Paul Schrimpf

Introduction

Example: return to education

Statistical properties

Consistenc

Accomptation

distribution

fails fails

IV for multip

Example:

return to education

Lemieux and Ca (2001)

Fang et al. (2012)

References

Instrumental Variables

Paul Schrimpf

UBC Economics 326

March 9, 2017

Paul Schrimpf

Introduction

Example: return to education

Statistica propertie

Bias

Asymptot

IV when exogene

IV for multiple

Example: return to education

(2001)

References

Introduction

- 2 Example: return to education
- 3 Statistical properties
 Bias
 Consistency
 Asymptotic distribution
 IV when exogeneity fails
- 4 IV for multiple regression
- 5 Example: return to education Lemieux and Card (2001) Fang et al. (2012)

Paul Schrimpf

Introduction

return to education

Statistica propertie

Bias

Asymptotic

IV when exogen

fails

IV for multiple regression

Example: return to

(2001)

Reference

References

- · Wooldridge (2013) chapter 15
- Angrist and Pischke (2009) chapter 4
- Angrist and Pischke (2014) chapters 3, 6
- Angrist and Krueger (2001)
- Murray (2006)

Paul Schrimpf

Introduction

return to

Statistical properties

Consistenc

Asymptotic

IV when exogenei

IV for multiple

regression

return to

Lemieux and Car

Fang et al. (2012)

References

Section 1

Introduction

Paul Schrimpf

Introduction

Example: return to education

Statistical properties

Bias

Consister

distribution

IV when exogene

IV for multip

regression

return to education

(2001) Fang et al. (2012)

References

Introduction

· In the linear regression model,

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i$$

the most important assumption for $\hat{\beta}_1^{\text{OLS}}$ to be consistent is exogeneity,

$$E[x_i \epsilon_i] = 0$$

- Exogeneity is often an implausible assumption
- If we have an additional variable z_i with certain properties than we can still consistently estimate β_1 even when $\mathbb{E}[x_i \epsilon_i] \neq 0$
- New notation: \hat{eta}^{OLS} instead of just \hat{eta} for OLS estimates

Paul Schrimpf

Introduction

Example: return to education

Statistical properties

Bias

Consistenc

Asymptotic

IV when exogenei

Idlis

regression

Example

return to

Lemieux and Car (2001)

Fang et al. (2012)

References

Section 2

Example: return to education

Paul Schrimpf

Introduction

Example: return to education

Statistica propertie

Bias

Consisten

distribution

IV when exogene fails

IV for multiple

return to

(2001) Fang et al. (2012)

References

Example: return to education

Education (s_i) and log wages (log w_i)

$$\log w_i = \beta_0 + \beta_1 s_i + \epsilon_i$$

- Suppose we want the causal effect of education on wages – then we want to hold constant everything else that affects wages
- We can never hold everything else constant, but we know that

$$\mathsf{plim}\,\hat{\beta}_1^{\mathsf{OLS}} = \beta_1 + \frac{\mathsf{Cov}(\mathsf{s}_i,\,\epsilon_i)}{\mathsf{Var}(\mathsf{s}_i)}$$

so as long as whatever we are not holding constant (i.e. ϵ_i) is uncorrelated with s_i we are okay

Paul Schrimpf

Introduction

Example: return to education

Statistica propertie

Bias

Consister

distributi

IV when exogenei fails

IV for multi

regression

return to

(2001) Fang et al. (2012)

References

Example: return to education

 But it is very likely that there is unobserved ability, a_i, (IQ, work ethic, etc) that affects both education and wages

$$\log w_i = \beta_0 + \beta_1 s_i + \underbrace{\beta_2 a_i + u_i}_{=\epsilon_i}$$

Then,

$$\mathsf{plim}\,\hat{\beta}_1^{\mathsf{OLS}} = \beta_1 + \beta_2 \frac{\mathsf{Cov}(\mathsf{s}_i, \mathsf{a}_i)}{\mathsf{Var}(\mathsf{s}_i)} + \frac{\mathsf{Cov}(\mathsf{s}_i, \mathsf{u}_i)}{\mathsf{Var}(\mathsf{s}_i)}$$

Paul Schrimpf

Introduction

Example: return to education

Statistica propertie

Bias

Consister

distribution

IV when exogene fails

IV for multiple regression

Example:

education

Lemieux and Card
(2001)

References

OLS estimates of return to education

- Data from two papers:
 - Angrist and Krueger (1991): 1970 & 1980 U.S. census data 5% public use sample, men age 30-50
 - Card (1993): NLS young men 1966 cohort (wages measured in 1976 when age 24-34)
- We will start by looking at the OLS estimates even though we know that they are not consistent estimates of the causal effect of education on wages

Bias

Asymptot

IV when exogene

IV for multipl

regression

return to

Lemieux and Ca

Fang et al. (2012

References

OLS estimates of return to education

AK	Card
4.6344***	5.5709***
(0.0030)	(0.0391)
0.0814***	0.0521***
(0.0002)	(0.0029)
0.1371	0.0987
0.1371	0.0984
1063634	3010
0.6681	0.4214
	4.6344*** (0.0030) 0.0814*** (0.0002) 0.1371 0.1371 1063634

^{***}p < 0.001, **p < 0.01, *p < 0.05

Table: OLS estimates

Paul Schrimpf

Introduction

Example: return to education

Statistica properties

Consistence

Asymptotic

distribution

fails

IV for multiple

regression

return to

Lemieux and Ca (2001)

References

IV estimates of return to education

$$\log w_i = \beta_0 + \beta_1 s_i + \epsilon_i$$

• Suppose we observe a variable z_i such that $E[z_i \epsilon_i] = 0$, then

$$0 = \mathbb{E}[z_i \epsilon]$$

$$= \mathbb{E}[z_i (\log w_i - \beta_0 - \beta_1 s_i)]$$
 (1)

we also know $E[\epsilon_i] = 0$, so

$$0 = \mathbb{E}\left[\left(\log w_i - \beta_0 - \beta_1 s_i\right)\right] \tag{2}$$

Paul Schrimpf

Introduction

Example: return to education

Statistica properties

Bias

CONSISTER

distribution

IV when exogene

IV for multip

Example

return to education

(2001)

References

IV estimates of return to education

replace the E[] with $\frac{1}{n}\sum_{i=1}^{n}$ and we have two equations to estimate two parameters β_0 , β_1

$$0 = \frac{1}{n} \sum_{i=1}^{n} z_{i} \left(\log w_{i} - \hat{\beta}_{0}^{|V} - \hat{\beta}_{1}^{|V} s_{i} \right)$$
 (3)

$$0 = \frac{1}{n} \sum_{i=1}^{n} \left(\log w_i - \hat{\beta}_0^{|V} - \hat{\beta}_1^{|V} s_i \right)$$
 (4)

- · Note similarity to OLS first order conditions
- This approach to estimation start with an assumption about some expectations (moments) being zero and use them to derive an equation to use for estimation — is called the (generalized) method of moments
- (1) and (2) are called the (population) moment conditions

Paul Schrimpf

Example: return to education

IV estimates of return to education

- (3) and (4) are called the sample (or empirical) moment conditions
- z_i is called an instrumental variable
- The solution to (3) and (4) is

$$\hat{\beta}_{1}^{\text{IV}} = \frac{\frac{1}{n} \sum_{i=1}^{n} (z_{i} - \bar{z}) \log w_{i}}{\frac{1}{n} \sum_{i=1}^{n} (z_{i} - \bar{z}) s_{i}} \text{ and } \hat{\beta}_{0}^{\text{IV}} = \overline{\log w} - \hat{\beta}_{1}^{\text{IV}} \bar{s}$$

they are called instrumental variables (IV) estimators

Paul Schrimpf

Introduction

Example: return to education

Statistica propertie

Bias

Consiste

distribut

IV when exogene

IV for multi

regression

Example

education

Fang et al. (2012)

References

IV estimates of return to education

• Is $\hat{\beta}_1^{\text{IV}}$ consistent?

