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We have already used matrices in our study of systems of linear equations. Matrices are
useful through economics. You will see a lot of matrices in econometrics. Understanding
matrices is also essential for understanding systems of nonlinear equations, which ap-
pear in all fields of economics. This lecture will go over some fundamental properties of
matrices. It is based on a combination of Simon and Blume Chapters 8-9, Appendix A of
Econometric Analysis by William Green, and Chapter 9 of Principles of Mathematical Analy-
sis by Rudin. Carter sections 1.4.1 and 1.4.2 covers much the same material as section 1.2
of these notes. The start of chapter 3 of Carter (up to 3.1.1) covers much the same material
as section 1.2 and the start of section 2 of these notes.

1. VECTOR SPACES AND LINEAR TRANSFORMATIONS

Matrices are often introduced as just arrays of numbers. That sort of definition works
out alright. However, it makes certain subsequent definitions somewhat mysterious. You
might wonder why matrix multiplication is defined the way it is, or why transposing
is important. Well, there is another, more abstract, but also more fundamental way of
describing matrices. This way of looking at matrices will reveal exactly why matrix mul-
tiplication is the way it is, and illuminate many other properties of matrices.

1.1. Vector spaces. To fully understand matrices, we must first under vector spaces. Loosely,
a vector space is a set whose elements can be added and scaled. Vector spaces appear
quite often in economics because many economic quantities can be added and scaled. For
example, if firm A produces quantities yA

1 and yA
2 of goods 1 and 2, while firm B pro-

duces (yB
1 , yB

2 ), then total production is (yA
1 + yB

1 , yA
2 + yB

2 ). If firm A becomes 10% more
productive, then it will produce (1.1yA

1 , 1.1yA
2 ).

You are likely already familiar with Rn, especially R2 and R3, which are the most com-
mon vector spaces. There are three ways of approaching vector spaces. The first is geo-
metrically — introduce vectors as directed arrows arrows. This works well in R2 and R3

but is difficult in higher dimensions. The second is analytically — by treating vectors as n-
tuples of numbers (x1, ..., xn). The third approach is axiomatically — vectors are elements
of a set that has some special properties. You likely already have some familiarity with
the first two approaches. Here, we are going to take the third approach. This approach is
more abstract, but this abstraction will allow us to generalize what we might know about
Rn to other more exotic vector spaces.
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MATRIX ALGEBRA AND INTRODUCTION TO VECTOR SPACES

Definition 1.1. A vector space is a set V and a field F with two operations, addition +,
which takes two elements of V and produces another element in V, and scalar multipli-
cation ·, which takes an element in V and an element in F and produces an element in V,
such that

(1) (V,+) is a commutative group, i.e.
(a) Closure: ∀v1 ∈ V and v2 ∈ V we have v1 + v2 ∈ V.
(b) Associativity: ∀v1, v2, v3 ∈ V we have v1 + (v2 + v3) = (v1 + v2) + v3.
(c) Identity exists: ∃0 ∈ V such that ∀v ∈ V, we have v + 0 = v
(d) Invertibility: ∀v ∈ V ∃ − v ∈ V such that v + (−v) = 0
(e) Commutativity: ∀v1, v2 ∈ V we have v1 + v2 = v2 + v1

(2) Scalar multiplication has the following properties:
(a) Closure: ∀v ∈ V and f ∈ F we have v f ∈ V
(b) Distributivity: ∀v1, v2 ∈ V and f1, f2 ∈ F

f1(v1 + v2) = f1v1 + f1v2

and

( f1 + f2)v1 = f1v1 + f2v1

(c) Consistent with field multiplication: ∀v ∈ V and f1, f2 ∈ V we have

1v = v

and

( f1 f2)v = f1( f2v)

1.1.1. Examples. We now give some examples of vector spaces.

Example 1.1. Rn with the field R is a vector space. You are likely already familiar with
this space. Vector addition and multiplication are defined in the usual way. If x1 =
(x11, ..., xn1) and x2 = (x12, ..., xn2), then vector addition is defined as

x1 + x2 = (x11 + x12, ..., xn1 + xn2).

The fact that (Rn,+) is a commutative group follows from the fact that (R,+) is a com-
mutative group. Scalar multiplication is defined as

ax = (ax1, ..., axn)

for a ∈ R and x ∈ Rn. You should verify that the three properties in the definition of
vector space hold. The vector space (Rn, R,+, ·) is so common that it is called Euclidean
space1 We will often just refer to this space as Rn, and it will be clear from context that
we mean the vector space (Rn, R,+, ·). In fact, we will often just write V instead of
(V, F,+, ·) when referring to a vector space.

One way of looking at vector spaces is that they are a way of trying to generalize the
things that we know about two and three dimensional space to other contexts.

1To be more accurate, Euclidean space refers to Rn as an inner product space, which is a special kind of
vector space that will be defined below.
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Example 1.2. Any linear subspace of Rn along with the field R and the usual vector
addition and scalar multiplication is a vector space. Linear subspaces are closed under
+ and · by definition. Linear subspaces inherit all the other properties required by the
definition of a vector space from Rn.

Example 1.3. (Qn, Q,+, ·) is a vector space where + and · defined as in 1.1.

Example 1.4. (Cn, C,+, ·) where + and · defined as in 1.1 except with complex addition
and multiplication taking the place of real addition and multiplication.

Except for the preceding two examples, all the vector spaces in this class will be real
vector spaces with the field F = R. Two more examples of vector spaces that we have
already encountered include:

Example 1.5. The set of all solutions to a system of linear equation with b = 0, i.e.,
(x1, ..., xn) ∈ Rn such that

a11x1 + a12x2 + ... + a1nxn =0

a21x1 + a22x2 + ... + a2nxn =0
...
...

am1x1 + am2x2 + ... + amnxn =0,

and

Example 1.6. Any linear subspace of a vector space.

Most of the time, the two operations on a vector space are the usual addition and mul-
tiplication. However, they can be different, as the following example illustrates.

Example 1.7. Take V = R+. Define “addition” as x ⊕ y = xy and define “scalar mul-
tiplication” as α ⊙ x = xα. Then (R+, R,⊕,⊙) is a vector space with identity element
1.

