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This lecture analyzes systems of linear equations. It is largely based on Chapters 6-7 of
Simon and Blume.

Systems of linear appear throughout economics. There are some interesting economic
models that naturally have a linear structure. Chapter 6 of Simon and Blume gives five
examples: taxation and deductions, Leontief production, Markovian employment, IS-LM,
and investment and arbitrage. Linear systems also arise as local approximations to non-
linear systems. Therefore, understanding linear systems is essential for understanding
nonlinear systems as well.

A system of linear equations is any set of equations in which the unknown only appear
linearly. An example of a linear system with 2 unknowns and 2 equations is

5x1 − 7x2 =9

−8x1 + x2 =0.

In general, a linear system with m equation and n unknowns can be written

a11x1 + a12x2 + ... + a1nxn =b1

a21x1 + a22x2 + ... + a2nxn =b2

...
...

am1x1 + am2x2 + ... + amnxn =bm,

where aij and bi are given, and xj are unknown. This system of equations be also be
written in matrix form.  a11 · · · a1n

...
...

am1 · · · amn


x1

...
xn

 =

b1
...

bm


Ax =b,

where the m by n matrix A is called the coefficient matrix, x is an n × 1 vector of un-
knowns and b is an m × 1 vector. We can represent a system of equations slightly more
compactly by working with the augmented coefficient matrix,

Â =

 a11 · · · a1n b1
...

...
...

am1 · · · amn bm

 =
(

Ab
)

.
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Example: Markov model of employment. Let st be some variable, like employment, that
is randomly changing over time. We call this a random process (or stochastic process). In
general, the probability of being employed at time t could depend on the entire history
of st−1, st−2, .... We could write it as P(st|st−1, st−2, ...). We call st Markovian if instead the
probability of being employed at time t only depends on st−1.

P(st|st−1, st−2, ...) = P(st|st−1)

In this case, {st} is said to be a Markov process. Given a Markov process, we are often
interested in its stationary distribution. A stationary distribution is a distribution that st
that will stay the same as time changes. If st ∈ S is discrete, a stationary distribution must
satisfy

q(s) = ∑
s0∈S

P(s|s0)q(s0)

for all s ∈ S.
Markov processes appear in many areas of economics. It is usually easier to work with

a Markov process than a general stochastic process. Often, we assume variables are Mar-
kovian to make a model tractable. This is really why we are about to assume employment
is a Markov process. Other times, economic theory implies that some variable must fol-
low a Markov process. This sometimes happens with asset prices. Markov processes are
also very important for Bayesian estimation.

If employment follows a Markov process, then its evolution over time is completely
described by four probabilities: the probability that someone who is employed today is
employed tomorrow, the probability that someone who is employed today is unemployed
tomorrow, the probability that someone who is unemployed today is employed tomor-
row, and the probability that someone who is unemployed today is also unemployed
tomorrow. We will denote these four probabilities by pee, pue, peu, and puu. Given these
for probabilities, we might be interested in the equilibrium employment rate, i.e. the em-
ployment rate in the stationary distribution of the process. Let πe and πu be stationary
employment and unemployment rates. They must satisfy

πe =peeπe + peuπu

πu =pueπe + puuπe

1 =πe + πu,

or, equivalently, in the general form written above

(pee − 1)πe + peuπu =0

pueπe + (puu − 1)πe =0

πe + πu =1.

The augmented matrix for this system is

Â =

pee − 1 peu 0
pue puu − 1 0
1 1 1

 .
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Three questions to ask about such a system of equations are:

(1) Does any solution exist?
(2) How many solutions exist?
(3) How can a solution be computed?

We will begin by examining the first question. Then, we will see that the answers to the
first two questions depend on the coefficients of the system of equations.

1. SOLVING SYSTEMS OF EQUATIONS

You likely already have experience solving small systems of equations. The two basic
techniques are

(1) substitution: solve for one variable in terms of the others and substitute
(2) elimination: add a multiple of one equation to another to eliminate one variable.