$$\begin{aligned} \operatorname{plim} \hat{\beta}_{1}^{\text{IV}} &= \operatorname{plim} \frac{\frac{1}{n} \sum_{i=1}^{n} (z_{i} - \bar{z}) \log w_{i}}{\frac{1}{n} \sum_{i=1}^{n} (z_{i} - \bar{z}) s_{i}} \\ &= \frac{\operatorname{plim} \frac{1}{n} \sum_{i=1}^{n} (z_{i} - \bar{z}) \log w_{i}}{\operatorname{plim} \frac{1}{n} \sum_{i=1}^{n} (z_{i} - \bar{z}) s_{i}} \\ &= \frac{\operatorname{Cov}(z, \log w)}{\operatorname{Cov}(z, s)} \text{ (assuming } \operatorname{Cov}(z, s) \neq 0) \\ &= \frac{\operatorname{Cov}(z, \beta_{0} + \beta_{1} s + \epsilon)}{\operatorname{Cov}(z, s)} \\ &= \frac{\operatorname{Cov}(z, \beta_{0}) + \operatorname{Cov}(z, \beta_{1} s) + \operatorname{Cov}(z, \epsilon)}{\operatorname{Cov}(z, s)} \\ &= \beta_{1} \end{aligned}$$

Paul Schrimpf

Introduction

Example: return to education

Statistical properties

Bias

Consistenc

distribution

IV when exogenei fails

IV for multip

regression

return to

Lemieux and Car (2001)

Fang et al. (2012

References

IV estimates of return to education

yes, as long as $Cov(z, s) \neq 0$ (and $Cov(z, \epsilon) = 0$, which we already assumed)

• How can we find such a z?

Paul Schrimpf

Introduction

Example: return to education

Statistica propertie

Consister

Asymptot

distributio

IV when exogenei

IV for multiple

regression

return to education

(2001)

Card (1993) instrument: nearby college

- nearc4_i = 1 if i grew up in a county with a four-year college, else 0
- Two requirements to be a valid instrument:
 - 1 (exogenous) $E[nearc4_i\epsilon_i] = 0$
 - (relevant) $Cov(nearc4_i, s_i) \neq 0$
- · Relevance can be checked empirically
 - $\widehat{Cov}(nearc4_i, s_i) = 0.18$
 - Regress s_i on nearc4_i

	Model 1
(Intercept)	12.70 (0.09)***
nearc4	0.83 (0.11)***
R ²	0.02
Adj. R²	0.02
Num. obs.	3010
*** n < 0.001. ** r	0 < 0.01 *n < 0.05

Paul Schrimpf

Introduction

Example: return to education

Statistica

Bias

Consister

distribution

IV when exogene

IV for multin

regression

Example: return to

(2001)

Fang et al. (2012

Card (1993) instrument: nearby college

- Exogeneity cannot be tested empirically
 - Card (1993) discusses why maybe not $\mathsf{E}[\mathit{nearc4}_i \epsilon_i] = \mathsf{0}$
 - Families that value education might live near colleges
 - High schools and elementary schools might be higher quality near colleges
 - It's a challenge to show these concerns are not a problem (we will discuss it more later)

Paul Schrimpf

Introduction

Example: return to education

Statistical properties

Bias

Consistenc

Asymptotic

IV when exogene

10115

regression

return to

education

Lemieux and Ca

Fang et al. (2012

References

Card (1993) IV estimate

	Model 1	
(Intercept)	3.7675 (0.3466)***	
educ	0.1881 (0.0261)***	
Num. obs. 3010		
*** $p < 0.001, **p < 0.01, *p < 0.05$		

Table: Card IV estimates

Paul Schrimpf

Introduction

Example: return to education

Statistica propertie

Consisten

distribution

IV when exogenei fails

IV for multiple regression

Example: return to education

(2001)

References

Angrist and Krueger (1991) instrument: quarter of birth

- In most of the U.S. must attend school until age 16 (at least during 1938-1967)
- Age when starting school depends on birthday, so grade when can legally drop out depends on birthday
- Plausible that quarter of birth uncorrelated with other factors affecting wages (there is some disagreement about this though)
- Is quarter of birth correlated with education?

	Model 1
(Intercept)	12.69 (0.01)***
QOB	0.06 (0.00)***
R ²	0.00
Adj. R²	0.00
Num. obs.	1063634
*** p < 0.001, ** p	< 0.01, *p < 0.05

Paul Schrimpf

Introduction

Example: return to education

Statistica propertie

Bias

Consiste

Asympto

IV when exogene

IV for multipl

Example:

education

(2001) Fang et al. (2012)

References

Angrist and Krueger (1991) instrument: quarter of birth relevance

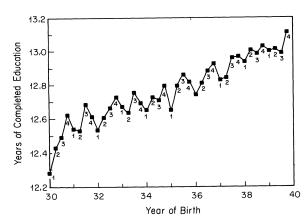


FIGURE I
Years of Education and Season of Birth
1980 Census
Note. Quarter of birth is listed below each observation.

Paul Schrimpf

Introduction

Example: return to education

Statistica propertie

Bias

Consister

Asymptot

IV when exogenei

IV for multiple

regression

return to education

Lemieux and Care (2001)

Fang et al. (2012)

References

Angrist and Krueger (1991) instrument: quarter of birth relevance

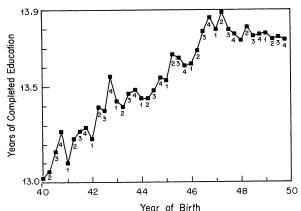


FIGURE II
Years of Education and Season of Birth
1980 Census
Note. Quarter of birth is listed below each observation.

Paul Schrimpf

Introduction

Example: return to education

Statistica propertie

DIdS

Consister

distribution

IV when exogene fails

IV for multiple

regression

return to education

(2001)

Deferences

Angrist and Krueger (1991) instrument: quarter of birth relevance

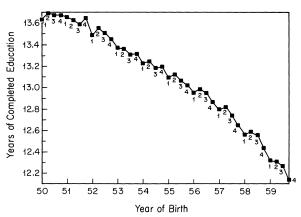


FIGURE III
Years of Education and Season of Birth
1980 Census
Note. Quarter of birth is listed below each observation.

Paul Schrimpf

Introduction

Example: return to education

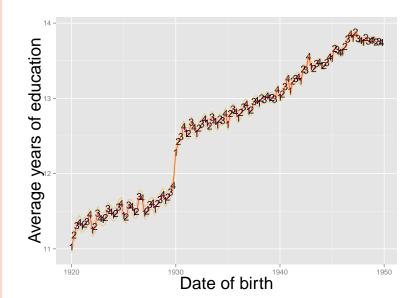
Statistical

Bias

Consister

distribut

IV when exogene


IV for multiple

Example:

education

(2001) Fang et al. (2012)

References

Paul Schrimpf

Introduction

Example: return to education

Statistica

propertie

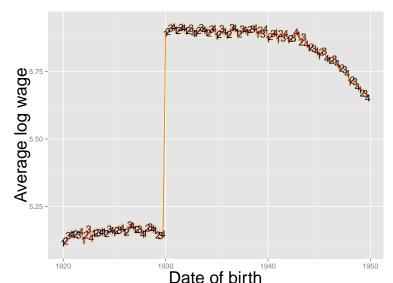
Bias

Asymptot

distribution

IV when exogenei fails

IV for multiple


return to

Lemieux and Card (2001)

(2001) Fang et al. (2012)

References

Angrist and Krueger (1991) reduced form

Paul Schrimpf

Introduction

Example: return to education

Statistical properties

Consisten

distribution

IV for multip

regression

return to education

(2001) Fang et al. (2012)

Deferences

Angrist and Krueger (1991) OLS estimate

·	All	1920-29	1930-39	1940-49
(Intercept)	4.6344***	4.2344***	4.9952***	5.0452***
	(0.0030)	(0.0048)	(0.0051)	(0.0049)
educ	0.0814***	0.0801***	0.0709***	0.0554***
	(0.0002)	(0.0004)	(0.0004)	(0.0004)
R ²	0.1371	0.1709	0.1173	0.0655
Adj. R²	0.1371	0.1709	0.1173	0.0655
Num. obs.	1063634	247199	329509	486926
*** p < 0.001, ** p < 0.01, * p < 0.05				