Spaces of functions are often vector spaces. In economic theory, we might want to
work with a set of functions because we want to prove something for all functions in the
set. That is, we prove something for all utility functions or for all production functions.
In non-parametric econometrics, we try to estimate an unknown function instead of an
unknown finite dimensional parameter. For example, instead of linear regression y =
xβ + ϵ where want to estimate the unknown vector β, we might say y = f (x) + ϵ and try
to estimate the unknown function f .

Here are some examples of vector spaces of functions. It would be a good exercise to
verify that these examples have all the properties listed in the definition of a vector space.

Example 1.8. Let V = all functions from [0, 1] to R. For f , g ∈ V, define f + g by ( f +
g)(x) = f (x) + g(x). Define scalar multiplication as (α f )(x) = α f (x). Then this is a
vector space.

Sets of functions with certain properties also form vector spaces.
3
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Example 1.9. The set of all continuous functions with addition and scalar multiplication
defined as in 1.8.

Example 1.10. The set of all k times continuously differentiable functions with addition
and scalar multiplication defined as in 1.8.

Example 1.11. The set of all polynomials with addition and scalar multiplication defined
as in 1.8.

Example 1.12. The set of all polynomials of degree at most d with addition and scalar
multiplication defined as in 1.8.

Example 1.13. The set of all functions from R → R such that f (29481763) = 0 with
addition and scalar multiplication defined as in 1.8.

Example 1.14. Let 1 ≤ p < ∞ and let Lp(0, 1) be the set of functions from (0, 1) to R

such that
∫ 1

0 | f (x)|pdx is finite. 2 Then Lp(0, 1) with the field R and addition and scalar
multiplication defined as

( f + g)(x) = f (x) + g(x)

(α f )(x) =α f (x)

is a vector space. The only difficult part of the definition of vector spaces to verify is
closure under addition. To prove closure under addition, we can use Jensen’s inequality.
This is a surprisingly useful inequality that we may or may not prove later. Anyway the
simplest form of Jensen’s inequality says that if h(x) is convex3, then for any a1 > 0 and
a2 > 0,

h
(

a1x1 + a2x2

a1 + a2

)
≤ a1h(x1) + a2h(x2)

a1 + a2
.

If p > 1, h(x) = |x|p is convex. From Jensen’s inequality,

| f (x) + g(x)
2

|p ≤| f (x)|p + |g(x)|p
2

| f (x) + g(x)|p ≤ 2p−1| f (x)|p + |g(x)|p.

Integrating, ∫
| f (x) + g(x)|pdx ≤ 2p−1

(∫
| f (x)|pdx +

∫
|g(x)|pdx

)
The right side is finite for any f , g ∈ Lp(0, 1), so the left side is also finite and f + g ∈
Lp(0, 1).

To a get a better feel for Lp(0, 1), you should try to come with some examples of familiar
functions are or are not included. You could consider polynomials, rational functions
(ratios of polynomials), exponential, and logarithm.

2For now, you can just think of Lp(0, 1) as consisting of all functions from (0, 1) → R. The p and finite
integral part only become important when we think of Lp as normed vector spaces, which we will do in
the next set of notes.

3A real valued function h(x) is (weakly) convex if for all x1, x2 and λ ∈ (0, 1) h(λx1 + (1 − λ)x2) ≤
λh(x1) + (1 − λ)h(x2).
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1.1.2. Linear combinations. We briefly discusses linear independence and dimension last
lecture when we introduced linear subspaces of Rn. These concepts apply to any vector
space.

Definition 1.2. Let V be a vector space and v1, ..., vk ∈ V. A linear combination of v1, ..., vk
is any vector

c1v1 + ... + ckvk

where c1, ..., ck ∈ F.

Note that by the definition of a vector space (in particular the requirement that vector
spaces are closed under addition and multiplication), it must be that c1v1 + ...+ ckvk ∈ V.

Last lecture we argued that if a system of equations has two distinct solutions, then
we can take certain linear combinations of them of the form λx1 + (1 − λ)x2 to trace out
an affine set of solutions. Recall that λx1 + (1 − λ)x2 : λ ∈ R} is an affine set and not
necessarily a linear subspace because it may not contain 0. If instead of using λ and 1 − λ

as weights, we take all possible linear combinations, {c1x1 + c2x2 : c1 ∈ R, c2 ∈ R},
then the set will contain 0, and it will be a linear subspace. This motivates the following
definition.

Definition 1.3. Let V be a vector space and W ⊆ V. The span of W is the set of all finite
linear combinations of elements of W

When W is finite, say W = {v1, ..., vk}, the span of W is the set

{c1v1 + ... + ckvk : c1, ..., ck ∈ F}.

When W is infinite, the span of W is the set of all finite weighted sums of elements of W.

Lemma 1.1. The span of any W ⊆ V is a linear subspace.

Proof. Left as an exercise. □

Example 1.15. Let V be the vector space of all functions from [0, 1] to R as in example 1.8.
The span of {1, x, ..., xn} is the set of all polynomials of degree less than or equal n.

You might remember the next two definitions from the previous lecture.

Definition 1.4. A set of vectors W ∈ V, is linearly independent if the only solution to
k

∑
j=1

cjvj = 0

is c1 = c2 = ... = ck = 0 for any k and v1, ..., vk ∈ W.

Checking linear independence. Given a set of vectors, v1, ..., vn ∈ Rm (or any n-dimensional
vector space), how do check whether they are linearly independent? Well, by definition,
they are linearly independent if c1 = c2 = ... = cn = 0 is the only solution to

n

∑
j=1

cjvj = 0
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If we write this condition as a system of linear equations we have

v11c1 + v12c2 + ... + v1ncn = 0
... =

...

vm1c1 + vm2c2 + ... + vmncn = 0

or in matrix form, v11 · · · v1n
... . . . ...

vm1 · · · vmn


c1

...
cn

 =0

Vc =0

We call any system with 0 on the right hand side a homogeneous system. Any homoge-
neous system always has c = 0 as a solution. We know from lecture 2 that it will have
other solutions if the rank of V is less than n. This proves the following lemma.

