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Introduction

• In the linear regression model,
yi = β0 + β1xi + εi

the most important assumption for β̂OLS
1 to be consistent is exogeneity,

E[xiεi] = 0

• Exogeneity is often an implausible assumption

• If we have an additional variable zi with certain properties than we can still consistently
estimate β1 even when E[xiεi] ̸= 0

• New notation: β̂OLS instead of just β̂ for OLS estimates

To decide whether or not exogeneity is plausible, we must first be clear about what model we are
trying to estimate. If we are simply interested in the population regression of y on x , then exogeneity
automatically holds and OLS is consistent. However, much of the time we not interested in a population
regression. Instead, we want to get at the causal relationship between or y and x or we want the linear
model to represent some economic model (like a demand function of production function). In those cases,
exogeneity is a strong and often implausible assumption.

As an example, we will investigate the causal effect of education on wages.

2 Example: return to education

Example: return to education

• Education (si) and log wages (log wi)

log wi = β0 + β1si + εi

• Suppose we want the causal effect of education on wages – then we want to hold constant
everything else that affects wages

• We can never hold everything else constant, but we know that

plim β̂OLS
1 = β1 + Cov(si, εi)

Var(si)

so as long as whatever we are not holding constant (i.e. εi) is uncorrelated with si we are
okay

• But it is very likely that there is unobserved ability, ai, (IQ, work ethic, etc) that affects both
education and wages

log wi = β0 + β1si + β2ai + ui︸ ︷︷ ︸
=εi
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AK Card
(Intercept) 4.6344∗∗∗ 5.5709∗∗∗

(0.0030) (0.0391)
educ 0.0814∗∗∗ 0.0521∗∗∗

(0.0002) (0.0029)
R2 0.1371 0.0987
Adj. R2 0.1371 0.0984
Num. obs. 1063634 3010
RMSE 0.6681 0.4214
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

Table 1: OLS estimates

• Then,

plim β̂OLS
1 = β1 + β2

Cov(si, ai)
Var(si)

+ Cov(si, ui)
Var(si)

OLS estimates of return to education

• Data from two papers:

– Angrist and Krueger (1991): 1970 & 1980 U.S. census data 5% public use sample, men age
30-50

– Card (1993): NLS young men 1966 cohort (wages measured in 1976 when age 24-34)

• We will start by looking at the OLS estimates even though we know that they are not consis-
tent estimates of the causal effect of education on wages

OLS estimates of return to education

IV estimates of return to education

log wi = β0 + β1si + εi
0Code
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• Suppose we observe a variable zi such that E[ziεi] = 0, then

0 =E[ziε]
=E [zi (log wi − β0 − β1si)] (1)

we also know E[εi] = 0, so

0 = E [(log wi − β0 − β1si)] (2)

replace the E[] with 1
n
∑n

i=1 and we have two equations to estimate two parameters β0, β1

0 = 1
n

n∑

i=1
zi
(

log wi − β̂IV
0 − β̂IV

1 si
)

(3)

0 = 1
n

n∑

i=1

(
log wi − β̂IV

0 − β̂IV
1 si
)

(4)

– Note similarity to OLS first order conditions

– This approach to estimation — start with an assumption about some expectations (mo-
ments) being zero and use them to derive an equation to use for estimation — is called
the (generalized) method of moments

– (1) and (2) are called the (population) moment conditions

– (3) and (4) are called the sample (or empirical) moment conditions

• zi is called an instrumental variable

• The solution to (3) and (4) is

β̂IV
1 =

1
n
∑n

i=1(zi − z̄) log wi
1
n
∑n

i=1(zi − z̄)si
and β̂IV

0 = log w − β̂IV
1 s̄

they are called instrumental variables (IV) estimators

• Is β̂IV
1 consistent?

plim β̂IV
1 = plim

1
n
∑n

i=1(zi − z̄) log wi
1
n
∑n

i=1(zi − z̄)si

=
plim 1

n
∑n

i=1(zi − z̄) log wi

plim 1
n
∑n

i=1(zi − z̄)si

=Cov(z, log w)
Cov(z, s) (assuming Cov(z, s) ̸= 0)