Table: Angrist & Krueger OLS estimates

Paul Schrimpf

Introduction

Example: return to education

Statistica propertie

Bias

Consister

distributio

IV when exogen

IV for multir

regression

return to education

(2001) Fang et al. (2012)

References

Angrist and Krueger (1991) IV estimate

	All	1920-29	1930-39	1940-49
(Intercept)	4.7056***	4.4869***	4.6329***	6.6340***
	(0.1247)	(0.1941)	(0.2505)	(0.3502)
educ	0.0759***	0.0581***	0.0992***	-0.0616*
	(0.0097)	(0.0169)	(0.0196)	(0.0258)
Num. obs.	1063634	247199	329509	486926
$p^{***} > 0.001, p^{**} > 0.01, p^{*} > 0.05$				

Table: Angrist & Krueger IV estimates

Paul Schrimpf

Introduction

Example: return to education

Statistica propertie

Bias

Accomplate

D/ when everen

fails

IV for multiple regression

return to

(2001) Fang et al. (2012

Reference

Issues raised

- Statistical properties of \hat{eta}^{IV}
 - Unbiased? Consistent? Asymptotic distribution? Standard error?
- How to use instrumental variables in multiple regression
- Why are Angrist and Krueger (1991) and Card (1993) results so different?
- What happens if IV assumptions not true? Assumptions that might be wrong:
 - $E[z_i \epsilon_i] = 0$
 - $Cov(z, s) \neq 0$
 - · Linear model
- See Card (2003) for a review of many papers about the returns to education

Paul Schrimpf

Introduction

Example: return to education

Statistical properties

Complete

Consistency

distribution

fails exogener

IV for multip

Example

return to education

Lemieux and Ca (2001)

Fang et al. (2012)

References

Section 3

Statistical properties

Introduction

Example: return to education

Statistical properties

Bias

Consis

distribution

IV when exogene fails

IV for multiple

return to education

(2001) Fang et al. (2012)

References

Model

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i \tag{5}$$

Assumptions:

IV.1 Linearity: (5) holds

IV.2 Independent observations

IV.3 Relevance (rank condition): $Cov(z, x) \neq 0$

IV.4 Exogeneity: $E[z_i \epsilon_i] = 0$

Note: these are the same as for OLS except the rank condition and exogeneity assumptions are now about the instrument, *z*, instead of the regressor, *x*

- Relevance + exogeneity = z affects y only through x
- Terminology:
 - z_i is an instrument or instrumental variable
 - (5) is the structural equation
 - x_i is an endogenous regressor
 - The regression of x on z is the first stage

Paul Schrimpf

Introduction

return to education

Statistical properties

DIdS

Consister

distributi

IV when exogenei fails

IV for multiple

regression

return to

Lemieux and Ca (2001)

Fang et al. (2012

Reference

Statistical properties

- The regression of y on z is the reduced form
- Properties to look at:
 - Bias
 - Consistency
 - Asymptotic distribution

Statistical properties

Bias

Consisten

Asymptotic distribution

IV when exogenei

IV for multip

Example: return to

(2001)

References

• Consider $E[\hat{\beta}_1^{IV}]$

$$\begin{split} \mathsf{E}[\hat{\beta}_{1}^{|V}] = & \mathsf{E}\left[\frac{\sum_{i=1}^{n}(z_{i} - \bar{z})y_{i}}{\sum_{i=1}^{n}(z_{i} - \bar{z})x_{i}}\right] \\ = & \mathsf{E}\left[\frac{\sum_{i=1}^{n}(z_{i} - \bar{z})(\beta_{0} + \beta_{1}x_{i} + \epsilon_{i})}{\sum_{i=1}^{n}(z_{i} - \bar{z})x_{i}}\right] \\ = & \beta_{1} + \mathsf{E}\left[\frac{\sum_{i=1}^{n}(z_{i} - \bar{z})\epsilon_{i}}{\sum_{i=1}^{n}(z_{i} - \bar{z})x_{i}}\right] \\ \neq & \beta_{1} \end{split}$$

• Cannot show $\mathbb{E}\left[\frac{\sum_{i=1}^{n}(z_{i}-\bar{z})\epsilon_{i}}{\sum_{i=1}^{n}(z_{i}-\bar{z})x_{i}}\right]=0$ because of x_{i} in denominator and

$$E\left[\frac{\sum_{i=1}^{n}(z_{i}-\bar{z})\epsilon_{i}}{\sum_{i=1}^{n}(z_{i}-\bar{z})x_{i}}\right]\neq\frac{E\left[\sum_{i=1}^{n}(z_{i}-\bar{z})\epsilon_{i}\right]}{E\left[\sum_{i=1}^{n}(z_{i}-\bar{z})x_{i}\right]}$$

Statistical properties

Consistency

Asymptotic

IV when exogeneit

IV for multip

Example: return to

Lemieux and Card
(2001)

Fang et al. (2012)

· As in the education example,

$$\begin{aligned} \operatorname{plim} \hat{\beta}_{1}^{\text{IV}} &= \operatorname{plim} \frac{\frac{1}{n} \sum_{i=1}^{n} (z_{i} - \bar{z}) y_{i}}{\frac{1}{n} \sum_{i=1}^{n} (z_{i} - \bar{z}) x_{i}} \\ &= \beta_{1} + \operatorname{plim} \frac{\frac{1}{n} \sum_{i=1}^{n} (z_{i} - \bar{z}) \epsilon_{i}}{\frac{1}{n} \sum_{i=1}^{n} (z_{i} - \bar{z}) x_{i}} \\ &= \beta_{1} + \frac{\operatorname{plim} \frac{1}{n} \sum_{i=1}^{n} z_{i} \epsilon_{i} - \operatorname{plim} \bar{z} \operatorname{plim} \bar{\epsilon}}{\operatorname{plim} \frac{1}{n} \sum_{i=1}^{n} z_{i} x_{i} - \operatorname{plim} \bar{z} \operatorname{plim} \bar{x}} \\ &= \beta_{1} + \frac{\operatorname{E}[z \epsilon]}{\operatorname{E}[z x] - \operatorname{E}[z] \operatorname{E}[x]} = \beta_{1} + \frac{\operatorname{Cov}(z, \epsilon)}{\operatorname{Cov}(z, x)} \\ &= \beta_{1} \end{aligned}$$

- So IV is biased but consistent
- Another useful way of expressing $\hat{\beta}_1^{\text{IV}}$ is as the reduced form divided by the first stage:

(2001)

References

IV is consistent

· Reduced form:

$$y_i = \pi_{y,0} + \pi_{y,1} z_i + u_i$$

OLS estimate =
$$\hat{\pi}_{y,1} = \frac{\widehat{Cov}(z,y)}{\widehat{Var}(z)}$$

First stage:

$$x_i = \pi_{x,0} + \pi_{x,1} z_i + v_i$$

OLS estimate =
$$\hat{\pi}_{x,1} = \frac{\widehat{Cov}(x,z)}{\widehat{Var}(z)}$$

Then,

$$\hat{\beta}^{\text{IV}} = \frac{\widehat{\text{Cov}}(z, y)}{\widehat{\text{Cov}}(z, x)} = \frac{\widehat{\text{Cov}}(z, y)/\widehat{\text{Var}}(z)}{\widehat{\text{Cov}}(z, x)/\widehat{\text{Var}}(z)} = \frac{\hat{\pi}_{y, 1}}{\hat{\pi}_{x, 1}}$$

Paul Schrimpf

Introduction

Example: return to education

Statistica propertie

Bias

Asymptotic

distribution

IV when exogenei fails

IV for multiple

Example: return to

Lemieux and Care (2001)

Fang et al. (2012)