Lemma 1.2. Vectors v1, ..., vn ∈ Rm are linearly independent if and only if

rank(v1, ..., vn) = n.

Corollary 1.1. Any set of k > m vectors in a Rm space are linearly dependent.

1.1.3. Dimension and basis. Recall the definition of dimension from last class.

Definition 1.5. The dimension of a vector space, V, is the cardinality of the largest set of
linearly independent elements in V.

Definition 1.6. A basis of a vector space V is any set of linearly independent vectors B
such that the span of B is V.

If V has a basis with k elements, then the dimension of V must be at least k. In fact, we
will soon see that dimension of V must be exactly k.

Example 1.16. A basis for Rn is e1 = (1, 0, ..., 0), e2 = (0, 1, 0, ..., 0), ..., en = (0, ..., 0, 1).
This basis is called the standard basis of Rn.

The standard basis is not the only basis for Rn. In fact, there are infinite different bases.
Can you give some examples?

The elements of a vector space can always be written in terms of a basis.

Lemma 1.3. Let B be a basis for a vector space V. Then ∀v ∈ V there exists a unique v1, ..., vk ∈ F

and b1, ..., bk ∈ B such that v = ∑k
i=1 vibi

Proof. By the definition of a basis, B spans V, so such (v1, ..., vk) must exist. Now sup-
pose there exists another such (v′1, ..., v′j) and associated b′i . The {b1, ..., bk} and {b′1, ..., b′j}
might not be the same collection of elements of B. Let {b̃1, ..., b̃n} = {b1, ..., bk}U{b′1, ..., b′j}.
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Define ṽi = vj if b̃i = bj, else 0. Similarly define ṽ′i. With this new notation we have

v =
n

∑
i=1

ṽib̃i = ∑
i=1

ṽ′i b̃i

∑(ṽi − ṽ′i)b̃i =0

However, if B is a basis, its elements must be linearly independent so ṽi = ṽ′i for all i, so
the original v1, ..., vk must be unique. □

Let us show that dimension and basis are sensible definitions by showing that any two
bases have the same size.

Lemma 1.4. If B is a basis for a vector space V and I ⊆ V is a set of linearly independent elements
then |I| ≤ |B|.

For vector spaces of finite dimension this lemma can be stated as follows. If b1, ..., bm
is a basis for a vector space V and v1, ..., vn ∈ V are linearly independent, then n ≤ m.
We will only prove this finite dimensional version, but it is true for infinite dimensional
spaces as well.

Proof. Write vi ∈ I in terms of the basis:

vi =
m

∑
i=1

aijbi

Let us check for linear independence as described above.

0 = A︸︷︷︸
m×n

c︸︷︷︸
n×1

This is a system of m equations with n unknowns. If n > m, then it must have multiple
solutions, and v1, ..., vn cannot be linearly independent. □

An immediate consequence of this lemma is that any two bases must have the same
cardinality.

Corollary 1.2. Any two bases for a vector space have the same cardinality.

Proof. If not, one would have more elements than the other. That would contradict the
previous lemma. □

Example 1.17. What is the dimension of each of the examples of vector spaces above?
Can you find a basis for them?

We have now shown that any basis of a vector space has cardinality equal to the di-
mension of the space. A related useful fact is that if we have n elements that span an n
dimensional space, then those elements must be linearly independent, and hence a basis.

Lemma 1.5. If v1, ..., vn span an n dimensional vector space, then v1, ..., vn are linearly indepen-
dent.
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Proof. If v1, ..., vn span Rn, then we can write each standard basis vector as

ei =
n

∑
j=1

aijvj.

Suppose we have cj ̸= 0 such that

0 =
n

∑
j=1

cjvj

vn =
n−1

∑
j=1

−
cj

cn
vj.

Substituting,

ei =
n−1

∑
j=1

(aij −
cj

cn
ain)vj.

Writing these n systems of linear equations in matrix form we have

In = A︸︷︷︸
n×(n−1)

V︸︷︷︸
(n−1)×n

.

However, we know that rankIn = n and rank(AV) ≤ max{rankA, rankV} ≤ n − 1, so
this equation cannot be true. The steps to get to this equation only relied on some cj ̸= 0
so that we could divide by it. Therefore, it must be that cj = 0 for all j, and v1, ..., vn are
linearly independent. □

Collecting the results above and specializing them to Rn we have four equivalent ways
of describing a basis.

Theorem 1.1. Let v1, ..., vn ∈ Rn and let V = (v1, ..., vn) be the n by n matrix with columns vi.
Then the following are equivalent:

(1) v1, ..., vn are linearly independent,
(2) v1, ..., vn span Rn,
(3) v1, ..., vn are a basis for Rn,
(4) rankV = n

Suppose V is an n-dimension real4 vector space. By the definition of dimension, there
must be a set of n linearly independent elements that span V. These elements form a
basis. Call them b1, ..., bn. For each v ∈ V, there are unique v1, ..., vn ∈ R such that

v =
n

∑
i=1

vibi.

Thus we can construct a function, say I : V → Rn defined by

I(v) = (v1, ..., vn).

4Meaning the field of scalars is R.
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By lemma 1.3, I must be one-to-one. I must also be onto since by definition of a vector
space, for any (v1, ..., vn) ∈ Rn, the linear combination, ∑n

i=1 vibi is in V. Moreover, I
preserves addition in that for any v1, v2 ∈ V,

I(v1 + v2) =(v1
1 + v2

1, ..., v1
n + v2

n)

=(v1
1, ..., v1

n) + (v2
1 + ... + v2

n)

=I(v1) + I(v2).

Similarly, I preserves scalar multiplication in that for all v ∈ V, α ∈ R

I(αv) = αI(v).

Thus, V and Rn are essentially the same in that there is a one-to-one and onto mapping
between them that preserves all the properties that make them vector spaces.

Definition 1.7. Let V and W be vector spaces over the field F. V and W are isomorphic if
there exists a one-to-one and onto function, I : V → W such that

I(v1 + v2) = I(v1) + I(v2)

for all v1, v2 ∈ V, and
I(αv) = αI(v)

for all v ∈ V, α ∈ F. Such an I is called an isomorphism.