One way of viewing elimination is that transforms one system of equations to another
that is easier to solve, while ensuring the solution remains the same. Three basic equation
operations that we can perform while preserving the solution of the system are:

(1) Multiply an equation by a non-zero constant,
(2) Add a multiple of one equation to another, and
(3) Interchange two equations.

We could also perform these operations on the augmented coefficient matrix. We then
call them row operations instead. Given a reasonably small system of equations, you
might be able to solve the system without thinking too carefully about the steps involved.
However, if we want to solve large systems of equations (or write a computer program-
mer to solve large systems of equations), we will need to think carefully about the steps
involved.

1.1. Gaussian elimination. Gaussian elimination is the process of using these operations
to transform the augmented matrix of a system of equation into row echelon form. A
matrix is in row echelon form if each row begins with more zeros than the row above it
or the row is all zeros. The first non-zero entry in each row of a matrix in row echelon
form is called a pivot. Gaussian elimination can be performed as follows:

(GE1) Identify the first column to contain any non-zero elements, call this column c∗.
(GE2) Interchange rows so that a nonzero entry appears at the top of column c∗.
(GE3) Add a multiple of the first row to each of the rows below so that the entries in

column c∗ below the first row are zero.
(GE4) Repeat GE1-GE2 on the submatrix consisting of the lower right part of the original

matrix below the first row and to the right of column c∗. Stop if this submatrix has
no columns or has no rows.
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Example 1.1 (Gaussian elimination). Consider the system

3x2 + 2x3 − 4x4 = 4
6x1 − x2 + x4 = −2
x1 + x2 + x3 = 1

4x3 − x4 = 3

The augmented matrix for this system is

Â =


0 3 2 −4 4
6 −1 0 1 −2
1 1 1 0 1
0 0 4 −1 3


Following the steps above:

GE1 c∗ = 1
GE2 Swap 2nd and 1st row. 

6 −1 0 1 −2
0 3 2 −4 4
1 1 1 0 1
0 0 4 −1 3


GE3 Add −1/6(row 1) to row 3.

6 −1 0 1 −2
0 3 2 −4 4
0 7/6 1 −1/6 4/3
0 0 4 −1 3


GE1 Now ignoring first row and column, c∗ = 2.
GE2 Leave row 2 where it is.
GE3 Add −7/18 row 2 to row 3.

6 −1 0 1 −2
0 3 2 −4 4
0 0 2/9 25/18 −4/9
0 0 4 −1 3


GE1 Now ignoring first to columns and rows, c∗ = 3.
GE2 Leave row 3.
GE3 Add −18 row 3 to row 4.

6 −1 0 1 −2
0 3 2 −4 4
0 0 2/9 14/9 −4/9
0 0 0 −26 11


Given the above row echelon form, it is relatively easy to solve the system of equations.
From the last row, we know x4 = −11/26. Substituting into the second last row, we get
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x3 = 9/2(−4/9+ 14/9× 11/26). Back substituting back to the first row gives a complete
solution.

It is always possible to transform a matrix into row echelon form. Moreover, we can
prove that the above procedure always work.

Theorem 1.1 (Existence of row echelon form). Any matrix can be put into row echelon form
using Gaussian elimination.

Proof. Let m be the number of rows of a matrix and n be the number of columns. We will
prove the theorem by induction on m and n.

Any 1 by n matrix is already in row echelon form.
Also, given any m by 1 matrix, if it is all zeros, it is already in row-echelon form. Oth-

erwise, it contains a nonzero entry. We can move this nonzero entry to the first row. Then
we can add a multiple of the first entry to all other entries to make all entries after the first
into zeros. Thus, any m by 1 matrix can be put into row echelon form.

