Paul Schrimpf

Asymptotics

OLS

IV

Review

Paul Schrimpf

UBC Economics 326

April 7, 2015

1 Asymptotics

OLS

3 IV

Paul Schrimpf

Asymptotics

Section 1

Asymptotics

- Idea: use limit of distribution of estimator as $n \to \infty$ to approximate finite sample distribution of estimator
- W_n converges in probability to θ if for every $\epsilon > 0$,

$$\lim_{n\to\infty} P\left(|W_n-\theta|>\epsilon\right)=0$$

denote by plim $W_n = \theta$ or $W_n \stackrel{p}{\to} \theta$

- Law of large numbers: if $y_1, ..., y_n$ are not too dependent and $Var(y_i) < \infty$, then $\bar{v} \stackrel{p}{\to} E[Y]$
 - $plim g(W_n) = g(plim W_n)$ if g is continuous (continuous mapping theorem (CMT))
 - If $W_n \stackrel{p}{\to} \omega$ and $Z_n \stackrel{p}{\to} \zeta$, then (Slutsky's lemma)

•
$$W_n + Z_n \stackrel{p}{\to} \omega + \zeta$$

•
$$W_n Z_n \stackrel{n}{\to} \omega \zeta$$

•
$$\frac{W_n}{Z_n} \stackrel{p}{\to} \frac{\omega}{\zeta}$$

Asymptotics

- W_n is a consistent estimate of θ if $W_n \stackrel{p}{\to} \theta$
- W_n converges in distribution to W_n written $W_n \stackrel{d}{\to} W_n$ if $\lim_{n\to\infty} F_n(x) = F(x)$ for all x where F is continuous
- Central limit theorem: Let $\{y_1, ..., y_n\}$ be not too dependent with mean μ and variance σ^2 then $Z_n = \sqrt{n} \frac{\bar{y}_n - \mu}{\sigma}$ converges in distribution to a standard normal random variable
 - If $W_n \xrightarrow{d} W$, then $q(W_n) \xrightarrow{d} q(W)$ for continuous q (continuous mapping theorem (CMT))
 - Slutsky's theorem: If $W_n \stackrel{d}{\to} W$ and $Z_n \stackrel{p}{\to} c$, then (i) $W_n + Z_n \xrightarrow{d} W + c$. (ii) $W_n Z_n \xrightarrow{d} cW$, and (iii) $W_n / Z_n \xrightarrow{d} W / c$

Paul Schrimpf

OLS

Section 2

OLS

$$y_i = \beta_0 + \beta_1 x_{1,i} + \beta_2 x_{2,i} + \cdots + \beta_k x_{k,i} + \epsilon_i$$

Assumptions:

MLR.1 (linear model)

MLR.2 (independence) $\{(x_{1,i}, x_{2,i}, y_i)\}_{i=1}^n$ is an independent random sample

MLR.3 (rank condition) no multicollinearity: no $x_{j,i}$ is constant and there is no exact linear relationship among the $x_{j,i}$

MLR.4 (exogeneity) $E[\epsilon_i|x_{1,i},...,x_{k,i}]=0$

MLR.5 (homoskedasticity) $Var(\epsilon_i|X) = \sigma_{\epsilon}^2$

MLR.6 $\epsilon_i | X \sim N(0, \sigma_{\epsilon}^2)$

- Unbiased if 1-4
- Consistent under 1, 3 and (2') observations are not too dependent and (4') $\mathbb{E}[\epsilon_i x_{i,i}] = 0$

OLS

- · Asymptotically normal under 1, 2', 3, 4'
- No need to assume 5, just use heteroskedasticity robust standard errors
 - If observations are dependent through time or through clustering must modify standard errors
- Interpretation of coefficients: β_j is effect of $x_{j,i}$ holding the other x's constant
- Estimates satisfy OLS first order conditions

$$\sum_{i=1}^{n} \left(y_i - \hat{\beta}_0 - \hat{\beta}_1 x_{1,i} - \dots - \hat{\beta}_k x_{k,i} \right) x_{j,i} = 0 \text{ for } j = 1, \dots, k$$

or

$$\sum_{i=1}^{n} \hat{\epsilon}_i x_{j,i} = \text{for } j = 1, 2, ..., k$$

· Can also write estimates using partitioned regression

OLS

• Regress $x_{1,i}$ on other regressors

$$x_{1,i} = \hat{\gamma}_0 + \hat{\gamma}_2 x_{2,i} + \cdots + \hat{\gamma}_k x_{k,i} + \tilde{x}_{1,i}$$

where $\tilde{x}_{1,i}$ is the OLS residual

Then

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n \tilde{x}_{1,i} y_i}{\sum_{i=1}^n \tilde{x}_{1,i}^2}$$

Paul Schrimpf

Asymptotics

IV

Section 3

IV

Model

$$y_i = \beta_0 + \beta_1 x_{1,i} + \dots + \beta_k x_{k,i} + \beta_{k+1} w_{1,i} + \dots + \beta_{k+r} w_{r,i} + \epsilon_i$$
(1)

with instruments $z_{1,i}, ..., z_{m,i}$

- Assumptions:
 - IV.1 Linearity: (1) holds
 - IV.2 Independent observations
 - IV.3 Relevance (rank condition): $m \ge k$ and (loosely speaking) each $x_{i,i}$ is correlated with some $z_{l,i}$
 - IV.4 Exogeneity: $E[w_{s,i}\epsilon_i] = 0$ for s = 1, ..., r and $E[z_{l,i}\epsilon_i] = 0$ for l = 1, ..., m
- · Estimate by two stage least squares
 - Regress x's on z's and w's
 - 2 Regress y on \hat{x} 's and w's
 - Should check relevance in the first stage

- Reduced form is regression of y on z and w
- IV estimate \simeq reduced form divided by first stage
- If IV.1-IV.4, then 2SLS is consistent and asymptotically normal
- Need to use IV instead of OLS when we don't believe $\mathbb{E}[x\epsilon]=0$
 - i.e. the model we want to estimate is not the population regression for the data we have
 - instead we want a causal effect or parameters from an economic model
- Comparing OLS and IV estimates