The discussion preceeding this definition showed that all n-dimensional real vector
spaces are isomorphic to Rn.

Theorem 1.2. Let V be an n-dimensional vector space over the field F. Then V is isomorphic to
Fn.

Proof. We proved this for F = R. The same argument works for any field. □

2. LINEAR TRANSFORMATIONS

An isomorphism is a one-to-one and onto (bijective) functions that preserves addition
and scalar multiplication. Can a function between vector spaces preserve addition and
multiplication without being bijective? Let’s try to construct an example. We know from
above that all finite dimensional vector spaces are isomorphic to Rn, so we might as well
work with Rn. To keep everything as simple as possible, let’s just work with R1. Consider
f : R → R defined by f (x) = 0 for all x ∈ R. Clearly, f is not bijective. f preserves
addition since

f (x) + f (y) = 0 + 0 = 0 = f (x + y).

f also preserves multiplication because

α f (x) = α0 = 0 = f (αx).

Thus, we know there are functions that preserve addition and scalar multiplication but
are not necessarily isomorphisms. Let’s give such functions a name.

9
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Definition 2.1. A linear transformation (aka linear function) is a function, A, from a
vector space (V, F,+, ·) to a vector space (W, F,+, ·) such that ∀v1, v2 ∈ V,

A(v1 + v2) = Av1 + Av2

and

A( f v1) = f Av1

for all scalars f ∈ F.
A linear transformation from V to V is called a linear operator on V. A linear transfor-

mation from V to R is called a linear functional on V.

Any isomorphism between vector spaces is a linear transformation.

Example 2.1. Define f : R2 → R by f ((x1, x2)) = x1, that is f (x) is the first coordinate of
x. Then,

f (αx + y) = αx1 + y1 = α f (x) + f (y)

so f is a linear transformation.

In general we can construct linear transformations between finite dimensional vector
spaces as follows. Let

A =

 a11 · · · a1n
... . . . ...

am1 · · · amn


be a matrix. As when we were working with systems of linear equations, let

Ax =

∑n
j=1 a1jxj

...
∑n

j=1 amjxj

 ,

for x = (x1, ..., xn) ∈ Rn. Then A is a linear transformation from Rn to Rm. You may want
to verify that A( f x1 + x2) = f Ax1 + x2 for scalars f ∈ R and vectors x1, x2 ∈ Rn.

Conversely let A be a linear transformation from V to W (if it is helpful, you can let
V = Rn and W = Rm), and let b1, b2, ..., bn be a basis for V. By the definition of a basis,
any v ∈ V can be written v = ∑n

j=1 vjbj for some vj ∈ F. By the definition of a linear
transformation, we have

Av =
n

∑
j=1

vj Abj.

Thus, a linear transformation is completely determined by its action on a basis. Also, if
d1, ..., dm is a basis for W then for each Abj we must be able to write Abj as a sum of the
basis elements d1, ..., dm, i.e.

Abj =
m

∑
i=1

aijdi.

10
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Substituting this equation into the previous one, we can write Av as

Av =
n

∑
j=1

vj Abj

=
n

∑
j=1

vj

m

∑
i=1

aijdi

=
m

∑
i=1

di

(
n

∑
j=1

aijvj

)

Thus, associated with a linear transformation there is an array of aij ∈ F determined by
the linear transformation (and choice of basis for V and W). In the previous paragraph,
we saw that conversely, if we have an array of aij ∈ F we can construct a linear transfor-
mation. This leads us to the following result.

Theorem 2.1. For any linear transformation, A, from Rn to Rm there is an associated m by n
matrix,  a11 · · · a1n

... . . . ...
am1 · · · amn


where aij is defined by Aej = ∑m

i=1 aijei. Conversely, for any m by n matrix, there is an associated
linear transformation from Rn to Rm defined by Aej = ∑n

i=1 aijei.

Thus, we see that matrices and linear transformations from Rm to Rn are the same
thing. This fact will help us make sense of many of the properties of matrices that we will
go through in the next section. Also, it will turn out that most of the properties of matrices
are properties of linear transformations. There are linear transformations that cannot be
represented by matrices, yet many of the results and definitions that are typically stated
for matrices will apply to these sorts of linear transformations as well.

Two examples of linear transformations that cannot be represented by matrices are in-
tegral and differential operators,

Example 2.2 (Integral operator). Let k(x, y) be a function from (0, 1) to (0, 1) such that∫ 1
0

∫ 1
0 k(x, y)2dxdy is finite. Define K : L2(0, 1) → L2(0, 1) by

(K f )(x) =
∫ 1

0
k(x, y) f (y)dy

Then K is a linear transformation because

(K(α f + g))(x) =
∫ 1

0
k(x, y)(α f (y) + g(y))dy

=α
∫ 1

0
k(x, y) f (y)dy +

∫ 1

0
k(x, y)g(y)dy

=α(K f )(x) + (Kg)(x)
11
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Example 2.3 (Conditional expectation). One special type of an integral operator that ap-
pears often in economics is the conditional expectation operator. Suppose X and Y are real
valued random variables with joint pdf fxy(x, y) and marginal pdfs fx(x) =

∫
R

f (x, y)dy
and fy(y) =

∫
R

f (x, y)dx. Consider the vector spaces

V = L2(R, fy) = {g : R → R such that
∫

R
fy(y)g(y)2dy < ∞}

and
W = L2(R, fx) = {g : R → R such that

∫
R

fx(x)g(x)2dx < ∞}

V is the space of all functions of Y such that the variance of g(Y) is finite. Similarly, W
is the space of all functions of X such that the variance of g(X) is finite. The conditional
expectation operator is E : V → W defined by

(Eg)(x) = E[g(Y)|X = x] =
∫

R

fxy(x, y)
fx(x) fy(y)

g(y) fy(y)dy.

The conditional expectation operator is an integral operator, so it is a linear transforma-
tion.

Example 2.4 (Differential operator). Let C∞(0, 1) be the set of all infinitely differentiable
functions from (0, 1) to R. C∞(0, 1) is a vector space. Let D : C∞(0, 1) → C∞(0, 1) be
defined by

(D f )(x) =
d f
dx

(x)

Then D is a linear transformation.