For example, consider

A =


0
2
−7
9


swap row 1 and 2

≃


2
0
−7
9


add row 1 times 7/2 to row 3

≃


2
0
0
9


add row 1 times -9/2 to row 3

≃


2
0
0
0


It’s now in row echelon form

Now suppose we can put matrix with less than m rows or less than n columns into row
echelon form. Given an m by n matrix either the first column contains a nonzero entry
or it does not. If the first column is all zeros, then we may ignore it, and we just have to
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transform the remainging m by n − 1 matrix into row echelon form, which can be done
due to our inductive assumption.

If the first column is not all zeros, then we can follow steps (GE1-GE3) to make the first
element of the matrix nonzero and all other entries in the first column zero. We can then
just work on transforming the remaining m − 1 by n matrix after the first row into row
echelon form, which again is possible by our inductive assumption. □

Note that the row echelon form of a matrix is not unique because, for example, we
could multiply any row by a constant and the matrix would still be in row echelon form.

1.2. Gauss-Jordan elimination. A matrix is in reduced row echelon form if it is in row
echelon form with each pivot equal to one and each column that contains a pivot has no
other non-zero entries. For example,

1 0 0 b1
0 1 0 b2
0 0 1 b3



is in reduced row echelon form. The solution to a system of linear equations is given im-
mediately by its augmented matrix in reduced row echelon form. In the previous exam-
ple, the solution is x1 = b1, x2 = b2, and x3 = b3. Gauss-Jordan elimination transforms a
matrix into reduced row echelon form and can be performed as follows:

(GJ1) Put the matrix into row echelon form by performing Gaussian elimination
(GJ2) Divide the bottom row by its pivot.
(GJ3) Add a multiple of the bottom row to each row above it such that the column above

the bottom row’s pivot is made equal to all zeros.
(GJ4) Repeat GJ2 and GJ3 with the next row up.

Example 1.2 (Gauss-Jordan elimination). Suppose we have performed Gaussian elimina-
tion to get

2 3 0 −1
0 −1 −2 3
0 0 7 14


6
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Following the steps above, we get2 3 0 −1
0 −1 −2 3
0 0 1 2

(GJ2)

2 3 0 −1
0 −1 0 7
0 0 1 2

(GJ3)

2 3 0 −1
0 1 0 −7
0 0 1 2

(GJ2)

2 0 0 20
0 1 0 −7
0 0 1 2

(GJ3)

1 0 0 10
0 1 0 −7
0 0 1 2

(GJ2)

As with row echelon form and Gaussian elimination, we can prove that a reduced row
echelon form always exists and Gauss-Jordan elimination can produce it.

Theorem 1.2 (Existence of reduced row echelon form). Any matrix can be put into reduced
row echelon form using Gauss-Jordan elimination.

Proof. Let A by an m by n matrix. By Theorem 1.1, A can be transformed into row echelon
form. Steps GJ2-GJ4 will transform A into reduced row echelon form. □

2. EXISTENCE OF SOLUTIONS

We now have a method for solving systems of equations. Will this method always
work? The answer is no. It is easy to write down systems of equations that cannot be

solved. For example,
x = 2
−x = 3

, has no solutions. However, it is not always so obvious

when a system of equations has no solutions.

Example 2.1. Consider the system:

x + 2y − z =2

4y + z =5

−2x − 4y + 2z =1.

Let’s transform this system into row echelon form. Let Â ≃ B̂ mean that the systems of
equations represent by Â and B̂ have the same solution. 1 2 −1 2

0 4 1 5
−2 −4 2 1

 ≃

1 2 −1 2
0 4 1 5
0 0 0 3


7
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The third equation in the transformed system is

0x + 0y + 0z = 3,

which has no solution. Then, the entire transfrom system must have no solution. By
construction, the transformed system has the same solutions as the original system, so
the original system of equations must also have no solution.

In the preceding example, we saw a system of equations with no solution because its
row echelon form had a row with all zeros except for the final column. This observation
applies more generally.

Definition 2.1. The rank of a matrix is the number of nonzero rows in its row echelon
form.

This definition is slighty problematic because, as stated earlier, the row echelon form of
a matrix is not unique. To show that rank is well defined, we should prove that any row
echelon form of a matrix has the same number of nonzero rows. We will prove that rank
is a well-defined a little later in the course.