References

Asymptotic distribution

- · We will allow for heteroskedasticity
- As when looking at bias and consistency of \hat{eta}^{IV} ,

$$\hat{\beta}_1^{\text{IV}} = \beta_1 + \frac{\frac{1}{n} \sum_{i=1}^n (z_i - \bar{z}) \epsilon_i}{\frac{1}{n} \sum_{i=1}^n (z_i - \bar{z}) x_i}$$

• To apply CLT we look at $\sqrt{n}(\hat{\beta}_1^{\text{IV}} - \beta_1)$,

$$\sqrt{n}(\hat{\beta}_1^{\text{IV}} - \beta_1) = \sqrt{n} \frac{\frac{1}{n} \sum_{i=1}^{n} (z_i - \bar{z}) \epsilon_i}{\frac{1}{n} \sum_{i=1}^{n} (z_i - \bar{z}) x_i}$$

As for OLS with heteroskedasticity,

$$\sqrt{n}\frac{1}{n}\sum_{i=1}^{n}(z_{i}-\bar{z})\epsilon_{i}\stackrel{d}{\to}N\left(0,\mathbb{E}\left[(z-\mathbb{E}[z])^{2}\epsilon^{2}\right]\right)$$

(2001) Fang et al. (2012)

References

Asymptotic distribution

· Previous slide showed

$$p\lim \frac{1}{n}\sum_{i=1}^{n}(z_{i}-\bar{z})x_{i}=\operatorname{Cov}(x,z)$$

• So using Slutsky's theorem, we can conclude

$$\sqrt{n}(\hat{\beta}_1^{\text{IV}} - \beta_1) \xrightarrow{d} N\left(0, \frac{\mathbb{E}\left[(z - \mathbb{E}[z])^2 \epsilon^2\right]}{\text{Cov}(x, z)^2}\right)$$

- We can estimate the asymptotic variance by $\frac{\frac{1}{n}\sum_{i=1}^{n}(z_i-\bar{z})^2\epsilon_i^2}{\left(\frac{1}{n}\sum_{i=1}^{n}(z_i-\bar{z})x_i\right)^2}$
- t-statistic

$$t = \frac{\hat{\beta}_{1}^{|V} - \beta_{1}}{\sqrt{\frac{\frac{1}{n}\sum_{i=1}^{n}(z_{i}-\bar{z})^{2}\hat{e}_{i}^{2}}{n(\frac{1}{n}\sum_{i=1}^{n}(z_{i}-z)x_{i})^{2}}}} \xrightarrow{d} N(0,1)$$

Paul Schrimpf

Asymptotic distribution

Asymptotic distribution

Standard error:

s.e.
$$(\hat{\beta}_1^{|V}) = \sqrt{\frac{\frac{1}{n} \sum_{i=1}^{n} (z_i - \bar{z})^2 \hat{\epsilon}_i^2}{n (\frac{1}{n} \sum_{i=1}^{n} (z_i - \bar{z}) x_i)^2}}$$

Paul Schrimpf

Introduction

Example: return to education

Statistical properties

Bias

Asymptoti

IV when exogeneity

fails

IV for multiple regression

Example: return to

Lemieux and Car (2001)

Fang et al. (2012)

References

IV without exogeneity

• People sometimes defend an instrument by saying: "even though it might not be true that $E[z\epsilon]=0$, it is likely that the correlation between z and ϵ is smaller than the correlation between x and ϵ . Therefore we prefer the IV estimate to the OLS estimate." Is this argument correct?

Paul Schrimpf

IV when exogeneity

IV without exogeneity
 Express in terms of correlations:¹

$$\mathsf{plim}\, \hat{\beta}_1^{\mathsf{IV}} - \beta_1 = \frac{\rho_{\mathsf{z},\epsilon} \sqrt{\mathsf{Var}(\mathsf{z}) \mathsf{Var}(\epsilon)}}{\rho_{\mathsf{z},\mathsf{x}} \sqrt{\mathsf{Var}(\mathsf{z}) \mathsf{Var}(\mathsf{x})}} = \frac{\rho_{\mathsf{z},\epsilon}}{\rho_{\mathsf{z},\mathsf{x}}} \sqrt{\frac{\mathsf{Var}(\epsilon)}{\mathsf{Var}(\mathsf{x})}}$$

and

$$\mathsf{plim}\,\hat{\beta}_1^{\mathsf{OLS}} - \beta_1 = \frac{\rho_{\mathsf{x},\epsilon} \sqrt{\mathsf{Var}(\mathsf{x})\mathsf{Var}(\epsilon)}}{\mathsf{Var}(\mathsf{x})} = \rho_{\mathsf{x},\epsilon} \sqrt{\frac{\mathsf{Var}(\epsilon)}{\mathsf{Var}(\mathsf{x})}}$$

· So IV is "less inconsistent" than OLS only if

$$\left|\frac{\rho_{\mathsf{z},\epsilon}}{\rho_{\mathsf{z},\mathsf{x}}}\right| < |\rho_{\mathsf{x},\epsilon}|$$

- Just z being "less endogenous" or less correlated with ϵ is not enough
- No, the proposed argument is not correct

Paul Schrimpf

Introduction

return to education

Statistical properties

DIdS

Consistency

distribution

IV when exogenei fails

IV for multiple regression

Fyamnle:

return to

Lemieux and Ca

Fang et al. (2012)

Reference

Section 4

IV for multiple regression

Paul Schrimpf

Introduction

Example: return to education

Statistical properties

Bias

Asymptoti

IV when evogen

fails

IV for multiple regression

return to

Lemieux and Card (2001) Fang et al. (2012)

References

IV for multiple regression

Model

$$y_i = \beta_0 + \beta_1 x_{1,i} + \dots + \beta_k x_{k,i} + \beta_{k+1} w_{1,i} + \dots + \beta_{k+r} w_{r,i} + \epsilon_i$$
(6)

with instruments $z_{1,i}, ..., z_{m,i}$

- Assumptions:
 - IV.1 Linearity: (6) holds
 - IV.2 Independent observations
 - IV.3 Relevance (rank condition): $m \ge k$ and (loosely speaking) each $x_{i,i}$ is correlated with some $z_{l,i}$
 - IV.4 Exogeneity: $E[w_{s,i}\epsilon_i] = 0$ for s = 1, ..., r and $E[z_{l,i}\epsilon_i] = 0$ for l = 1, ..., m
- Terminology:
 - w_{s,i} are exogenous controls
 - x_{i,i} are endogenous regressors
 - z_{l,i} are instruments

Paul Schrimpf

IV for multiple regression

IV for multiple regression

Example: returns to education:

$$\log w_i = \beta_0 + \beta_1 s_i + \beta_2 age_i + \beta_3 age_i^2 + \beta_4 region_i + \epsilon_i$$

- s_i is endogenous
- age_i, age_i², and region_i are exogenous
- How to estimate β ?

