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1 Motivation

Motivation

• Our six regression assumptions,

MLR.1 (linear model)

MLR.2 (independence) {(x1,i, x2,i, yi)}n
i=1 is an independent random sample

MLR.3 (rank condition) no multicollinearity: no xj,i is constant and there is no exact linear
relationship among the xj,i

MLR.4 (exogeneity) E[εi|x1,i, ..., xk,i] = 0
MLR.5 (homoskedasticity) Var(εi|X ) = σ2

ε

MLR.6 εi|X ∼ N(0, σ2
ε )
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especially MLR.6 (and to a lesser extent MLR.1 and MLR.4) are often implausible

• Requiring OLS to only be consistent instead of unbiased will let us relax MLR.1 and MLR.4

• We will use the Central limit theorem to relax assumption MLR.6 and still perform inference
(t-tests and F -tests)

Review of asymptotic inference

• Idea: use limit of distribution of estimator as N→∞ to approximate finite sample distribution
of estimator

• Notation:

– Sequence of samples of increasing size n, Sn = {(y1, x1), ..., (yn, xn)}
– Estimator for each sample θ̂ (implicitly depends on n)

2 Consistency

Review of convergence in probability

• θ̂ converges in probability to θ if for every ε > 0,

lim
n→∞

P
(∣∣∣θ̂ − θ

∣∣∣ > ε
)

= 0

denote by plim θ̂ = θ or θ̂ p→ θ

• Show using a law of large numbers: if y1, ..., ynare i.i.d. with mean µ; or if y1, ..., yn have finite

expectations and limn→∞
1
n2
∑n

i=1 Var(yi) = 0 is finite, then ȳ p→ E[Y ]

• Properties:

– plim g(θ̂) = g(plim θ̂) if g is continuous (continuous mapping theorem (CMT))

– If θ̂ p→ θ and ζ̂ p→ ζ, then (Slutsky’s lemma)

* θ̂ + ζ̂ p→ θ + ζ
* θ̂ζ̂ p→ θζ
* θ̂

ζ̂
p→ θ

ζ

• θ̂ is a consistent estimate of θ if θ̂ p→ θ
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A law of large numbers gives conditions such that ȳ p→ E[Y ]. For this course, you do not need to
worry about the conditions needed to make a law of large numbers hold. You can just always assume
that ȳ p→ E[Y ]. However, in case you’re curious, the remainder of this paragraph will go into more detail.
The simplest law of large numbers (called Khinchine’s law of large numbers) says that if yi are iid with
E[Y ] finite, then ȳ p→ E[Y ]. The assumption that yi are iid can be relaxed if more assumptions are made
about the moments of yi. The “or” part of the bullet above is called Chebyshev’s law of large numbers. It
says that if yi are independent (but not necessarily identically distributed), E[yi] = µi < ∞ for all i, and
limn→∞

1
n2
∑n

i=1 Var(yi) = 0, then plim(ȳn − 1
n
∑n

i=1µi) = 0. In the next lecture, when we deal with
heteroskedasticity, we will be using this law of large of numbers. There are also versions of the law of
large numbers for when yi are not independent.

Consistency of OLS

• Bivariate regression of y on x

• Slope:

β̂1 =
∑n

i=1(xi − x̄)yi∑n
i=1(xi − x̄)2 =

1
n
∑n

i=1(xi − x̄)yi
1
n
∑n

i=1(xi − x̄)2

• Working with the numerator:

1
n

n∑

i=1
(xi − x̄)yi =

(
1
n

n∑

i=1
xiyi

)
− x̄ 1

n

n∑

i=1
yi

=
(

1
n

n∑

i=1
xiyi

)
−
(

1
n

n∑

i=1
xi

)(
1
n

n∑

i=1
yi

)

using LLN
p→ E[xy] − E[x ]E[y] = Cov(x, y)

• Similarly
1
n

n∑

i=1
(xi − x̄)2 p→ Var(x)

• Then by Slutsky’s lemma, β̂1
p→ Cov(x,y)

Var(x)

• Recall that Cov(x,y)
Var(x) is equal to the population regression coefficient

– The bivariate population regression of Y on X is

(β0, β1) = arg min
b0,b1

E[(Y − b0 − b1X )2]

i.e. β1 = Cov(x,y)
Var(x) and β0 = E[y] − β1E[x ]

• Thus, OLS consistently estimates the population regression under very weak assumptions
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– Weonly need to assume 1
n
∑n

i=1xi
p→ E[x ], 1

n
∑n

i=1yi
p→ E[y], 1

n
∑n

i=1x2
i

p→ E[x2], and 1
n
∑n

i=1xiyi
p→ E[xy].

