finkelstein (2013)

References

Testing multiple restrictions

What if we have

$$y_i = \beta_0 + \beta_1 x_{1,i} + \beta_2 x_{2,i} + \epsilon_i$$

and want to test
$$H_0: \beta_1 = 0$$
 and $\beta_2 = 0$?

- Cannot test one at time:
 - Suppose test H_0 : $\beta_1 = 0$ and H'_0 : $\beta_2 = 0$ separately at 5% significance level
 - If H_0 true and $Cov(\hat{\beta}_1, \hat{\beta}_2) = 0$, then P(fail to reject both) = 0.95 × 0.95 = 0.9025, so doing separate tests we will reject too often
- Can use joint normal distribution of $\hat{\beta}_1$ and $\hat{\beta}_2$
 - p-value
 - = P(estimates as far or further from null hypothesis)
 - Need to take into account correlation of \hat{eta}_1 and \hat{eta}_2

Paul Schrimpf

Setup

Expected value

Variance

Efficiency

Distribution

Inference

Example: growth, GDP, and schooling Confidence intervals

Example: Kearney and Levine (2012)

Testing hypotheses involving multiple coefficients

Example: Aron-Dine, Einav, and Finkelstein (2013)

References

Testing multiple restrictions

• F-statistic

$$F = \frac{1}{2} \begin{pmatrix} \hat{\beta}_1 \\ \hat{\beta}_2 \end{pmatrix}^T \begin{pmatrix} \widehat{\operatorname{Var}}(\hat{\beta}_1) & \widehat{\operatorname{Cov}}(\hat{\beta}_1, \hat{\beta}_2) \\ \widehat{\operatorname{Cov}}(\hat{\beta}_1, \hat{\beta}_2) & \widehat{\operatorname{Var}}(\hat{\beta}_2) \end{pmatrix}^{-1} \begin{pmatrix} \hat{\beta}_1 \\ \hat{\beta}_2 \end{pmatrix}$$
$$= \frac{1}{2} \frac{\hat{\beta}_1^2 \widehat{\operatorname{Var}}(\hat{\beta}_2) + \hat{\beta}_2^2 \widehat{\operatorname{Var}}(\hat{\beta}_1) - 2\widehat{\operatorname{Cov}}(\hat{\beta}_1, \hat{\beta}_2)\hat{\beta}_1\hat{\beta}_2}{\widehat{\operatorname{Var}}(\hat{\beta}_1)\widehat{\operatorname{Var}}(\hat{\beta}_2) - \widehat{\operatorname{Cov}}(\hat{\beta}_1, \hat{\beta}_2)^2}$$

has an F(2, n-2) distribution

- *kF*(*k*,∞) = χ²(*k*) = distribution of the sum of *k* independent standard normal random variables each squared
- This *F* is valid even with heteroskedasticity and dependent observations as long as the variances are calculated correctly

Paul Schrimpf

- Setup
- Expected value
- Variance
- Efficiency
- Distributior
- Inference
- Example: growth, GDP, and schooling Confidence intervals
- Example: Kearney and Levine (2012)

Testing hypotheses involving multiple coefficients

Example: Aron-Dine, Einav, and Finkelstein (2013)

References

F(2, n-2) distributions 1.00 -0.75 -- 05.0 -0.25 -0.00 -2 3 F

Degrees of freedom — 10 — 20 50 — 100 — infinity

Paul Schrimpf

- Setup
- Expected value
- Variance
- Efficiency
- Distribution
- Inference
- Example: growth, GDP, and schooling Confidence interva
- Example: Kearney and Levine (2012)

Testing hypotheses involving multiple coefficients

- Example: Aron-Dine, Einav, and Finkelstein (2013)
- References

Standard bivariate normal density

Paul Schrimpf

- Setup
- Expected value
- Variance
- Efficiency
- Distribution

Inference

- Example: growth, GDP, and schooling Confidence interval
- Example: Kearney and Levine (2012)

Testing hypotheses involving multiple coefficients

Example: Aron-Dine, Einav, and Finkelstein (2013)

References

1.00 -0.75 b-value 0.25 -0.00 -2 3 F

$F(2,\infty)$ distribution

Paul Schrimpf

- Setup
- Expected value
- Variance
- Efficiency
- Distribution
- Inference
- Example: growth, GDP, and schooling Confidence interva
- Example: Kearney and Levine (2012)

Testing hypotheses involving multiple coefficients

- Example: Aron-Dine, Einav, and Finkelstein (2013)
- References

Bivariate normal density with correlation

Paul Schrimpf

- Setup
- Expected value
- Variance
- Efficiency
- Distribution

Inference

- Example: growth, GDP, and schooling Confidence intervals
- Example: Kearney and Levine (2012)

Testing hypotheses involving multiple coefficients

Example: Aron-Dine, Einav, and Finkelstein (2013)