Paul Schrimpf

Introduction

Example: return to education

Statistical properties

Bias

Consisten

Asymptot

IV when exogene

IV for multiple

regression

return to education

(2001) Fang et al. (2012)

References

Two stage least squares

- Two stage least squares: $\hat{\beta}^{2SLS}$
 - 1 Estimate (by OLS) the first stage

$$\hat{X}_{j,i} = \hat{\pi}_{x_j,0} + \hat{\pi}_{x_j,z_1} Z_{1,i} + \dots + \hat{\pi}_{x_j,z_m} Z_{m,i} + \hat{\pi}_{x_j,w_1} w_{1,i} + \dots + \hat{\pi}_{x_j,w_r} w_{r,i}$$

to get predicted values \hat{x}_i

- 2 Regress (using OLS) y on $\hat{x}_1, ..., \hat{x}_k, w_1, ..., w_r$ the coefficients are $\hat{\beta}_i^{2SLS}$
- Exercise: show that for bivariate regression $\hat{eta}_1^{\mathsf{IV}} = \hat{eta}_1^{\mathsf{2SLS}}$

Paul Schrimpf

Introduction

Example: return to education

Statistical properties

Bias

Asymptotic

distribution

IV when exogene fails

IV for multiple regression

Example: return to education

(2001) Fang et al. (2012)

References

Two stage least squares

- $\hat{\beta}^{2SLS}$ is consistent and asymptotically normal
- Essential that x be regressed on both z and w in the first stage
- When calculating $\hat{\beta}^{2SLS}$ best not to preform two regressions
 - OLS standard errors of second stage regression are not correct for $\hat{\beta}^{\rm 2SLS}$
 - In R use ivreg or felm
- Test relevance condition: look at the *F*-statistic in for $H_0: \pi_{x_j,z_1} = \cdots = \pi_{x_j,z_m} = 0$ in the first stage
 - Rule of thumb: $F \ge 10$ is okay, F < 10 need to use another method (weak instruments)

Paul Schrimpf

Introduction

Example: return to education

Statistical properties

Bias

Consister

Asymptot

IV when exogen

IV when exogenei fails

IV for multiple regression

Example: return to

Lemieux and Car (2001)

Fang et al. (2012)

References

Understanding 2SLS

- In bivariate regression $\hat{eta}_1^{\text{IV}} = \hat{eta}_1^{\text{2SLS}}$
- With one endogenous variable and one instrument, (k = m = 1),

$$\hat{\beta}_1^{2\text{SLS}} = \frac{\hat{\pi}_{y,z_1}}{\hat{\pi}_{x_1,z_1}} = \frac{\text{reduced form coefficient on instrument}}{\text{first stage coefficient on instrument}}$$

First stage:

$$x_{j,i} = \pi_{x_j,0} + \pi_{x_j,z_1} z_{1,i} + \dots + \pi_{x_j,z_m} z_{m,i} + + \pi_{x_j,w_1} w_{1,i} + \dots + \pi_{x_j,w_r} w_{r,i} + v_{j,i}$$

· Reduced form:

$$y_i = \pi_{y,0} + \pi_{y,z_1} z_{1,i} + \cdots + \pi_{y,z_m} z_{m,i} + \pi_{y,w_1} w_{1,i} + \cdots + \pi_{y,w_r} w_{r,i} + u_i$$

Paul Schrimpf

IV for multiple

regression

Understanding 2SLS

- Control function interpretation:
 - 2SLS is equivalent to the following:
 - Regress x_i on z and w, calculate the residuals, $\hat{v}_{i,i}$
 - Regress y on x, w and $\hat{v}_{i,i}$ estimated coefficient on x_i is equal to $\hat{\beta}_i^{2SLS}$

Paul Schrimpf

Introduction

return to education

Statistical properties

Consistence

distribution

IV when exogenei fails

IV for multip

Example: return to education

Lemieux and Car

Fang et al. (2012)

References

Section 5

Example: return to education

Paul Schrimpf

Introduction

Example: return to education

Statistical

Bias

Asymptot

distribution

IV when exogenei

IV for multip regression

Example: return to education

(2001) Fang et al. (2012

References

Example: return to education (continued)

$$\log w_i = \beta_0 + \beta_1 s_i + \epsilon_i$$

 Card (1993) and Angrist and Krueger (1991) estimates very different

	Card	AK
Sample	NLS66	Census 1970 & 1980
Instrument	nearc4	QOB
$\hat{eta}_{\scriptscriptstyle 1}^{\scriptscriptstyle m OLS}$	0.052	0.071
$\hat{eta}_{\scriptscriptstyle 1}^{\scriptscriptstyle IV}$	0.188	0.099

Why?

Paul Schrimpf

Introduction

education

Statistical properties

Bias

CONSISCONO

IV when exogene

fails

IV for multiple

Example: return to education

Lemieux and Car (2001)

Fang et al. (2012

References

Adding controls

- Card's sample features younger men than Angrist and Krueger's
- Use multiple regression to control for age

Statistical

Bias

Asymptotic distribution

IV when exogene fails

IV for multipl regression

Example: return to education

Lemieux and Card (2001)

References

OLS controlling for age

	AK 20-29	AK 30-39	Card
(Intercept)	2.7055***	5.1251***	3.2677***
	(0.3086)	(0.2849)	(0.6940)
educ	0.0802^{***}	0.0711***	0.0522***
	(0.0004)	(0.0004)	(0.0028)
age	0.0673***	-0.0107	0.1222^*
	(0.0138)	(0.0128)	(0.0488)
l(age²)	-0.0007^{***}	0.0002	-0.0014
	(0.0002)	(0.0001)	(0.0008)
R ²	0.1710	0.1177	0.1821
Adj. R²	0.1710	0.1177	0.1813
Num. obs.	247199	329509	3010
***	*		

p < 0.001, p < 0.01, p < 0.05

Table: OLS estimates

Statistica

Bias Consistence

Asymptotic distribution

IV when exogene fails

IV for multip

Example: return to education

(2001)

References

IV controlling for age

	AK 20-29	AK 30-39	Card
(Intercept)	2.9315***	3.8145***	3.4221***
	(0.3796)	(0.5794)	(0.8800)
educ	0.0567^{*}	0.1660***	0.1736***
	(0.0226)	(0.0349)	(0.0240)
age	0.0704***	-0.0121	-0.0029
	(0.0143)	(0.0143)	(0.0662)
I(age²)	-0.0008^{***}	0.0003	0.0008
	(0.0002)	(0.0002)	(0.0011)
Num. obs.	247199	329509	3010

^{***}p < 0.001, **p < 0.01, *p < 0.05

Table: IV estimates

Paul Schrimpf

Introduction

Example: return to education

Statistica

Bias

Asymptotic

IV when exogenei

IV for multiple

Example: return to

education Lemieux and Card (2001)

References

Controlling for urban

- Card instrument = being in same county as a college
- Colleges are more common in urban areas
- Wages are also higher in urban areas
- Should control for urban (and any other available geographic variables)

Paul Schrimpf

Introduction

Example: return to education

Statistical properties

Consistency

distribution IV when exogene

IV for multip

regression

Example: return to education

(2001) Fang et al. (2012)

References

IV controlling for age and urban

	AK 20-29	AK 30-39	Card	Card (geo 1966)
(Intercept)	3.0608***	3.7768***	3.2469***	3.0334***
	(0.3802)	(0.5678)	(0.7049)	(0.7134)
educ	0.0672**	0.1680***	0.0955^{*}	0.0905
	(0.0207)	(0.0342)	(0.0481)	(0.0473)
age	0.0626***	-0.0104	0.0816	0.1028
	(0.0139)	(0.0144)	(0.0702)	(0.0739)
l(age²)	-0.0007^{***}	0.0002	-0.0007	-0.0011
	(0.0002)	(0.0002)	(0.0012)	(0.0013)
smsa	-0.1246***	-0.0589	0.1039^*	
	(0.0108)	(0.0360)	(0.0472)	
south	-0.1418***	-0.0431^{*}	-0.1278**	
	(0.0199)	(0.0214)	(0.0479)	
smsa66				0.0882**
				(0.0299)
south66				-0.1061
				(0.0543)
Num. obs.	247199	329509	3010	3010

p < 0.001, p < 0.01, p < 0.05

Table: IV estimates

Paul Schrimpf

Introduction

Example: return to education

Statistical properties

Consisten

Asymptotic distribution

IV when exogene

fails

regression

Example: return to education

(2001) Fang et al. (2012)

References

Using multiple instruments

- Quarter of birth = 1, 2, 3, 4
- If assume $E[\epsilon_i|QOB_i] = 0$, then can use quarter of birth dummies as instruments $z_i = (qob_i^1, qob_i^2, qob_i^3)$ where $qob_i^q = 1$ if $QOB_i = q$, else 0
- Since relationship between quarter of birth and education seems to change with year of birth, can use QOB × YOB dummies as instruments
 - $d_i^{q,y} = 1$ if $QOB_i = q$ and $YOB_i = y$
 - $3 \times 9 = 27$ dummies for 1930-1939 cohort
- In our linear model plim $\hat{\beta}^{2SLS}$ is the same whether we use QOB or dummies as instrument; in a richer model it can matter