Integral and differential operators are very important when studying differential equa-
tions. They are also useful in many areas of econometrics and in dynamic programming.
We will encounter some linear transformations on infinite dimensional spaces when we
study optimal control. However, for the rest of this lecture, our main focus will be an
linear transformations between finite dimensional spaces, i.e. matrices.

3. MATRIX OPERATIONS AND PROPERTIES

Let A and B be linear transformations from Rm to Rn and let

 a11 · · · a1n
... . . . ...

am1 · · · amn

 and

b11 · · · b1n
... . . . ...

bm1 · · · bmn

 be the associated matrices. Since the linear transformation A and the

matrix

 a11 · · · a1n
... . . . ...

am1 · · · amn

 represent the same object, we will use A to denote both. From

the previous section, we know that A and B are characterized by their action on the stan-
dard basis vectors in Rn. In particular, Aej = ∑m

i=1 aijei and Bej = ∑m
i=1 bijei.

12
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3.1. Addition. To define matrix addition, it makes sense to require (A + B)x = Ax + Bx.
Then,

(A + B)ej =Aei + Bej

=
m

∑
j=1

aijei +
m

∑
j=1

bijei

=
m

∑
j=1

(aij + bij)ei,

so the only way sensible way to define matrix addition is

A + B =

 a11 + b11 · · · a1n + b1n
... . . . ...

am1 + bm1 · · · amn + bmn


As an exercise, you might want to verify that matrix addition has the following properties:

(1) Associative: A + (B + C) = (A + B) + C,
(2) Commutative: A + B = B + A ,
(3) Identity: A + 0 = A, where 0 is an m by n matrix of zeros, and

(4) Invertible A + (−A) = 0 where −A =

−a11 · · · −a1n
... . . . ...

−am1 · · · −amn

.

3.2. Scalar multiplication. The definition of linear transformations requires that Aαx =
αAx where α ∈ F and x ∈ V. To be consistent with this, for matrices we must define

αA =

αa11 · · · αa1n
... . . . ...

αam1 · · · αamn


We have now defined addition and scalar multiplication for matrices. It should be no
surprise that the set of all m by n matrices along with these two operations and the field
R forms a vector space.

Example 3.1. The set of all m by n matrices is a vector space.

In fact, the above is not only true of the set of all m by n matrices, but of any set of all
linear transformations between two vector spaces.

Example 3.2. Let L(V, W) be the set of all linear transformations from V to W. Define
addition and scalar multiplication as above. Then L(V, W) is a vector space.

L(Rn, Rm) is the set of all linear transformations from Rn → Rm, i.e. all m by n matrices.
13
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3.3. Matrix multiplication. Matrix multiplication is really the composition of two lin-
ear transformations. Let A be a linear transformation from Rn to Rm and B be a linear
transformation from Rp to Rn. Now, we defined matrices by looking at how a linear tran-
formation acts on a basis vectors, so to define multiplication, we should look at A(Bek)

A(Bek) =A(
n

∑
j=1

bjkej) definition of Bek

=
n

∑
j=1

bjk Aej Definition of linear transformtion

=
n

∑
j=1

bjk

(
m

∑
i=1

aijei

)
definition of Aej

=
m

∑
i=1

(
n

∑
j=1

aijbjk

)
ei

=

∑n
j=1 a1jbj1 · · · ∑n

j=1 a1jbjp
... . . . ...

∑n
j=1 amjbj1 · · · ∑n

j=1 amjbjp

 ek

=(AB)ek.

The indexing in the above equations is unpleasant and could be confusing. The important
thing to remember is that matrix multiplication is the composition of linear transforma-
tions. It then makes sense that if A is m by n (a transformation from Rn to Rm)and B is k
by l (a transformation from Rl to Rk), we can only multiply A times B if k = m. Matrix
multiplication has the following properties:

(1) Associative: A(BC) = (AB)C
(2) Distributive: A(B + C) = AB + AC and (A + B)C = AC + BC.
(3) Identity: AIn = A where A is m by n and In is the linear transformation from Rn

to Rn such that Inx = x∀x ∈ Rn.
As we saw on the review, matrix multiplication is not commutative.

3.4. Transpose. As you likely know, the transpose of an m × n matrix A is an n × m,
AT whose rows are the columns of A. As a linear transformation, if A : V → W, then
AT : W → V, but how can we define AT when A cannot be represented as a matrix
(i.e. when V or W is infinite dimensional). There are two ways to define the transpose of
a linear function. They each require introducing a new concept. We will first define the
transpose in terms of the inner product. We will then define the transpose in terms of dual
spaces. Both dual spaces and inner products will appear later in the course as well, so its
worth introducing them now. However, it is not essential to completely understand either
of these abstract definitions of the transpose. You will only really need to understand the
transposing of matrices.

3.4.1. Transpose and inner products. One way to define the transpose in terms of linear
transformations, is to use another property of Euclidean space (Rn).

14
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Definition 3.1. A real inner product space is a vector space over the field R with an
additional operation called the inner product that is function from V ×V to R. We denote
the inner product of v1, v2 ∈ V by ⟨v1, v2⟩. It has the following properties:

(1) Symmetry: ⟨v1, v2⟩ = ⟨v2, v1⟩
(2) (Bi)linear: ⟨av1 + bv2, v3⟩ = a ⟨v1, v3⟩+ b ⟨v2, v3⟩ for a, b ∈ R

(3) Positive definite: ⟨v, v⟩ ≥ 0 and equals 0 iff v = 0.

Although it is not obvious from this definition, an inner product space is a vector space
where we can measure the angle between two vectors. We will come back to this point
next lecture.

Example 3.3. Rn with the dot product, x · y = ∑n
i=1 xiyi, is an inner product space.

Example 3.4. As it is usually defined, L2(0, 1) with ⟨ f , g⟩ ≡
∫ 1

0 f (x)g(x)dx is an inner
product space. However, we have not defined L2(0, 1) carefully enough for this to be an

inner product space. For example, consider h(x) =

{
0 if x ̸= 1/2

1 if x = 1/2
. Then

⟨h, h⟩ =
∫ 1

0
h(x)2dx = 0,

but h(x) is not zero, violating the positive definite requirement of inner products. We
can get around this problem by defining L2(0, 1) as not all functions, but as equivalence
classes of functions. We say f ≃ g if

∫ 1
0 | f (x)− g(x)|2dx = 0, and then define L2(0, 1) as

the set of equivalence classes of functions. With this definition, the problematic h above
and 0 represent the same element of L2(0, 1), and it becomes an inner product space.