Lemma 2.1. The rank of a matrix A is always less than or equal to the number of columns of A
and less than or equal to the number of rows of A.

Proof. The first claim follows form the definition of row echelon form. If each row of the
row echelon form of A must start with more zeros than the preceding row, then there can
be at most as many nonzero rows as there are columns. A also cannot have more nonzero
rows than total rows, so the second claim is trivial. □

Lemma 2.2. Let A be a coefficient matrix and Â be an augmented coefficient matrix. Then
rankA ≤ rankÂ.

Proof. Let

Â′ =

 a′11 · · · a′1n b′1
...

...
a′m1 · · · a′mn b′m


be a row echelon form of Â. Then the first n columns of Â′ is a row echelon form for A.
Finally, the number of nonzero rows of Â′ must be greater than or equal to the number of
nonzero rows of its submatrix,  a′11 · · · a′1n

...
...

a′m1 · · · a′mn

 .

□

Theorem 2.1 (Existence of solutions). A system of linear equations with coefficient matrix A
and augmented coefficient matrix Â has a solution (perhaps more than one) if and only if rankA =
rankÂ.
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Proof. We’ll first prove the “only if” part of this theorem. Suppose rankA ̸= rankÂ. We
want to show that then there are no solutions to the associated system of equations. From
2.2, we know that rankA < rankÂ. There is a zero row in the row echelon form of A and
a corresponding nonzero row in the row echelon form of Â. The equation associated with
this row is of the form

0x1 + ... + 0xn = b′m
for some b′m ̸= 0. As in the example, this equation has no solution, so the system has no
solution.

Now we will prove the “if” part of the theorem. Suppose rankA = rankÂ. Let Â′ be a
row echelon form of Â and A′ = the first n columns of Â′ be the associated row echelon
form of A. We can prove the existence of solutions by induction on the number of rows.
If A′ is 1 by n with a nonzero entry, say a1j, we can produce a solution by choosing any
values for {x1, ..., xn} \ {xj} and set

xj =
1

a1j1

(
b1 − ∑

k ̸=j
a1kxk

)
.

Now let A be m by n and suppose we have proven the claim for all (m − 1) by n matri-
ces. If the mth row of A′ has all zeros, then we may ignore it and only work with the first
m − 1 rows. If the mth row of A′ has a nonzero entry, let a′mj be the first nonzero entry in
the mth row. Choose any values for xj+1, ..., xn and set

xj =
1

a′mj1

(
b′m −

n

∑
k=j+1

a′mkxk

)
.

Substitute these values of xj, ..., xn into the m − 1 rows above to produce the system

B̂ =

a′1,1 · · · a′1,j−1 b′1 − ∑n
k=j a′1,kxk

0 . . . ...
· · · a′m−1,j−1 b′m−1 − ∑n

k=j a′m−1,kxk

 .

We must have one of the elements of the m − 1 row non zero because otherwise Â′ would
not have been in row echelon form. Similarly, all of B̂ must be row echelon form because
Â was in row echelon form. Thus, rankB̂ = m − 1 and the coefficient matrix associated
with B̂ also has rank m − 1. By the inductive assumption, there exists x1, ..., xj−1 that
solve the system represented by B̂. This solution combined with the values for xj, ..., xn
described above is a solution to the entire original system. □

We now have a nice condition for when there exists at least one solution to a system
of linear equations. If there is a solution can be more than one? From looking at simple
systems like x + y = 0, the answer is clearly yes. If you look carefully at the proof of
Theorem 2.1 you might be able to see that multiple solutions will exist whenever at least
one solution exists and the row echelon form of the coefficient matrix has a row with more
than one more zero than the row preceding it. That is, there will be multiple solutions
whenever the rank of the augmented coefficient matrix is equal to rank of the coefficient
matrix, and rank is less than the number of variables in the system (which is equal to the
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number of columns). We will state these ideas formally and prove them below. Before
that, let’s look at another example.