Paul Schrimpf

Introduction

Example: return to

Statistical properties

BIBS

Consistenc

distribution

fails

IV for multip

Example: return to education

Lemieux and Card (2001)

References

AK estimates with dummy instruments

	QOB	$QOB \times YOB$
(Intercept)	4.0885***	4.7347***
	(0.5072)	(0.3858)
educ	0.1451***	0.0977***
	(0.0296)	(0.0188)
age	-0.0094	-0.0074
	(0.0137)	(0.0129)
I(age²)	0.0002	0.0001
	(0.0002)	(0.0001)
smsa	-0.0829**	-0.1325***
	(0.0311)	(0.0199)
south	-0.0573**	-0.0867^{***}
	(0.0185)	(0.0119)
Num. obs.	329509	329509
*** n < 0.001 **	n < 0.01 *n <	0.05

p < 0.001, p < 0.01, p < 0.01

Table: AK 1930-1939 IV estimates

Paul Schrimpf

Introduction

Example: return to education

Statistica propertie

Consiste

distribution

IV when exogeneit fails

IV for multiple regression

Example: return to

Lemieux and Card (2001)

References

Lemieux and Card (2001) "Education, earnings, and the 'Canadian G.I. Bill' "

- Question: what is the causal effect of education on earnings?
- Strategy: use VRA as instrument for education
- Veteran Rehabilitation Act (1944)
 - Tuition + living expenses allowance of \$60 ($\approx \500 today) per month for university or vocational training
 - Different impact in Ontario and Quebec
 - Ontario had compulsory schooling until age 16, more universities, higher average education at start of WWII
 - Quebec had no compulsory schooling, few universities, lower average education at start of WWII; lower portion of veterans
 - VRA had smaller impact in Quebec than Ontario
- Instrument = Ontario × university age in 1945
- Data: 1971 Census
 - Observations: 11,163 Ontario + 10,078 Quebec

Paul Schrimpf

Introduction

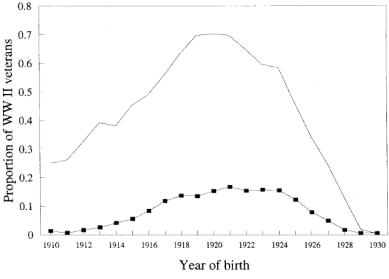
Example: return to education

Statistica propertie

Bias

Consister

Asympto


IV when exogene

IV for multiple regression

return to
education
Lemieux and Card

(2001) Fang et al. (2012

References

Quebec, French-speakers ___Ontario, English-speakers

FIGURE 1 Proportion of men who served in WW II by year of birth of ve-year moving average!

Introduction

Example: return to education

Statistical properties

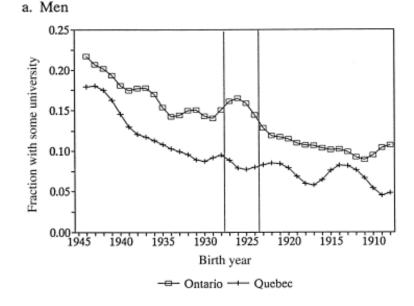
Bias

Consisten

Asymptot

IV when exogene

IV for multin


IV for multiple regression

return to

Lemieux and Card (2001)

Fang et al. (2012)

Dafarancas

Paul Schrimpf

Introduction

Example: return to education

Statistical properties

Propertie

Consisten

Asymptot

IV when exogen

fails

IV for multip regression

return to

Lemieux and Card

Fang et al. (2012

References

Reduced form

b. Mean log annual earnings

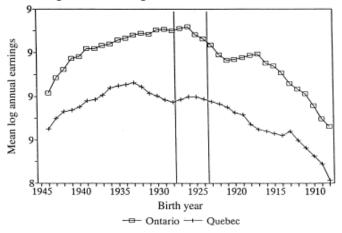


FIGURE 5 Labour market outcomes of men, 1971 Census (five-year moving average)

Statistical properties

Bias

Consistenc

distribution

IV when exogene fails

IV for multip

Example:

return to
education
Lemieux and Card

(2001) Fang et al. (2012

References

$$y_i = s_i \beta + \gamma_0 + \gamma_1 exper_i + \gamma_2 exper_i^2 + \gamma_3 exper_i^3 + \gamma_4 exper_i^4 + \gamma_5 Quebec_i + \gamma_6 weeks_i + \gamma_7 fulltime_i + \epsilon_i$$

- $y_i = \log \text{ annual earnings in 1970}$
- weeks_i = weeks worked in 1970
- $fulltime_i = 1$ if full-time worker in 1970
- exper_i = potential experience = age education 6
- Some specifications add interactions between Quebec and exper_i
 - I.e. add $\gamma_8 exper_i \times Quebec_i + \gamma_9 exper_i^2 \times Quebec_i + \cdots$
 - · Results on next slide include interactions

Paul Schrimpf

Results: education coefficient

Example:

Statistica

Bias

Consistenc

distribution

IV when exogeneity fails

IV for multipl regression

Example:

Lemieux and Card

Fang et al. (2012)

Reference

Coefficient
0.070
(0.002)
0.465
(0.101)
0.073
(0.023)
0.157
(0.051)
0.080
(0.044)
-0.111
(0.524)
_

Paul Schrimpf

Introduction

Example: return to education

Statistica propertie

Consister

Asymptoti

IV when exogene

IV for multipl

regression

education

Fang et al. (2012)

References

Fang et al. (2012) "The Returns to Education in China: Evidence from the 1986 Compulsory Education Law"

- Question: what is the causal effect of education on earnings in China?
- Strategy: use China Compulsory Education Law of 1986 as instrument
- · China Compulsory Education Law of 1986
 - · 9 years of education compulsory
 - · Education begins at age 6
 - National law, but variation across provinces in date of implementation and strength of enforcement
 - · Ages 15+ at implementation date unaffected

return to education Lemieux and Car

Fang et al. (2012)

References

Fang et al. (2012)

Structural model:

$$log(earnings)_i = \beta_0 + \beta_1 s_i + other controls + \epsilon_i$$

· First stage:

$$S_i = \alpha_0 + \alpha_1 I V_i + + \text{ other controls } + u_i$$

Instrument:

$$IV_i = \begin{cases} 1 & \text{if age}_i < 15 \text{ on law's effective date} \\ 0 & \text{otherwise} \end{cases}$$