=Cov(z, β0 + β1s + ε)
Cov(z, s)

=Cov(z, β0) + Cov(z, β1s) + Cov(z, ε)
Cov(z, s)

=β1

yes, as long as Cov(z, s) ̸= 0 (and Cov(z, ε) = 0, which we already assumed)

• How can we find such a z?
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Model 1
(Intercept) 3.7675 (0.3466)∗∗∗

educ 0.1881 (0.0261)∗∗∗

Num. obs. 3010
***p < 0.001, **p < 0.01, *p < 0.05

Table 2: Card IV estimates

Card (1993) instrument: nearby college

• nearc4i = 1 if i grew up in a county with a four-year college, else 0

• Two requirements to be a valid instrument:

1. (exogenous) E[nearc4iεi] = 0
2. (relevant) Cov(nearc4i, si) ̸= 0

• Relevance can be checked empirically

– Ĉov(nearc4i, si) = 0.18
– Regress si on nearc4i

Model 1
(Intercept) 12.70 (0.09)∗∗∗

nearc4 0.83 (0.11)∗∗∗

R2 0.02
Adj. R2 0.02
Num. obs. 3010
***p < 0.001, **p < 0.01, *p < 0.05

• Exogeneity cannot be tested empirically

– Card (1993) discusses why maybe not E[nearc4iεi] = 0
* Families that value education might live near colleges

* High schools and elementary schools might be higher quality near colleges

* It’s a challenge to show these concerns are not a problem (we will discuss it more
later)

Card (1993) IV estimate

0Code
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Angrist and Krueger (1991) instrument: quarter of birth

• In most of the U.S. must attend school until age 16 (at least during 1938-1967)

• Age when starting school depends on birthday, so grade when can legally drop out depends
on birthday

• Plausible that quarter of birth uncorrelated with other factors affecting wages (there is some
disagreement about this though)

• Is quarter of birth correlated with education?

Model 1
(Intercept) 12.69 (0.01)∗∗∗

QOB 0.06 (0.00)∗∗∗

R2 0.00
Adj. R2 0.00
Num. obs. 1063634
***p < 0.001, **p < 0.01, *p < 0.05

Angrist and Krueger (1991) instrument: quarter of birth - relevance
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Angrist and Krueger (1991) instrument: quarter of birth - relevance
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Angrist and Krueger (1991) instrument: quarter of birth - relevance
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All 1920-29 1930-39 1940-49
(Intercept) 4.6344∗∗∗ 4.2344∗∗∗ 4.9952∗∗∗ 5.0452∗∗∗

(0.0030) (0.0048) (0.0051) (0.0049)
educ 0.0814∗∗∗ 0.0801∗∗∗ 0.0709∗∗∗ 0.0554∗∗∗

(0.0002) (0.0004) (0.0004) (0.0004)
R2 0.1371 0.1709 0.1173 0.0655
Adj. R2 0.1371 0.1709 0.1173 0.0655
Num. obs. 1063634 247199 329509 486926
***p < 0.001, **p < 0.01, *p < 0.05

Table 3: Angrist & Krueger OLS estimates
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All 1920-29 1930-39 1940-49
(Intercept) 4.7056∗∗∗ 4.4869∗∗∗ 4.6329∗∗∗ 6.6340∗∗∗

(0.1247) (0.1941) (0.2505) (0.3502)
educ 0.0759∗∗∗ 0.0581∗∗∗ 0.0992∗∗∗ −0.0616∗

(0.0097) (0.0169) (0.0196) (0.0258)
Num. obs. 1063634 247199 329509 486926
***p < 0.001, **p < 0.01, *p < 0.05

Table 4: Angrist & Krueger IV estimates

Angrist and Krueger (1991) IV estimate

Issues raised

• Statistical properties of β̂IV

– Unbiased? Consistent? Asymptotic distribution? Standard error?

• How to use instrumental variables in multiple regression

• Why are Angrist and Krueger (1991) and Card (1993) results so different?