Example 2.2. Consider the system:

4y + z =5

x + 2y − z =2

−8y − 2z =− 10.

Let’s transform this system into row echelon form. Let Â ≃ B̂ mean that the systems of
equations represent by Â and B̂ have the same solution.0 4 1 5

1 2 −1 2
0 −8 2 −10

 ≃

1 2 −1 2
0 4 1 5
0 −8 2 −10


≃

1 2 −1 2
0 4 1 5
0 0 0 0


For any value of z ∈ R, y = 1

4(5 − z) and x = 2 − 1
2(5 − z) + z = −1+z

2 is a solution to the
system.

When solving a system of equations, we call variables whose value is indeterminate
free variables. We call variables whose value is either completely determined or deter-
mined by the value of the free variables basic. In the above examples, z is a free variable
and x and y are basic. Note that free and basic are just names that are sometimes useful,
but they are not concrete definitions. In the above example, we could have just as easily
described the set of solutions by saying: x ∈ R, z = 2x − 1, and y = 3−x

2 .
In the above example we saw a system of equations with infinitely many solutions. It

turns out that whenever there is more than one solution, there must be infinitely many.

Lemma 2.3. 1 Suppose x1 and x2 are two distinct solutions to the system of equations Ax = b.
Then the system of equations has (uncountably) infinitely many solutions.

Proof. Let w ∈ R. Consider x(w) = wx1 + (1 − w)x2. Since x1 ̸= x2, for each w, x(w) is
unique. Also,

Ax(w) =A (x1w + x2(1 − w))

=Ax1w + Ax2(1 − w)

=bw + b(1 − w)

=b,

so x(w) is another solution. □
1We state and prove this lemma using matrix notation. We will study matrix algebra in greater detail in

the next lecture. If you are uncomfortable with matrix notation and operations here, it may help to restate
and prove the theorem without using matrices.
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Another interesting observation about the previous example is that if were to just change
b3 from −10 to any other number, it would have no solutions instead of a unique solu-
tion. In particular, the third row of the row echelon form would be

(
0 0 0 b3 + 10

)
. It

would be good to know when the existence of solutions depends on the choice of b and
when it does not.

Theorem 2.2 (Solution existence). A system of linear equations with coefficient matrix A will
have a solution for any choice of b1, ..., bm if and only if rankA is equal to the number of rows of
A.

Proof. If rank of A is equal to the number of rows of A, then the row echelon form of A
has no all zero rows. For any choice of b, the augmented matrix, Â, must also have no all
zero rows. Hence, rankA = rankÂ and by theorem 2.1, at least one solution exists.

If rankA is less than the number of rows of A, then the last row of the row echelon
form of A, A′ has all zeros. If we augment produce an augmented matrix in row echelon
form Â′ with bm ̸= 0, then the last equation has no solutions. We can then reverse the
steps of Gaussian elimination used to produce A′ to arrive at an augmented matrix Â
corresponding to a system with coefficient matrix A that has no solution. □

The following corollary is an immediate consequence of the second part of the above
proof.

Corollary 2.1. For any system of equations with more equations than variables, there exists a
choice of b such that no solutions exist.

We call a system of equations with more equations than variables overdetermined. A
system with more variables than equations is called underdetermined.

3. UNIQUENESS OF SOLUTIONS

Theorem 3.1 (Solution uniqueness). Any system of equations with coefficient matrix A has at
most one solution for any b1, ..., bm if and only if rankA equals the number of columns of A.

Proof. Suppose rankA is equal to the number of columns of A. Then the row echelon form
of A must be of the form 

a′11 a′12 ... a′1n
0 a′22 ... a′2n

0 0 . . .
0 · · · 0 a′kn
0 · · · · · · 0
...