There are multiple versions of the law of large numbers that would make this true. The
details of LLNs are not important for this course, so we will be slightly imprecise and
say that this is true assuming xi and yi have finite second moments and are not too
dependent

Theorem 1. Assume yi, xi1, ..., xik have finite second moments and observations are not too dependent then
OLS consistently estimates the population regression of y on x1, …, xk

• Recall that the population regression is the minimal mean square error linear approximation
to the conditional expectation function, i.e.

arg min
b0,b1

E
[
(Y − (b0 + b1X ))2

]

︸ ︷︷ ︸
population regression

= arg min
b0,b1

EX

[
(E[Y |X ] − (b0 + b1X ))2

]

︸ ︷︷ ︸
MSE of linear approximation to E[Y |X ]

• Population regression (and the conditional expectation function) might not be (and often is
not) the model you want to estimate

• Population regression (and the conditional expectation function) are not causal

• If we have a true linear model,

yi = β0 + β1x1,i + · · · + βkxk,i + εi

then OLS is consistent for βj if E[εixi] = 0

– E[εixi] = 0 is a weaker assumption than E[εi|xi] = 0.

Example: nonlinear CEF: β̂ biased but consistent estimator of population regression
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Code

When is OLS not consistent?

• OLS is always a consistent estimator of the population regression

• OLSmight not be consistent if themodel wewant to estimate is not the population regression

• Examples:

– Omitted variables: want to estimate

yi = β0 + β1x1,i + β2x2,i + εi

but x2,i not observed, so estimate

yi = βs
0 + βs

1x1,i + ui

instead

– Causal effect: want slope to be the causal effect of x on y
– Economic model: e.g. production function

3 Asymptotic normality

Review of central limit theorem

• Let Fn be the CDF of θ̂ and W be a random variable with CDF F

• θ̂ converges in distribution to W , written θ̂ d→ W , if limn→∞ Fn(x) = F (x) for all x where F is
continuous

• Central limit theorem: Let {y1, ..., yn} be i.i.d. with mean µ and variance σ2 then Zn =√
n (ȳn − µ) converges in distribution to a N(0, σ2) random variable

– As with the LLN, the i.i.d. condition can be relaxed if additional moment conditions are
added; we will not worry too much about the exact assumptions needed

– For non-i.i.d. data, if E[yi] = µ for all i and v = limn→∞ E
[( 1

n
∑n

i=1yi − µ
)2]

exists (and

some technical conditions are met) then

√
n (ȳn − µ) d→ N(0, v )

• Properties:

– If θ̂ d→ W , then g(θ̂) d→ g(W ) for continuous g (continuous mapping theorem (CMT))

6
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– Slutsky’s theorem: If θ̂ d→ W and ζ̂ p→ c, then (i) θ̂ + ζ̂ d→ W + c, (ii) θ̂ζ̂ d→ cW , and (iii)

θ̂/ζ̂ d→ W /c

Demonstration of CLT

1 N <− c ( 1 , 2 , 5 , 1 0 , 2 0 , 5 0 , 1 0 0 )
2 s imulat ions <− 5000
3 means <− matrix ( 0 , nrow= simulat ions , ncol = length (N) )
4 fo r ( i in 1 : length (N) ) {
5 n <− N[ i ]
6 dat <− matrix ( run i f ( n* s imulat ions ) ,
7 nrow= simulat ions , ncol =n )
8 means [ , i ] <− ( apply ( dat , 1 , mean) − 0 . 5 ) * sq r t ( n )
9 }
10

11 # P lo t t i n g
12 df <− data . frame (means )
13 df $n <− N
14 df <− melt ( df )
15 c l t P l o t <− ggplot ( data =df , aes ( x = value , f i l l = v a r i a b l e ) ) +
16 geom_histogram ( alpha =0 . 2 , pos i t i on =” i d en t i t y ” ) +
17 sca l e _ x _ continuous (name= express ion ( sq r t ( n ) ( bar ( x)−mu) ) ) +
18 sca l e _ f i l l _ brewer ( type =” d iv ” , pa l e t t e = ”RdYlGn” ,
19 name=”N” , l a b e l =N)
20 c l t P l o t