• What happens if IV assumptions not true? Assumptions that might be wrong:

– E[ziεi] = 0
– Cov(z, s) ̸= 0
– Linear model

• See Card (2003) for a review of many papers about the returns to education

3 Statistical properties

Statistical properties

• Model
yi = β0 + β1xi + εi (5)

• Assumptions:

IV.1 Linearity: (5) holds

0Code
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IV.2 Independent observations

IV.3 Relevance (rank condition): Cov(z, x) ̸= 0
IV.4 Exogeneity: E[ziεi] = 0

Note: these are the same as for OLS except the rank condition and exogeneity assumptions
are now about the instrument, z, instead of the regressor, x

• Relevance + exogeneity = z affects y only through x

• Terminology:

– zi is an instrument or instrumental variable

– (5) is the structural equation

– xi is an endogenous regressor

– The regression of x on z is the first stage

– The regression of y on z is the reduced form

• Properties to look at:

– Bias

– Consistency

– Asymptotic distribution

3.1 Bias

IV is biased

• Consider E[β̂IV
1 ]

E[β̂IV
1 ] =E

[∑n
i=1(zi − z̄)yi∑n
i=1(zi − z̄)xi

]

=E
[∑n

i=1(zi − z̄)(β0 + β1xi + εi)∑n
i=1(zi − z̄)xi

]

=β1 + E
[∑n

i=1(zi − z̄)εi∑n
i=1(zi − z̄)xi

]

̸=β1

• Cannot show E
[∑n

i=1(zi−z̄)εi∑n
i=1(zi−z̄)xi

]
= 0 because of xi in denominator and

E
[∑n

i=1(zi − z̄)εi∑n
i=1(zi − z̄)xi

]
̸=

E
[∑n

i=1(zi − z̄)εi
]

E
[∑n

i=1(zi − z̄)xi
]
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3.2 Consistency

Showing consistency and asymptotic normality of IV uses almost the exact same steps as we used for OLS.
For OLS, we had

β̂OLS
1 = β1 +

∑n
i=1(xi − x̄)εi∑n
i=1(xi − x̄)2

and for IV we have a similar expression,

β̂IV
1 = β1 +

∑n
i=1(zi − z̄)εi∑n
i=1(zi − z̄)xi

.

In fact IV with z = x is OLS. In either case consistency and asymptotic normality will involve working
with the sum of stuff times εi.

IV is consistent

• As in the education example,

plim β̂IV
1 = plim

1
n
∑n

i=1(zi − z̄)yi
1
n
∑n

i=1(zi − z̄)xi

=β1 + plim
1
n
∑n

i=1(zi − z̄)εi
1
n
∑n

i=1(zi − z̄)xi

=β1 +
plim 1

n
∑n

i=1ziεi − plim z̄ plim ε̄
plim 1

n
∑n

i=1zixi − plim z̄ plim x̄

=β1 + E[zε]
E[zx ] − E[z]E[x ] = β1 + Cov(z, ε)

Cov(z, x)
=β1

• So IV is biased but consistent

• Another useful way of expressing β̂IV
1 is as the reduced form divided by the first stage:

– Reduced form:
yi = πy,0 + πy,1zi + ui

OLS estimate = π̂y,1 = Ĉov(z,y)
V̂ar(z)

– First stage:
xi = πx,0 + πx,1zi + vi

OLS estimate = π̂x,1 = Ĉov(x,z)
V̂ar(z)

– Then,

β̂IV = Ĉov(z, y)
Ĉov(z, x)

= Ĉov(z, y)/V̂ar(z)
Ĉov(z, x)/V̂ar(z)

=
π̂y,1
π̂x,1
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3.3 Asymptotic distribution