As an exercise, you could try to verify some of these assertions. For example, show that
≃ is really an equivalence relation, or show that L2(0, 1) remains a vector space when it
is the set of equivalence classes instead of set of functions. Fully verifying these claims
requires knowledge of measure theory, which is outside the scope of this course, but you
could make some progress.

We can now define the transpose in terms of the inner product.

Definition 3.2. Given a linear transformation, A, from a real inner product space V to
a real inner product space W, the transpose of A, denoted AT (or often A′) is a linear
transformation from W to V such that ∀v ∈ V, w ∈ W

⟨Av, w⟩ =
⟨

v, ATw
⟩

.

Now, let’s take V = Rn and W = Rm and see what this definition means for the
transpose of a matrix. First observe that AT is a mapping from Rm to Rn, so as a matrix is
must be n by m. Let aT

ji denote the entries of AT. Rewriting the inner product in terms of
15
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the entries of the matrix, we get

⟨Av, w⟩ =
m

∑
i=1

(
n

∑
j=1

aijvj

)
wi

=
m

∑
i=1

n

∑
j=1

aijwivj

and ⟨
v, ATw

⟩
=

n

∑
j=1

vj

(
m

∑
i=1

aT
jiwi

)

=
m

∑
i=1

n

∑
j=1

aT
jiwivj

If ⟨Av, w⟩ =
⟨
v, ATw

⟩
, for any v and w we must have aT

ji = aij.
The transpose of a matrix simply swaps rows for columns. The transpose has the fol-

lowing properties:

(1) (A + B)T = AT + BT

(2) (AT)T = A
(3) (αA)T = αAT

(4) (AB)T = BT AT.
(5) rankA = rankAT

3.4.2. Transpose and dual spaces. Another way of defining the transpose of a linear trans-
formation is in terms of dual spaces. Not all vector spaces are inner product spaces, but
all vector spaces have a dual space, so defining the transpose using dual spaces will be
more general. Dual spaces are needed to define differentiation on vector spaces, which
we will want to do later.

Definition 3.3. Let V be a vector space. The dual space of V, denote V∗ is the set of all
(continuous)5 linear functionals, v∗ : V → R.

Example 3.5. The dual space of Rn is the set of 1 × n matrices. In fact, for any finite
dimensional vector space, the dual space is the set of row vectors from that space.

Example 3.6. The space ℓp for 1 ≤ p ≤ ∞ is the set of sequences of real numbers x =
(x1, x2, ...) such that ∑∞

i=1 |xi|p < ∞. (When p = ∞, ℓ∞ = {(x1, x2, ...) : maxi∈N |xi| < ∞}).
Such spaces appear in economics in discrete time, infinite horizon optimization problems.

Let’s consider the dual space of ℓ∞. In macro models, we rule out everlasting bubbles
and ponzi schemes by requiring consumption divided by productivity to be in ℓ∞. Every

5We have not yet defined continuity, so do not worry about this requirement. All linear functionals
on finite dimensional spaces are continuous. Some linear functionals on infinite dimensional spaces are
not continuous. The definition of dual space does not always require continuity. Often the dual space is
defined as the set of all linear functionals, and the topological dual space is the set of all continuous linear
functionals. We will ignore this distinction.

16
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sequence, p = (p1, p2, ...) ∈ ℓ1 gives rise to a linear functional on ℓ∞ defined by

p∗x =
∞

∑
i=1

pixi ≤
(

∞

∑
i=1

|pi|
)(

max
i∈N

|xi| < ∞
)

.

We can conclude that ℓ1 ⊆ ℓ∗∞.
As a (difficult) exercise, you could try to show whether or not ℓ1 = ℓ∗∞. Exercise 3.46 of

Carter is very related.

Example 3.7. What is the dual space of V = L2(R, fx) = {g : R → R such that
∫

R
fx(x)g(x)2dx <

∞}? Let h ∈ L2(R, fx). Define

h∗(g) =
∫

R
fx(x)g(x)h(x)dx.

Assuming h∗(g) exists, h∗ is an integral operator from V to R, so it is linear. To show that
h∗ ∈ V∗ all we need to do is establish that h∗(g) exists (is finite) for all g ∈ V. H older’s
inequality6 , which we have not studied but is good to be aware of, says that∫

R
fx(x)|g(x)h(x)|dx ≤

√∫
fx(x)g(x)2dx

√∫
fx(x)h(x)2dx.

Since h and g ∈ V, the right hand side must be finite, so h∗(g) is finite as well. Thus all
such h∗ is a subset of V∗. In fact, all such h∗ is equal to V∗.7

We will have to work with V∗ and similar dual spaces when we study optimal control.

Definition 3.4. If A : V → W is a linear transformation, then the transpose (or dual) of A
is AT : W∗ → V∗ defined by (ATw∗)v = w∗(Av).

To parse this definition, note that ATw∗ is an element of V∗, so it is a linear transfor-
mation from V to R. Thus, (ATw∗)v ∈ R. Similarly, Av ∈ W, and w∗ : W → R, so
w∗(Av) ∈ R.

Let us verify that this definition of the transpose coincides with the one using inner
products.8 Let V and W be innerproduct spaces and A : V → W be linear, and suppose
AT : W → V satisfies the earlier definition of transpose, that is ⟨Av, w⟩ =

⟨
v, ATw

⟩
. We

want to show that AT also satisfies the later definition transpose. First, we must establish
that for inner product spaces W∗ = W and V∗ = V. For each v ∈ V we can define a linear
operator v∗(y) = ⟨v, y⟩. Thus, V ⊆ V∗. When V = Rn, it is clear that the only linear
operators on V are of the form a1x1 + ... + anxn, so in that case V∗ = V. In an example
we argued that L2∗ = L2. We will take as given for the remainder of the course V∗ = V

6See e.g. Wikipedia for more information and a proof and more information.
7This is a consequence of the Radon-Nikodym theorem, which is beyond the scope of this course.
8The two definitions coincide for V = Rn and W = Rm. There are some situations when the definitions

are not the same, but we will not encounter any. When you care about the difference the previous definition
of transpose using inner products is usually called the (Hermitian) adjoint, and the definition using dual
spaces is called the transpose.
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whenever V is an inner product space9. Given this, we can conclude that

w∗(Av) = ⟨Av, w⟩ =
⟨

v, ATw
⟩
= (ATw∗)(v).