References

Testing multiple restrictions: alternative form of *F* statistic

• We have an unrestricted model:

$$y_i = \beta_0 + \beta_1 x_{1,i} + \cdots + \beta_k x_{k,i} + \epsilon_i$$

and a restricted model that imposes $H_0: \beta_{k-q+1} = 0, ..., \beta_k = 0$

- Estimate both models, compute sum of squared residuals call *SSR*_{ur} and *SSR*_r
- Calculate F statistics

$$F \equiv \frac{(SSR_r - SSR_{ur})/q}{SSR_{ur}/(n-k-1)}$$

- $F \sim F(q, n-k-1)$, use to calculate p-values
- This form of *F* is only valid with homoskedasticity and independence

Paul Schrimpf

Expected valu

Variance

Efficiency

Distribution

Inference

Example: growth, GDP, and schooling Confidence interval

Example: Kearney and Levine (2012)

Testing hypotheses involving multiple coefficients

Example: Aron-Dine, Einav, and Finkelstein (2013)

References

Aron-Dine, Einav, and Finkelstein (2013)

Plans' Effects on Utilization

	Total spending ^a		Inpatient spending		Outpatient spending	
	Share	Spending	Share	Spending	Share	Spending
	with any	in \$	with any	in \$	with any	in \$
	(1)	(2)	(3)	(4)	(5)	(6)
Constant (Free Care Plan, $N = 6,840$)	0.931	2,170	0.103	827	0.930	1,343
	(0.006)	(78)	(0.004)	(60)	(0.006)	(35)
25% Coinsurance $(N=2,361)$	-0.079	-648	-0.022	-229	-0.078	-420
	(0.015)	(152)	(0.009)	(116)	(0.015)	(62)
Mixed Coinsurance $(N = 1,702)$	-0.053	-377	-0.018	21	-0.053	-398
	(0.015)	(178)	(0.009)	(141)	(0.016)	(70)
50% Coinsurance $(N=1,401)$	-0.100	-535	-0.031	4	-0.100	-539
	(0.019)	(283)	(0.009)	(265)	(0.019)	(77)
Individual Deductible $(N = 4,175)$	-0.124	-473	-0.006	-67	-0.125	-406
	(0.012)	(121)	(0.007)	(98)	(0.012)	(52)
95% Coinsurance $(N=3,724)$	-0.170 (0.015)	-845 (119)	-0.024 (0.007)	-217 (91)	-0.171 (0.016)	-629 (50)
p-value: all differences from Free Care = 0	< 0.0001	< 0.0001	0.0008	0.1540	< 0.0001	< 0.0001

References

Properties of OLS in the multiple regression model

Paul Schrimpf

Setup

Expected value

Variance

Efficiency

Distribution

Inference

Example: growth, GDP, and schooling Confidence intervals

Example: Kearney and Levine (2012)

Testing hypotheses involving multiple coefficients

Example: Aron-Dine, Einav, and Finkelstein (2013)

References

Angrist, J.D. and J.S. Pischke. 2009. *Mostly harmless* econometrics: An empiricist's companion. Princeton University Press.

Angrist, Joshua D and Jörn-Steffen Pischke. 2014. *Mastering* '*Metrics: The Path from Cause to Effect*. Princeton University Press.

Aron-Dine, Aviva, Liran Einav, and Amy Finkelstein. 2013. "The RAND Health Insurance Experiment, Three Decades Later." Journal of Economic Perspectives 27 (1):197–222. URL http://www.aeaweb.org/articles.php?id=10.1257/ jep.27.1.197.

Baltagi, BH. 2002. *Econometrics*. Springer, New York. URL http:

//gw2jh3xr2c.search.serialssolutions.com/?sid= sersol&SS_jc=TC0001086635&title=Econometrics.

References

model Paul Schrimpf

Properties of OLS in the

multiple regression

etup

Variance

Efficiency

Distribution

Inference

Example: growth, GDP, and schooling Confidence intervals

Example: Kearney and Levine (2012)

Testing hypotheses involving multiple coefficients

Example: Aron-Dine, Einav, and Finkelstein (2013)

References

Bierens, Herman J. 2010. "Multivariate Linear Regression." URL http://personal.psu.edu/hxb11/LINREG3.PDF.

Kearney, Melissa S. and Phillip B. Levine. 2012. "Why Is the Teen Birth Rate in the United States So High and Why Does It Matter?" *Journal of Economic Perspectives* 26 (2):141–63. URL http://www.aeaweb.org/articles? id=10.1257/jep.26.2.141.

Stock, J.H. and M.W. Watson. 2009. *Introduction to Econometrics, 2/E*. Addison-Wesley.

Wooldridge, J.M. 2013. *Introductory econometrics: A modern approach*. South-Western.