Asymptotic distribution

• We will allow for heteroskedasticity

• As when looking at bias and consistency of β̂IV,

β̂IV
1 = β1 +

1
n
∑n

i=1(zi − z̄)εi
1
n
∑n

i=1(zi − z̄)xi

• To apply CLT we look at
√

n(β̂IV
1 − β1),

√
n(β̂IV

1 − β1) =
√

n
1
n
∑n

i=1(zi − z̄)εi
1
n
∑n

i=1(zi − z̄)xi

• As for OLS with heteroskedasticity,

√
n 1

n

n∑

i=1
(zi − z̄)εi

d→ N
(

0, E
[
(z − E[z])2ε2

])

• Previous slide showed

plim 1
n

n∑

i=1
(zi − z̄)xi = Cov(x, z)

• So using Slutsky’s theorem, we can conclude

√
n(β̂IV

1 − β1) d→ N
(

0,
E
[
(z − E[z])2ε2]

Cov(x, z)2

)

• We can estimate the asymptotic variance by
1
n
∑n

i=1(zi−z̄)2ε2
i

( 1
n
∑n

i=1(zi−z̄)xi)2

• t-statistic

t = β̂IV
1 − β1√

1
n
∑n

i=1(zi−z̄)2ε̂2
i

n( 1
n
∑n

i=1(zi−z̄)xi)2

d→ N(0, 1)

• Standard error:

s.e.(β̂IV
1 ) =

√√√√
1
n
∑n

i=1(zi − z̄)2ε̂2
i

n
( 1

n
∑n

i=1(zi − z̄)xi
)2

3.4 IV when exogeneity fails
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IV without exogeneity

• People sometimes defend an instrument by saying: “even though it might not be true that
E[zε] = 0, it is likely that the correlation between z and ε is smaller than the correlation
between x and ε. Therefore we prefer the IV estimate to the OLS estimate.” Is this argument
correct?

• We showed earlier that

plim β̂IV
1 = β1 + E[zε]

Cov(z, x)
IV is consistent only when E[zε] = 0

• We also showed that

plim β̂OLS
1 = β1 + E[xε]

Var(x)

• Express in terms of correlations:1

plim β̂IV
1 − β1 =

ρz,ε
√

Var(z)Var(ε)
ρz,x

√
Var(z)Var(x)

= ρz,ε
ρz,x

√
Var(ε)
Var(x)

and

plim β̂OLS
1 − β1 =

ρx,ε
√

Var(x)Var(ε)
Var(x) = ρx,ε

√
Var(ε)
Var(x)

• So IV is “less inconsistent” than OLS only if
∣∣∣∣
ρz,ε
ρz,x

∣∣∣∣ < |ρx,ε |

– Just z being “less endogenous” or less correlated with ε is not enough

• No, the proposed argument is not correct

4 IV for multiple regression

IV for multiple regression

• Model
yi = β0 + β1x1,i + · · · + βkxk,i + βk+1w1,i + · · · + βk+rwr,i + εi (6)

with instruments z1,i, ..., zm,i

• Assumptions:

IV.1 Linearity: (6) holds

1Let ρx,y denote the correlation of x and y, and note that ρx,y = Cov(x, y)/
√

Var(x)Var(y).
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IV.2 Independent observations

IV.3 Relevance (rank condition): m ≥ k and (loosely speaking) each xj,i is correlated with
some zl,i

IV.4 Exogeneity: E[ws,iεi] = 0 for s = 1, .., r and E[zl,iεi] = 0 for l = 1, ..., m

• Terminology:

– ws,i are exogenous controls

– xj,i are endogenous regressors

– zl,i are instruments

IV for multiple regression

• Example: returns to education:

log wi = β0 + β1si + β2agei + β3age2
i + β4regioni + εi

– si is endogenous

– agei, age2
i , and regioni are exogenous

• How to estimate β?

– As before, could find a consistent estimator by using the assumed moment conditions

0 =E[ε] =E [(y − β0 − β1x1 − · · · − βk xk − βk−1w1 − · · · − βk+rwr )]
0 =E[wε] =E [w(y − β0 − β1x1 − · · · − βk xk − βk−1w1 − · · · − βk+rwr )]
0 =E[zε] =E [z(y − β0 − β1x1 − · · · − βk xk − βk−1w1 − · · · − βk+rwr )]

but easier to describe in a different way - two stage least squares

In multiple regression, the idea behind IV is the same — take the assumed exogeneity consumptions
and use them to get some equations to solve for the unknown βj . With a single x and z, writing the explicit
solution to this system of equations was easy. With multiple x’s and z’s (and the added w’s), the solution
is complicated to write down (but easy for a computer to calculate). One useful way of expressing the
solution to this system is two stage least squares.