As an exercise, you should try to show that this definition of the transpose is the same
as the familiar flipping rows and columns definition for matrices.

3.5. Types of matrices. There are some special types of matrices that will be useful.

Definition 3.5. A column matrix is any m by 1 matrix.

Definition 3.6. A row matrix is any 1 by n matrix.

Definition 3.7. A square matrix has the same number of rows and columns.

Definition 3.8. A diagonal matrix is a square matrix with non-zero entries only along its
diagonal, i.e. aij = 0 for all i ̸= j.

Definition 3.9. An upper triangular matrix is a square matrix that has non-zero entries
only on or above its diagonal, i.e. aij = 0 for all j > i. A lower triangular matrix is the
transpose of an upper triangular matrix.

Definition 3.10. A matrix is symmetric if A = AT.

Definition 3.11. A matrix is idempotent if AA = A.

Definition 3.12. A permutation matrix is a square matrix of 1’s and 0’s with exactly one
1 in each row or column.

Definition 3.13. A nonsingular matrix is a square matrix whose rank equals its number
of columns.

Definition 3.14. An orthogonal matrix is a square matrix such that AT A = I.

3.6. Invertibility. We will now define the inverse of a matrix and linear transformation.
Since multiplication of linear transformations is not commutative, it could be that right
and left inverses differ. To allow this possibility, we make the following definition.

Definition 3.15. Let A be a linear transformation from V to W. Let B be a linear transfro-
mation from W to V. B is a right inverse of A if AB = IV . Let C be a linear transformation
from V to W. C is a left inverse of A if CA = IW .

We will now show that right and left inverses do not differ for square matrices.

Lemma 3.1. If A is a linear transformation from V to V and B is a right inverse, and C a left
inverse, then B = C.

9The requirement of continuity in our definition of dual space is essential for this to be true of infinite
dimensional V.
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Proof. Left multiply AB = I by C to get

CAB = CI

(CA)B = C

B = C.

□
Now that we have established that right and left inverses are the same, it makes sense

to define just the inverse.

Definition 3.16. Let A be a linear transformation from V to V. The inverse of A is written
A−1 and satisfies AA−1 = I = A−1A.

The previous lemma shows that if A−1 exists, it is unique.

Lemma 3.2. Let A be a linear tranformation from V to V, and suppose A is invertible. Then A
is nonsingular and the unique solution to Ax = b is x = A−1b.

Recall that A is nonsingular if Ax = b has a unique solution for all b.

Proof. Multiply both sides of the equation by A−1 to get

A−1Ax =A−1b

x =A−1b

Therefore a solution exists. This solution is also unique because any other solution, x′

must also satisfy

Ax′ =b

A−1Ax′ =A−1b

x′ =A−1b,

and A−1 is unique. □
Conversely we can show that if A is nonsingular, then A must be invertible.

Lemma 3.3. If A is nonsingular, then A−1 exists.

Proof. Let e1, e2, ... be a basis for V. By the definition of nonsingular for any ej there exists
a solution to

Ax = ej.
Call this solution xj. Define a linear transformation C by

Cv = ∑ vjxj,

where v = ∑ vjej. We can write any v ∈ V in this way since ej is a basis. Now, consider
A(Cv).

A(Cv) =A ∑ vjxj

=∑ vj Axj

=∑ vjej = v.
19
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Thus, AC = I and C = A−1. □

Corollary 3.1. A square matrix A is invertible if and only if rankA is equal to its number of
columns.

Proof. In the previous lecture, we showed that rankA = number of columns if and only if
A is nonsingular. That result along with the two previous lemmas implies the corollary.

□

Let A and B be invertible square matrices. The inverse has the following properties:

(1) (AB)−1 = B−1A−1

(2) (AT)−1 = (A−1)T

(3) (A−1)−1 = A

4. DETERMINANTS

I am not a fan of determinants because they do not generalize well to infinite dimen-
sions. Nonetheless, you must at least know that the determinant of a matrix is non-zero
if and only if the matrix is invertible.

Given a 1 by 1 matrix, say, A = (a), we known that A−1 exists if and only if a ̸= 0. Also,
viewed as a linear transformation from R to R, A transforms 1 into a. It would be useful
to have a number with similar properties for larger matrices. That is, for any matrix A,
we want a number that is not zero if and only if A−1 exists, and that describes something
about how A acts as a linear transformation. Well, the determinant of a matrix, written
detA is exactly such a number.

Let us start by looking at a 2 by 2 matrix, A =

(
a b
c d

)
. The inverse of A−1 must satisfy

AA−1 =I (1)

If x1 is the first column of A−1 and x2 is the second column, then we can rewrite this as
two systems of linear equations,

Ax1 =

(
1
0

)
and

Ax2 =

(
0
1

)
.

If you think about how we would solve these two systems using Gauss-Jordan elimina-
tion, you will see that the steps involved depend only on A and not on the right side of
the equation. Therefore, we can solve both systems together by performing Gauss-Jordan
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FIGURE 1. Transformed unit square and unit cube
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a b 1 0
c d 0 1
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≃
(

a b 1 0
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a 1

)
≃
(

a b 1 0
0 1 − c

ad−bc
a
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)
≃
(

a 0 ad
ad−bc

−ba
ad−bc

0 1 − c
ad−bc

a
ad−bc

)

≃
(

1 0 d
ad−bc

−b
ad−bc

0 1 − c
ad−bc

a
ad−bc .