Demonstration of CLT
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Asymptotic normality of OLS

• Bivariate regression of y on x

• Slope:

β̂1 =
∑n

i=1(xi − x̄)yi∑n
i=1(xi − x̄)2 =

1
n
∑n

i=1(xi − x̄)yi
1
n
∑n

i=1(xi − x̄)2

8



• Consider
√

n(β̂1 − β1), where β1 is the population regression coefficient

• Can always write y in terms of the population regression

yi = β0 + β1xi + εi

where by construction E[εixi] = 0

• Then,

√
n(β̂1 − β1) =

√
n
(

1
n
∑n

i=1(xi − x̄)yi
1
n
∑n

i=1(xi − x̄)2
− β1

)

=
√

n
(

1
n
∑n

i=1(xi − x̄)(β0 + β1xi + εi)
1
n
∑n

i=1(xi − x̄)2
− β1

)

=
√

n 1
n
∑n

i=1(xi − x̄)εi
1
n
∑n

i=1(xi − x̄)2

• Already showed that 1
n
∑n

i=1(xi − x̄)2 p→ Var(x)

• Need to apply CLT to
√

n 1
n
∑n

i=1(xi − x̄)εi

– E[(xi − x̄)εi] = 0
– With homoskedasiticity,

Var ((xi − x̄)εi) =E [Var ((xi − x̄)εi|x)] + Var



E[(xi − x̄)εi|x ]︸ ︷︷ ︸
=0





=E
[
(xi − x̄)2σ2

ε

]

≈Var(x)σ2
ε

– Can conclude that
1√
n

n∑

i=1
(xi − x̄)εi

d→ N(0, Var(x)σ2
ε )

• By Slutsky’s theorem,

√
n(β̂1 − β1) =

√
n 1

n
∑n

i=1(xi − x̄)εi
1
n
∑n

i=1(xi − x̄)2

d→ N
(

0, σ2
ε

Var(x)

)

or equivalently,
β̂1 − β1√

σ2
ε

nVar(x)

d→ N(0, 1)

• Again by slutsky’s lemma can replace σ2
ε and Var(x) by consistent estimators, and

β̂1 − β1√
σ̂2

ε∑n
i=1(xi−x̄)2

d→ N(0, 1)

i.e. usual t-statistic is asymptotically normal
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• Similar reasoning applies to multivariate regression

Theorem 2. Assume MLR.1-3, MLR.5, and MLR.4’: E[εixi,j ] = 0∀j , then OLS is asymptotically normal with

√
n




β̂0 − β0

...
β̂k − βk



 d→ N (0, Σ)

and in particular
β̂j − βj√

σ̂2
ε∑n

i=1x̃2
ji

d→ N(0, 1)

Demonstration

10
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3.1 Large sample inference

Large sample inference
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• OLS asymptotically normal ⇒ in large sample we can use the usual t and F statistics for
inference without assuming εi|X ∼ N

• E.g. test H0 : βj = β∗
j against Ha : βj ̸= β∗

j at significance level α in

yi = β0 + β1x1,i + · · · + βkxk,i + εi

assuming MLR.1-3, MLR.4’, and MLR.5

– t-statistic:

t̂ =
β̂j − β∗

j√
σ̂2

ε∑n
i=1x̃2

ji

d→ N(0, 1)

– p-value:
p = P(|t| ≥ |t̂|) = 2Φ(−|t̂|)

* Since limn→∞ Ft,n−k−1(x) = Φ(x) it is also valid to use t-distribution CDF instead of
normal distribution CDF

– Reject H0 if p < α
* Because p-value is based on asymptotic distribution instead of exact finite sample
distribution, the test will not exactly have the correct size

P(reject H0 if it is true) ̸= α

however it will have the correct size for large samples

lim
n→∞

P(reject H0 if it is true) = α

Large sample inference
t distribution as degrees of freedom increases

PDF CDF
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Large sample inference

• E.g. 95% confidence interval for βj

– We know
β̂j − βj√

σ̂2
ε∑n

i=1x̃2
ji

d→ N(0, 1)

so

P



Φ−1(0.025) ≤
β̂j − βj√

σ̂2
ε∑n

i=1x̃2
ji

≤ Φ−1(0.975)