Two stage least squares

• Two stage least squares: β̂2SLS

1. Estimate (by OLS) the first stage

x̂j,i = π̂xj ,0 + π̂xj ,z1 z1,i + · · · + π̂xj ,zm zm,i + π̂xj ,w1 w1,i + · · · + π̂xj ,wr wr,i

to get predicted values x̂j

2. Regress (using OLS) y on x̂1, ..., x̂k , w1, ..., wr the coefficients are β̂2SLS
j

17



• Exercise: show that for bivariate regression β̂IV
1 = β̂2SLS

1

To understand why two stage least squares works, it’s useful to think about how the second stage,
regressing y on x̂ (and w) compares to just the OLS regression of y on x . The OLS regression of y on x is
not consistent because we think x might be correlated with ε. x̂ is the part of x that can be explained by
z. We assume that z is uncorrelated with ε, so x̂ is part of x that is uncorrelated with ε.

Here we will show that β̂IV
1 = β̂2SLS

1 , where β̂IV
1 =

∑n
i=1(zi−z̄)yi∑n
i=1(zi−z̄)xi

and β̂2SLS
1 is defined as on the previous

slide. The second stage of two-stage least squares is the OLS regression of y on x̂ , so

β̂2SLS
1 =

∑n
i=1(x̂i − ¯̂x)yi∑n
i=1(x̂i − ¯̂x)2

.

Recall that one of properties of OLS fitted values is that the covariance of the fitted value and actual
value is equal to the variance of the fitted value. We showed this earlier in the course. Using that on the
denominator here, we have

β̂2SLS
1 =

∑n
i=1(x̂i − ¯̂x)yi∑n
i=1(x̂i − ¯̂x)xi

Using the fact that x̂i = π̂0 + π̂1zi where π̂0 and π̂1 are OLS estimates, we have

β̂2SLS
1 =

∑n
i=1(π̂0 + π̂1zi − π̂0 + π̂1z)yi∑n
i=1(π̂0 + π̂1zi − π̂0 + π̂1z)xi

=
π̂1
∑n

i=1(zi − z̄)yi
π̂1
∑n

i=1(zi − z̄)xi

=
∑n

i=1(zi − z̄)yi∑n
i=1(zi − z̄)xi

= β̂IV
1 .

Two stage least squares

• β̂2SLS is consistent and asymptotically normal

• Essential that x be regressed on both z and w in the first stage

• When calculating β̂2SLS best not to preform two regressions

– OLS standard errors of second stage regression are not correct for β̂2SLS

– In R use ivreg or felm

• Test relevance condition: look at the F -statistic in for H0 : πxj ,z1 = · · · = πxj ,zm = 0 in the
first stage

– Rule of thumb: F ≥ 10 is okay, F < 10 need to use another method (weak instruments)

The logic for this rule of thumb is a bit different than what we have seen. It comes from thinking about a
different sort of asymptotic approximation, called weak instruments asymptotics, than what we have been
using. See Stock, Wright, and Yogo (2002) for more information.
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Understanding 2SLS

• In bivariate regression β̂IV
1 = β̂2SLS

1

• With one endogenous variable and one instrument, (k = m = 1),

β̂2SLS
1 =

π̂y,z1

π̂x1,z1
= reduced form coefficient on instrument

first stage coefficient on instrument

– First stage:

xj,i =πxj ,0 + πxj ,z1 z1,i + · · · + πxj ,zm zm,i+
+ πxj ,w1 w1,i + · · · + πxj ,wr wr,i + vj,i

– Reduced form:

yi = πy,0 + πy,z1 z1,i + · · · + πy,zm zm,i + πy,w1 w1,i + · · · + πy,wr wr,i + ui