...
0 · · · · · · 0


The only possible solution is xn = bk/a′kn, xn−1 =

bk−1−a′k−1,nxn

a′k−1,n−1
. Thus, if any solution exists,

it is unique.
Conversely, suppose rankA is less than the number of columns of A. We can prove that

A can have multiple solutions by performing induction on m. If A is 1 by n and has at
11
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least one non-zero entry, then the system will have infinite solutions for any b1. On the
other hand, if A is all zeros, then the system has infinite solutions for b1 = 0.2

Now, suppose we have shown that any m − 1 by n matrix with rank less than the
number of columns can have multiple solutions. If A is m by n with rank less than n,
consider three cases: (i) the last row of the row echelon form of A is identically zero, (ii)
the last row of the row echelon from of A has one non-zero entry and (iii) the last row
of the row echelon form of A has multiple non-zero entries. Every A will fit into one of
these three cases.

In case (iii), we can produce a solution for any value of xn, so multiple solutions exist.
In case (i), we can delete the last row of the row echelon form of A without changing

its rank. Let A1 be the row echelon form of A with the last row deleted. When bm = 0,
any solution to A1 is also a solution to A. Furthermore, the rank of A1 must equal the
rank of A, and the number of columns of A1 equals the number of columns of A. Hence,
A1 is m − 1 by n with rank less than the number of columns, so by induction, multiple
solutions will exist.

In case (ii), let A1 be the row echelon form of A with last row and last column deleted.
Finally, rankA1 = rankA − 1 and A1 has one column less than A, so A1 is m − 1 by
n − 1 and by induction multiple solutions exist. Let b1, ..., bm−1 combined with A1 pro-
duces multiple solutions. Then any solution to the system A1 along with xn = bm/ãmn,
where ãmn is the last entry in the last row of the row echelon form of A, will be a solu-
tion to the system with coefficients A and right hand side b1 + ã1nbm/ãmn, · · · , bm−1 +
ãm−1,nbm/ãmn, bm. Thus, multiple solutions to A also exist. □

The following corollary is a nice consequence of the above proof.

Corollary 3.1. If rankA is less than the number of columns of A then either no solutions exists
or multiple solutions exists.

Proof. As noted in the footnote in the previous proof, the first step showed that any 1 by
n matrix with rank less than n has either no solutions or multiple solutions. The same in-
ductive argument as in the previous proof then shows that whenever any solution exists,
there must be multiple solutions. □

We call a coefficient matrix A nonsingular if for any b1, ..., bm the system of equations
has exactly one solution. Combining the last two theorems, (2.2 and 3.1) we get the fol-
lowing corollary.

Corollary 3.2. A is nonsingular if and only if A has an equal number of columns and rows (A is
square) and has rank equal to its number of columns (or rows).

We now know conditions under which a system has a solution and when the solution
is unique. To review, we know from theorem 2.1 that a particular system has a solution
if and only if rankA = rankÂ. Additionally, if rankA is equal to its number of columns,

2The only other possible case is that A is all zeros and b1 ̸= 0, in that case A has no solutions. Thus, if A
has any solution, then A has multiple solutions. This observation is not needed for this proof, but will be
used to prove corollary 3.1.
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FIGURE 1. Solution sets
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then the solution is unique (theorem 3.1). On the other hand if rankA is less than the
number of columns, then there are infinite solutions (corollary 3.1 and lemma 2.3).

4. SET OF SOLUTIONS

A final issue to investigate is: if there are infinite solution, how can we describe the set
of solutions. Figure 1 plots the solution sets to three systems of equations with multiple
solutions. Generalizing the these three examples, we can guess that:

• The set of solutions to an equation with two variables,

ax + by = c,

is a line in R.
• The set of solutions to two equation with three variables,

a1x + b1y + c1z =d1

a2x + b2y + c2z =d2,

is also a line in R3.
• The set of solutions to a single equation with three variables,

a1x + b1y + c1z =d1

is a plane in R2.

We will prove that these three guesses are true next week. In fact, we will prove that when
generalized to systems with more variables, these guesses remain true. In this lecture we
will just state the general result. To do so, we need some more definitions. We will use
the definition much more when we talk about Euclidean spaces in a week or so.