Table 1: Descriptive statistics

Sample size N = 11271 N = 7380 N = 3881 Treatment* 355 0.00 1.00 NA School years completed 8.88 8.66 9.28 <0.01 Vearly earnings in natural log 8.44 8.56 8.21 <0.01 Vearly earnings in natural log 8.44 8.56 8.21 <0.01 Age 31.83 35.57 24.74 <0.01 Male (7.12) (4.93) (4.88) Male 0.51 0.50 0.52 0.07 Race minority 0.13 0.12 0.15 <0.01 Maried 0.75 0.90 0.47 <0.01 Whart 0.25 0.27 0.21 <0.01 What that status Excellent 0.19 0.17 0.24 <0.01 Excellent 0.19 0.17 0.24 <0.01 <0.01 <0.01 Fair 0.21 0.22 0.17 <0.01 <0.01	Variable	All	Control cohort ^b Tre	eatment cohort ^b	P value ^c
School years completed 8.88 8.66 9.28 <0.01 Yearly earnings in natural log 8.44 8.56 8.21 <0.01	Sample size	N = 11271	N = 7380	N = 3891	
Yearly earnings in natural 8.44 8.56 8.21 <0.01	Treatment ^b	0.35	0.00	1.00	N/A
Yearly earnings in natural log 8.44 8.56 8.21 <0.01 log (1.22) (1.09) (1.39) Age 31.83 35.57 24.74 <0.01	School years completed	8.88	8.66	9.28	< 0.01
Yearly earnings in natural log 8.44 8.56 8.21 <0.01 log (1.22) (1.09) (1.39) Age 31.83 35.57 24.74 <0.01		(3.07) (3.17)	(2.84)	
Age 31.83 35.57 24.74 < 0.01 Male (7.12) (4.93) (4.88)) Male 0.51 0.50 0.52 0.07 Race minority 0.13 0.12 0.15 5.00 Married 0.75 0.90 0.47 <0.01		8.44	8.56		<0.01
Maile		(1.22) (1.09)	(1.39)	
Male 0.51 0.50 0.52 0.07 Race minority 0.13 0.12 0.15 < 0.01	Age	31.83	35.57	24.74	< 0.01
Race minority 0.13 0.12 0.15 <0.01 Married 0.75 0.90 0.47 <0.01) (4.93)	(4.88)	
Married 0.75 0.90 0.47 <0.01 Urban 0.25 0.27 0.21 <0.01	Male				
Urban 0.25 0.27 0.21 <0.01 Health status - <0.01	Race minority	0.13	0.12	0.15	< 0.01
Health status	Married				< 0.01
Excelent 0.19 0.17 0.24	Urban	0.25	0.27	0.21	< 0.01
Good 0.58 0.58 0.58 Fair 0.21 0.22 0.17 Poor 0.02 0.02 0.01 Province	Health status				< 0.01
Fair 0.21 0.22 0.17 Popor Poor 0.02 0.02 0.01 - Province	Excellent	0.19	0.17	0.24	
Poor 0.02 0.02 0.01 Province -(0.01) -(0.01) Hellongliang 0.14 0.13 0.15 Liaoning 0.07 0.08 0.07 Jiangsu 0.12 0.12 0.13 Shandong 0.09 0.09 0.11 Henan 0.11 0.10 0.14 Hubel 0.11 0.12 0.10 Hunan 0.09 0.11 0.05 Guizhou 0.13 0.16 0.08 Guizhou 0.13 0.16 0.08 CHNS wave - - - 1997 0.27 0.28 0.26 2000 0.21 0.22 0.19 2004 0.26 0.25 0.28 2006 0.26 0.25 0.27	Good	0.58	0.58	0.58	
Province	Fair	0.21	0.22	0.17	
Heliongilang	Poor	0.02	0.02	0.01	
Liaoning 0.07 0.08 0.07 Jiangsu 0.12 0.12 0.13 Shandong 0.09 0.09 0.11 Henan 0.111 0.10 0.14 Hubel 0.111 0.12 0.10 Guangxi 0.13 0.16 0.08 Guizhou 0.13 0.16 0.08 Guizhou 0.13 0.11 0.16 1997 0.27 0.28 0.26 2000 0.21 0.22 0.19 2004 0.26 0.25 0.28 2006 0.26 0.25 0.27	Province				< 0.01
Jiangsu 0.12 0.12 0.13 Shandong 0.09 0.09 0.11 Henan 0.11 0.10 0.14 Hubei 0.11 0.12 0.10 Hunan 0.09 0.11 0.05 Guizhou 0.13 0.16 0.08 Guizhou 0.13 0.11 0.16 CHNS wave - - 0.26 2000 0.21 0.22 0.19 2004 0.26 0.25 0.28 2006 0.26 0.25 0.27	Heilongjiang	0.14	0.13		
Shandong 0.09 0.01 0.11 0.10 0.11 0.10 0.14 0.11 0.10 0.14 0.14 0.10 0.11 0.05 0.05 0.05 0.08 0.01 0.06 0.08 0.01 0.06 0.08 0.01	Liaoning	0.07	0.08	0.07	
Henan	Jiangsu	0.12	0.12	0.13	
Hubel 0.11 0.12 0.10 Hunan 0.09 0.11 0.05 0.01 0.09 0.11 0.05 0.08 0.01 0.16 0.08 0.01 0.16 0.08 0.01 0.10 0.16 0.08 0.01 0.10 0.16 0.01 0.10 0.10 0.10 0.10	Shandong	0.09	0.09	0.11	
Hunan 0.09 0.11 0.05	Henan	0.11	0.10	0.14	
Guangxi 0.13 0.16 0.08 Guizhou 0.13 0.11 0.16 CHNS wave 1997 0.27 0.28 0.26 2000 0.21 0.22 0.19 2004 0.26 0.25 0.28 2006 0.26 0.25 0.27	Hubei	0.11	0.12	0.10	
Guizhou 0.13 0.11 0.16 CHNS wave <0.01	Hunan	0.09	0.11	0.05	
CHNS wave < <0.01 1997 0.27 0.28 0.26 2000 0.21 0.22 0.19 2004 0.26 0.25 0.28 2006 0.26 0.25 0.27	Guangxi	0.13	0.16	0.08	
1997 0.27 0.28 0.26 2000 0.21 0.22 0.19 2004 0.26 0.25 0.28 2006 0.26 0.25 0.27	Guizhou	0.13	0.11	0.16	
2000 0.21 0.22 0.19 2004 0.26 0.25 0.28 2006 0.26 0.25 0.27	CHNS wave				< 0.01
2004 0.26 0.25 0.28 2006 0.26 0.25 0.27	1997	0.27	0.28	0.26	
2006 0.26 0.25 0.27	2000	0.21	0.22	0.19	
	2006	0.26			

Data source: China Health and Nutrition Survey (CHNS) 1997, 2000, 2004, and 2006.

³The control cohort includes respondents that were not affected by the 1986 China Compulsory Education Law, and the treatment cohort includes respondents that were affected by the 1986 China Compulsory Education Law. The effective dates of the 1986 China Compulsory Education Law in the different provinces varied. We define the sample so that a treatment respondent was less than 15 years old on the law's effective date in the province where he or she lived, and a control respondent was 15 years or older on the effective date.

⁶Chi-square tests for categorical variables and students' t tests for continuous variables between the control cohort and treatment cohort.

N/A: not applicable.

^aStandard deviations are reported in parentheses for continuous variables.

Table 2: The impact of the compulsory schooling law on years of schooling: Selected results from the first stage of the 2-stage least squares estimation (2SLS)

First stage estimation in 2SLS	School years completed is the dependent variable (OLS coefficient) ^a							
	All	Two-year control and two-year treatment cohort	Two-year control cohort	Two-year treatment cohort				
Age on the date the law was implemented	N/A	13 - 16 years old	15 - 16 years old	13 - 14 years old				
Instrumental variable								
Less than 15 years old by the effective date	0.79***	0.66***						
(Treatment dummy of compulsory education law)	(0.11)	(0.14)						
Less than 16 years old by the effective date			0.12					
(Year dummy variable)			(0.21)					
Less than 14 years old by the effective date				0.38**				
(Year dummy variable)				(0.18)				
Test of excluded instruments								
F statistic	54.78***	21.85***	0.33	4.23**				
Under-identification tests								
Kleibergen-Paap rk LM statistic	55.15***	21.79***	0.33	4.28**				
Kleibergen-Paap rk Wald statistic	54.89***	22.06***	0.33	4.32**				
Weak identification test								
Kleibegen-Paap Wald rk F statistic ^b	54.78*	21.85*	0.33	4.23				
Weak-instrument-robust inference								
Anderson-Rubin Wald test: F statistic	10.69***	9.97***	0.41	0.03				
Anderson-Rubin Wald test: Chi-square statistic	10.71***	10.07***	0.40	0.03				
Stock-Wright LM S statistic	10.69***	9.98***	0.40	0.03				

significant at the 10% level; ** significant at the 5% level; *** significant at the 1% level.

N/A: not applicable.

^a All the estimations have controlled for other explanatory variables in Table 1.

b 10% maximal IV size as the Stock-Yogo weak ID test critical values is 16.38, and smaller maximal IV sizes are not available in Stock-Yogo (2005).