Understanding 2SLS

• Control function interpretation:

– 2SLS is equivalent to the following:

1. Regress xj on z and w, calculate the residuals, v̂j,i

2. Regress y on x, w and v̂j,i estimated coefficient on xj is equal to β̂2SLS
j

Two stage least squares and this control function procedure give exactly the same estimate. If x̂ is
the part of x that is uncorrelated with ε, then the remaining v̂ is part of x that is correlated with ε. If
we can control (i.e. hold constant) this “bad” part of x , then we can consistently estimate the coefficient
on x . Multiple regression does exactly what we want. The regression of y on x , w , and v̂ estimates the
relationship between y and x , holding w and v̂ constant.

5 Example: return to education

Example: return to education (continued)

log wi = β0 + β1si + εi

• Card (1993) and Angrist and Krueger (1991) estimates very different

Card AK
Sample NLS66 Census 1970 & 1980
Instrument nearc4 QOB
β̂OLS

1 0.052 0.071
β̂IV

1 0.188 0.099
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AK 20-29 AK 30-39 Card
(Intercept) 2.7055∗∗∗ 5.1251∗∗∗ 3.2677∗∗∗

(0.3086) (0.2849) (0.6940)
educ 0.0802∗∗∗ 0.0711∗∗∗ 0.0522∗∗∗

(0.0004) (0.0004) (0.0028)
age 0.0673∗∗∗ −0.0107 0.1222∗

(0.0138) (0.0128) (0.0488)
I(age2) −0.0007∗∗∗ 0.0002 −0.0014

(0.0002) (0.0001) (0.0008)
R2 0.1710 0.1177 0.1821
Adj. R2 0.1710 0.1177 0.1813
Num. obs. 247199 329509 3010
***p < 0.001, **p < 0.01, *p < 0.05

Table 5: OLS estimates

• Why?

Adding controls

• Card’s sample features younger men than Angrist and Krueger’s

• Use multiple regression to control for age

OLS controlling for age

IV controlling for age

1Code
1Code
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AK 20-29 AK 30-39 Card
(Intercept) 2.9315∗∗∗ 3.8145∗∗∗ 3.4221∗∗∗

(0.3796) (0.5794) (0.8800)
educ 0.0567∗ 0.1660∗∗∗ 0.1736∗∗∗

(0.0226) (0.0349) (0.0240)
age 0.0704∗∗∗ −0.0121 −0.0029

(0.0143) (0.0143) (0.0662)
I(age2) −0.0008∗∗∗ 0.0003 0.0008

(0.0002) (0.0002) (0.0011)
Num. obs. 247199 329509 3010
***p < 0.001, **p < 0.01, *p < 0.05

Table 6: IV estimates

Controlling for urban

• Card instrument = being in same county as a college

• Colleges are more common in urban areas

• Wages are also higher in urban areas

• Should control for urban (and any other available geographic variables)

IV controlling for age and urban

Using multiple instruments

• Quarter of birth = 1, 2, 3, 4

• If assume E[εi|QOBi] = 0, then can use quarter of birth dummies as instruments zi =
(qob1

i , qob2
i , qob3

i ) where qobq
i = 1 if QOBi = q, else 0

• Since relationship between quarter of birth and education seems to changewith year of birth,
can use QOB × YOB dummies as instruments

– dq,y
i = 1 if QOBi = q and YOBi = y

– 3 × 9 = 27 dummies for 1930-1939 cohort

• In our linear model plim β̂2SLS is the same whether we use QOB or dummies as instrument;
in a richer model it can matter

1Code
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AK 20-29 AK 30-39 Card Card (geo 1966)
(Intercept) 3.0608∗∗∗ 3.7768∗∗∗ 3.2469∗∗∗ 3.0334∗∗∗