→0.95

P




β̂j +

√
σ̂2

ε∑n
i=1x̃2

ji
Φ−1(0.025) ≤ βj ≤

≤ β̂j +
√

σ̂2
ε∑n

i=1x̃2
ji
Φ−1(0.975)



→0.95

and we can use the same confidence interval as before

β̂j ± s.e.(β̂j )Φ−1(0.025)

* As above, using F−1
t,n−k−1 instead of Φ−1 is valid

* As above, the confidence interval is only guaranteed to have correct coverage prob-
ability in large samples

• E.g. testing H0 : β2 = 0 and β3 = 0 against Ha : β2 ̸= 0 or β3 ̸= 0 in

yi = β0 + β1x1,i + β2x2,i + β3x3,i + εi

– F -statistic (LR version):

F̂ = (SSRr − SSRur)/q
SSRur/(n − k − 1)

where

* SSRr = sum of squared residuals from restricted model, i.e. regressing yi on just
x1,i

* SSRur = sum of squared residuals from unrestricted model, i.e. regressing yi on
x1,i, x2,i, and x3,i

* q = 2 = number of restrictions

– Asymptotic normality of β̂ implies

qF d→ χ2(q)

– Asymptotic p-value:
p = P(F ≥ F̂ ) = 1 − Fχ2(q)(qF̂ )

where Fχ2(q) is CDF of χ2(q) distribution
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* Since limn→∞ FF (q,n−k−1)(x) = Fχ2(q)(qx), can use F distribution instead of χ2

– Same is true for Wald version of F -statistic

F̂ = 1
q

(
β̂2
β̂3

)T ( V̂ar(β̂2) Ĉov(β̂2, β̂3)
Ĉov(β̂2, β̂3) V̂ar(β̂3)

)−1(
β̂2
β̂3

)

= 1
q

β̂2
2 V̂ar(β̂3) + β̂3V̂ar(β̂2) − 2Ĉov(β̂2, β̂3)β̂2β̂3

V̂ar(β̂2)V̂ar(β̂3) − Ĉov(β̂2, β̂3)2

Large sample inference
F (2, df ) distribution as degrees of freedom increases
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Large sample inference
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F (5, df ) distribution as degrees of freedom increases
PDF CDF
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F-test in R

1 rm( l i s t = l s ( ) )
2 l i b r a r y ( lmtest ) ## for l r t e s t ( ) and waldtest ( )
3

4 k <− 3
5 n <− 1000
6 beta <− matrix ( c ( 1 , 1 , 0 , 0 ) , ncol = 1 )
7 x <− matrix ( rnorm (n*k ) , nrow=n , ncol =k )
8 e <− run i f ( n ) *2−1 ## U( − 1 , 1 )
9 y <− cbind ( 1 , x ) %*% beta + e
10

11 ## LR form of F−t e s t
12 df <− data . frame ( y , x )
13 unre s t r i c t ed <− lm ( y ~ X1 + X2 + X3 , data = df )
14 r e s t r i c t e d <− lm ( y ~ X1 , data = df )
15 F <− ( sum( r e s t r i c t e d $ r e s i dua l s ^2) −
16 sum( unre s t r i c t ed $ r e s i dua l s ^2) ) / 2 /
17 ( sum( unre s t r i c t ed $ r e s i dua l s ^2) / ( n−k−1 ) )
18 p <− 1−pf ( F , 2 , n−k−1)
19 ## or use anova
20 anova ( r e s t r i c t e d , un re s t r i c t ed )
21 ## or l r t e s t ( uses chi2 ins tead of F d i s t r i b u t i o n )
22 l r t e s t ( unres t r i c ted , r e s t r i c t e d )
23

24 ## Wald form
25 Fw <− 0 .5 * coef ( un re s t r i c t ed ) [ c ( ” X2 ” , ” X3 ” ) ] %*%
26 so l ve ( vcov ( un re s t r i c t ed ) [ c ( ” X2 ” , ” X3 ” ) ,
27 c ( ” X2 ” , ” X3 ” ) ] ) %*%
28 coef ( un re s t r i c t ed ) [ c ( ” X2 ” , ” X3 ” ) ]

15



29 pw <− 1−pf (Fw, 2 , n−k−1)
30 ## Should have F == Fw and p==pw
31

32 ## automated Wald t e s t
33 waldtest ( unres t r i c ted , r e s t r i c t e d , t e s t = ”F ” )

Code
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