Table 3: The impact of the compulsory schooling law by gender and location: Selected results of the first stage estimation in 2SLS for various sub-populations

First stage estimation in 2SLS	School years completed is the dependent variable (OLS coefficient) ^a								
	Female	Male	Rural	Urban	Inland	Coastal			
Instrumental variable									
Less than 15 years old by the effective date	1.17***	0.40***	0.82***	0.76***	0.72***	0.83***			
(Treatment dummy of compulsory education law)	(0.15)	(0.15)	(0.16)	(0.21)	(0.12)	(0.22)			
Test of excluded instruments									
F statistic	59.84***	7.36***	45.96***	21.68***	35.02***	14.43***			
Under-identification tests									
Kleibergen-Paap rk LM statistic	60.00***	7.43***	46.26***	12.91***	35.34***	14.49***			
Kleibergen-Paap rk Wald statistic	60.06***	7.39***	46.07***	12.78***	35.10***	14.51***			
Weak identification test									
Kleibegen-Paap Wald rk F statistic ^b	59.84*	7.36	45.96*	12.68	35.02*	14.43			
Weak-instrument-robust inference									
Anderson-Rubin Wald test: F statistic	3.33*	8.56***	6.47***	2.05	2.21	15.18***			
Anderson-Rubin Wald test: Chi-square statistic	3.34*	8.59***	6.48***	2.06	2.22	15.26***			
Stock-Wright LM S statistic	3.34*	8.54***	6.47***	2.06	2.22	15.01***			

^{*} significant at the 10% level; ** significant at the 5% level; *** significant at the 1% level.

^a All estimations have controlled for the other explanatory variables in Table 1. Descriptive statistics for these subpopulations are given in the appendix table.

^b10% maximal IV size as the Stock-Yogo weak ID test critical values is 16.38, and smaller maximal IV sizes are not available in Stock-Yogo (2005).

Table 4: Returns to schooling results by OLS and 2SLS for CHNS respondents born after 1961

(the "All" sample)

Variable	OLS		S		2SI	_S
	Coeff.		S.E.	Coeff.		S.E.
School years completed	0.09	***	(0.004)	0.20	***	(0.06)
Age	0.25	***	(0.02)	0.22	***	(0.02)
Age squared	0.00	***	(0.0003)	0.00	***	(0.0003)
Male	0.21	***	(0.02)	0.15	***	(0.04)
Race minority	-0.12	***	(0.05)	-0.09	*	(0.05)
Married	-0.14	***	(0.04)	-0.06		(0.06)
Urban	0.19	***	(0.03)	-0.10		(0.16)
Health status						
Excellent (reference)						
Good	-0.04		(0.03)	-0.05		(0.03)
Fair	-0.15	***	(0.04)	-0.14	***	(0.04)
Poor	-0.34	***	(0.10)	-0.24	**	(0.12)
Province						
Heilongjiang (reference)						
Liaoning	0.11	**	(0.06)	0.03		(0.07)
Jiangsu	0.50	***	(0.04)	0.44	***	(0.05)
Shandong	0.14	***	(0.05)	0.11	**	(0.05)
Henan	-0.19	***	(0.05)	-0.20	***	(0.05)
Hubei	-0.17	***	(0.05)	-0.16	***	(0.05)
Hunan	0.02		(0.05)	-0.05		(0.07)
Guangxi	-0.04		(0.05)	-0.02		(0.05)
Guizhou	-0.21	***	(0.05)	-0.14	**	(0.07)
CHNS wave						
1997 (reference)						
2000	-0.01		(0.03)	-0.07		(0.05)
2004	0.15	***	(0.04)	0.04		(80.0)
2006	0.43	***	(0.04)	0.28	***	(0.10)
Constant	3.24	***	(0.28)	2.64	***	(0.48)
* significant at the 10% level; ** s	ignificant at	the s	5% level; *** s	ignificant at	the 1	l% level.

Table 5: Robustness check on instrument

Yearly earning in natural log as the dependent variable ^a	and	Two-year control and Two-year treatment cohorts		Two-year control cohort			Two-year treatment cohort			
Age by the effective date	13 - 16 years old		15 - 16 years old		13 - 14 years old					
	Coeff.		S.E.	Coeff.		S.E.	Coeff.		S.E.	
OLS										
School years completed	0.09	***	(0.01)	0.09	***	(0.01)	0.10	***	(0.02)	
2SLS ^b										
School years completed	0.26	***	(0.09)	0.54		(1.11)	0.04		(0.22	

 $^{^{\}rm a}\text{All}$ estimations have controlled for the other explanatory variables in Table 1.

^bUsing the instrumental variables as those in Table 3 for various study cohorts respectively.

The dependent variable is the annual income in natural log

iii iiatarai ii
By gender
Female
Male

	E	3	1
	E	3	,

Inland provinces

Coastal provinces

- v urbanization
- Rural Urban
- By province location

* significant at the 10% level: ** significant at the 5% level: *** significant at the 1% level.

0.08 0.09

0.09

Coeff.

0.09

0.09

0.09

Table 6: Selected results by gender, urbanization, and province location (the "All" sample)

OLS

S.E.

(0.01)

(0.01)

(0.01)

(0.01)

(0.01)

(0.01)

Coefficients on "School years completed"

Coeff.

0.10 *

0.51

0.18

0.14

0.12

0.37

2SLS

S.E.

(0.05)

(0.23)

(0.07)

(0.09)

(80.0)

(0.12)

Paul Schrimpf

References

Introduction

Example: return to education

Statistica propertie

Consistent

IV when exogenei

IV for multip

return to education Lemieux and Care (2001)

References

Angrist, J.D. and J.S. Pischke. 2009. *Mostly harmless econometrics: An empiricist's companion*. Princeton University Press.

Angrist, Joshua D. and Alan B. Krueger. 1991. "Does Compulsory School Attendance Affect Schooling and Earnings?" *The Quarterly Journal of Economics* 106 (4):pp. 979–1014. URL http://www.jstor.org/stable/2937954.

---. 2001. "Instrumental Variables and the Search for Identification: From Supply and Demand to Natural Experiments." Journal of Economic Perspectives 15 (4):69-85. URL http://www.aeaweb.org/articles.php?doi=10.1257/jep.15.4.69.

Angrist, Joshua D and Jörn-Steffen Pischke. 2014. Mastering 'Metrics: The Path from Cause to Effect. Princeton University Press. Introduction

Example: return to education

Statistica propertie

Consistency

IV when exogeneit fails

IV for multipl regression

education

Lemieux and Carc
(2001)

References

Card, David. 1993. "Using geographic variation in college proximity to estimate the return to schooling." Tech. rep., National Bureau of Economic Research. URL http://www.nber.org/papers/w4483.

---. 2003. "Estimating the return to schooling: Progress on some persistent econometric problems." *Econometrica* 69 (5):1127-1160. URL http://onlinelibrary.wiley. com/doi/10.1111/1468-0262.00237/full.

Fang, Hai, Karen N. Eggleston, John A. Rizzo, Scott Rozelle, and Richard J. Zeckhauser. 2012. "The Returns to Education in China: Evidence from the 1986 Compulsory Education Law." Working Paper 18189, National Bureau of Economic Research. URL

http://www.nber.org/papers/w18189.

Paul Schrimpf

Introduction

Example: return to education

Statistica propertie

Bias

Asymptotic

IV when exogene fails

IV for multiple regression

return to
education
Lemieux and Car

References

References

Lemieux, Thomas and David Card. 2001. "Education, earnings, and the 'Canadian G.I. Bill'." Canadian Journal of Economics/Revue canadienne d'économique 34 (2):313-344. URL http://dx.doi.org/10.1111/0008-4085.00077.

Murray, Michael P. 2006. "Avoiding Invalid Instruments and Coping with Weak Instruments." Journal of Economic Perspectives 20 (4):111-132. URL http://www.aeaweb.org/articles.php?doi=10.1257/jep.20.4.111.

Stock, James H, Jonathan H Wright, and Motohiro Yogo. 2002. "A Survey of Weak Instruments and Weak Identification in Generalized Method of Moments." *Journal of Business & Economic Statistics* 20 (4):518–529. URL http://dx.doi.org/10.1198/073500102288618658.

Wooldridge, J.M. 2013. *Introductory econometrics: A modern approach*. South-Western.