Definition 4.1. The set S ⊆ Rn is called a linear subspace if it is closed under (i) scalar
multiplication and (ii) addition in other words, if

(i) for every (x1, ..., xn) ∈ S and a ∈ R, we have (ax1, ax2, ..., axn) ∈ S, and
(ii) for every (x1, ..., xn) ∈ S and (y1, ..., yn) ∈ S, we have (x1 + y1, ..., xn + yn) ∈ S

13
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An implication of (i) is that 0 ∈ any linear subspace (take a = 0). Thus, linear subspaces
are lines, planes, and hyperplanes passing through the origin.

Definition 4.2. A set of vectors in Rn, {xj = (xj
1, ..., xj

n)}J
j=1, is linearly independent if the

only solution to

J

∑
j=1

cjxj = 0

is c1 = c2 = ... = cJ = 0.

Observe that two points on a line passing through 0 are not linearly independent. Three
points on a plane that contains (0, 0) are also not linearly independent. This suggests the
following definition.

Definition 4.3. The dimension of a linear subspace S ⊆ Rn is the cardinality of the largest
set of linearly independent elements in S.

With this defition, a line has dimension one, a plane has dimension two, and Rn has
dimension n. We can now state a result that summarizes everything we know about the
solutions to linear systems.

Theorem 4.1 (Rouché-Capelli). A system of linear equations with n variables has a solution if
and only if the rank of its coefficient matrix, A, is equal to the rank of its augmented matrix, Â. If
a solution exists and rankA is equal to its number of columns, the solution is unique. If a solution
exists and rankA is less than its number of columns, there are infinite solutions. In this case the
set of solutions is of the form3

{s + x∗ ∈ Rn : s ∈ S and Ax∗ = b}

where S is the linear subspace of dimension n − rankA defined by S = {s ∈ Rn : As = 0} and
x∗ is any single solution to Ax = b.

The first part of this theorem is just a restatement of things we have already proven. We
will prove the last claim, that the set of solutions forms a linear subspace of dimension
n − rankA, next week.

Example: Markov model of employment (continued). We can now answer the three
questions posed at the beginning of this lecture.

3A set of this form is called an affine subspace. It is a linear subspace that has been shifted so that it no
longer necessarily contains the origin.

14
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(1) Does any solution exist?
A solution exists if rankA = rankÂ. For this example,

A =

pee − 1 peu
pue puu − 1
1 1

 .

Â =

pee − 1 peu 0
pue puu − 1 0
1 1 1

 .

If we perform Gaussian elimination on A, we get4

pee − 1 peu
pue puu − 1
1 1

 ≃

pee − 1 peu

0 pee−1−peu
pee−1

0 (pee−1)(puu−1)−peu pue
pee−1



≃

pee − 1 peu

0 pee−1−peu
pee−1

0 0

 .

For Â, we getpee − 1 peu 0
1 1 1

pue puu − 1 0

 ≃

pee − 1 peu 0
0 pee−1−peu

pee−1 1

0 (pee−1)(puu−1)−peu pue
pee−1 0



≃

pee − 1 peu 0
0 pee−1−peu

pee−1 1

0 0 − (pee−1)(puu−1)−peu pue
pee−1

pee−1
pee−1−peu

.


and we see that the rank Â will be greater than the rank A of unless

− (pee − 1)(puu − 1)− peu pue

pee − 1
pee − 1

pee − 1 − peu
= 0.

Fortunately, if these are valid probabilities, then pee + pue = 1 and puu + peu = 1,
so

(pee − 1)(puu − 1)− peu pue =(−pue)(−peu)− peu pue

=0.

Thus, the system does have a solution.
(2) How many solutions exist?

From the above, we see that rankA = 2 provided that −pue − peu ̸= 0 and pee − 1 ̸=
0. Therefore, there is a unique solution.

4You should check that the steps being performed do not involve division by zero.
15
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(3) How can a solution be computed?
By Gaussian or Gauss-Jordan elimination, like we did above.
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