(0.3802) (0.5678) (0.7049) (0.7134)
educ 0.0672∗∗ 0.1680∗∗∗ 0.0955∗ 0.0905

(0.0207) (0.0342) (0.0481) (0.0473)
age 0.0626∗∗∗ −0.0104 0.0816 0.1028

(0.0139) (0.0144) (0.0702) (0.0739)
I(age2) −0.0007∗∗∗ 0.0002 −0.0007 −0.0011

(0.0002) (0.0002) (0.0012) (0.0013)
smsa −0.1246∗∗∗ −0.0589 0.1039∗

(0.0108) (0.0360) (0.0472)
south −0.1418∗∗∗ −0.0431∗ −0.1278∗∗

(0.0199) (0.0214) (0.0479)
smsa66 0.0882∗∗

(0.0299)
south66 −0.1061

(0.0543)
Num. obs. 247199 329509 3010 3010
***p < 0.001, **p < 0.01, *p < 0.05

Table 7: IV estimates

AK estimates with dummy instruments

5.1 Lemieux and Card (2001)

Lemieux and Card (2001) “Education, earnings, and the ‘Canadian G.I. Bill’ ”

• Question: what is the causal effect of education on earnings?

• Strategy: use VRA as instrument for education

• Veteran Rehabilitation Act (1944)

– Tuition + living expenses allowance of $60 (≈ $500 today) per month for university or
vocational training

– Different impact in Ontario and Quebec

– Ontario had compulsory schooling until age 16, more universities, higher average edu-
cation at start of WWII

1Code
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QOB QOB × YOB
(Intercept) 4.0885∗∗∗ 4.7347∗∗∗

(0.5072) (0.3858)
educ 0.1451∗∗∗ 0.0977∗∗∗

(0.0296) (0.0188)
age −0.0094 −0.0074

(0.0137) (0.0129)
I(age2) 0.0002 0.0001

(0.0002) (0.0001)
smsa −0.0829∗∗ −0.1325∗∗∗

(0.0311) (0.0199)
south −0.0573∗∗ −0.0867∗∗∗

(0.0185) (0.0119)
Num. obs. 329509 329509
***p < 0.001, **p < 0.01, *p < 0.05

Table 8: AK 1930-1939 IV estimates

– Quebec had no compulsory schooling, few universities, lower average education at start
of WWII; lower portion of veterans

– VRA had smaller impact in Quebec than Ontario

• Instrument = Ontario × university age in 1945

• Data: 1971 Census

– Observations: 11,163 Ontario + 10,078 Quebec
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First stage
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Reduced form
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Model

yi =siβ + γ0 + γ1experi + γ2exper2
i + γ3exper3

i + γ4exper4
i +

+ γ5Quebeci + γ6weeksi + γ7fulltimei + εi

• yi = log annual earnings in 1970

• weeksi = weeks worked in 1970

• fulltimei = 1 if full-time worker in 1970

• experi = potential experience = age − education − 6

• Some specifications add interactions between Quebec and experi

– I.e. add γ8experi × Quebeci + γ9exper2
i × Quebeci + · · ·

– Results on next slide include interactions

26



Results: education coefficient
Model Coefficient
OLS 0.070

(0.002)
Using z = Ontario × age 18-21 in 1945
First stage 0.465

(0.101)
Reduced form 0.073

(0.023)
IV 0.157

(0.051)
IV using Ontario × age 18-24 in 1945 0.080

(0.044)
IV for women using Ontario × age 18-24 in 1945 -0.111

(0.524)

5.2 Fang et al. (2012)

Fang et al. (2012) “The Returns to Education in China: Evidence from the 1986 Compulsory Education
Law”

• Question: what is the causal effect of education on earnings in China?

• Strategy: use China Compulsory Education Law of 1986 as instrument

• China Compulsory Education Law of 1986

– 9 years of education compulsory

– Education begins at age 6

– National law, but variation across provinces in date of implementation and strength of
enforcement

– Ages 15+ at implementation date unaffected

Fang et al. (2012)

• Structural model:

log(earnings)i = β0 + β1si + other controls + εi

• First stage:
Si = α0 + α1IVi + + other controls + ui

27



• Instrument:

IVi =
{

1 if agei < 15 on law’s effective date

0 otherwise
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