)

So, A−1 =

(
d

ad−bc
−b

ad−bc
− c

ad−bc
a

ad−bc

)
. For this to exist, we must have ad − bc ̸= 0. (The steps to

get the formula for A−1 divided by a, so we also assumed a ̸= 0. However, if a = 0, we
could start Gaussian elimination by swapping the first and second rows, divide by c, and
end up with the same formula. If c = 0 as well, then ad − bc = 0 too, so ad − bc ̸= 0 is
really the only condition needed).

This calculation suggests that ad − bc is a good candidate for the determinant of 2 by 2
matrices. You may remember from the review problem set that |ad − bc| is the area of the
parallelogram constructed from the columns of A. A nice interpretation of this parallelo-
gram is that it is the image of the unit square under the linear transformation represented
by A. Additionally, if detA > 0, the transformation only stretches and shrinks the unit
squares. If detA < 0, the transformation also reflects the unit square over the line x = −y.
Similarly, in higher dimensions you can consider the image of the unit cube (in 3d) or unit
hypercube (i.e. higher dimensional cube). This image will be a higher-dimension analog
of a parallelogram, and you could calculate its volume. It will turn out that |detA| is the
volume of the hyper-parallelogram.10

10Not a standard name.
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Definition 4.1. Let A be an n by n matrix consisting of column vectors a1, ..., an. The
determinant of A is the unique function such that

(1) detIn = 1.
(2) As a function of the columnes, det is an alternating form: det(A) = 0 iff a1, ..., an

are linearly dependent.
(3) As a function of the columnes, det is multi-linear:

det(a1, ..., baj + cv, ..., an) = bdet(A) + cdet(a1, ..., v, ...an)

Condition (1) seems very natural. Also, if we want detA to be the volume of the trans-
formed unit cube, we must have detIn = 1. (2) ensures that detA = 0 whenever A is not
invertible.

Lemma 4.1. Let A be an n by n matrix. The A is singular if and only if the columns of A are
linearly dependent.

Proof. If A is singular, then rankA < n. Also rankAT = rankA. Therefore there must exist
row operations such that the last row of AT is all 0’s. Row operations are interchanging
rows, rescaling by a scalar, and adding multiples of one row to another. Therefore, there
must be c1, ..., cn ∈ R such that

c1a1 + ... + cnan = 0

where ai are the rows of AT, which are also the columns of A.
Similarly if the columns of A are linearly dependent, then there are c1, ..., cn ∈ R such

that
c1a1 + ... + cnan = 0.

These are all row operations, so we can perform them to make the last row of AT all 0’s.
We can then perform Gaussian elimination on the first n − 1 rows of AT to put it into row
echelon form with the last row all 0’s. Therefore, rankA < n and A is singular. □

Corollary 4.1. A is nonsingular if and only if detA ̸= 0.

The third condition on the determinant, 3, guarantee that detA can be interpreted as the
volume of the transformed unit cube. It is easiest to see this by thinking about a diagonal
matrix. If A is diagonal with elements a11, a22, ..., ann, then volume of the transformed unit
cube will be a higher dimensional rectangle and its volume will be |detA| = |∏n

i=1 aii|. If
we multiply any of the columns of A by c, we will scale one of the corners of the rectangle
by c, so the volume should be multiplied by c. Similarly, if we add v to the j diagonal
element, the volume will be

|a11 × ... × (ajj + v)× ... × ann| =|
n

∏
i=1

aii|+ |a11 × ... × v × ... × ann|

So, at least for diagonal matrices, if |detA| is to be the volume of the transformed unit
cube, it must be multilinear. It turns out that this is true in general as well.

Okay, so we have defined the determinant in a way that has a nice interpretation, but
how can we calculate it? There is an explicit formula for the determinant, but it is not so
simple.
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Definition 4.2. The determinant of a square matrix A is defined recursively as
(1) For 1 by 1 matrices, detA = a11
(2) For n by n matrices,

detA =
n

∑
j=1

(−1)1+ja1jdetA−1,−j

where A−i,−j is the n − 1 by n − 1 matrix obtained by deleting the ith row and jth
column of A.

detA−i,−j is called a minor of A. (−1)i+jdetA−i,−j is called a cofactor of A. The above
definition is sometimes called the expansion by cofactors of the determinant. If you are
more comfortable with this definition than with the abstract definition (4.1) above, you
can consider this formula to be the definition of the determinant. The two defitions are
the same, as stated in the following theorem, which we will not prove.

Theorem 4.1. The two definitions of the determinant, (4.1) and (4.2), are equivalent.

In some situations, the abstract definition (4.1) is more useful. Proving corollary 4.1
from the abstract definition was not difficult. Proving it using the recursive definition
(4.2) is a bit tedious. On the other hand, it will be easier to prove part of lemma 4.2 using
the recursive definition than the abstract definition.

Some useful properties of determinants are stated in the following lemma.

Lemma 4.2. Let A and B be square matrices then
(1) detAT = detA
(2) det(AB) = (detA)(detB)
(3) detA−1 = (detA)−1

(4) Usually, det(A + B) ̸= detA + detB
(5) If A is diagonal, detA = ∏n

i=1 aii
(6) If A is upper or lower triangular detA = ∏n

i=1 aii.

Proof. The proof of all these properties would be quite long, so we will only prove 6. We
can just prove it for lower triangular matrices, since detAT = detA and the transpose of
upper triangular matrices is lower triangular. We will use induction on the size of A. If A
is 1 by 1, the claim is true. If A is n by n, from definition 4.2, we have

detA =
n

∑
j=1

(−1)1+ja1jdetA−1,−j.

A is lower triangular, so only the first term in the sum is nonzero.

detA = a11detA−1,−1

A−1,−1 is also be lower triangular and is size n − 1 by n − 1, so by induction, detA =

∏n
i=1 aii. □
We can use the determinant to solve systems of linear equations and to calculate A−1.

Theorem 4.2. Let A be nonsingular. Then,
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(1) A−1 = 1
detA

 detA−1,−1 · · · (−1)1+ndetA−n,−1
... . . . ...

(−1)1+ndetA−1,−n · · · (−1)n+ndetA−n,−n


(2) (Cramer’s rule) The unique solution to Ax = b is

xi =
detBi

detA
where Bi is the matrix A with the ith column replaced by b.

This theorem can sometimes be useful for analyzing small systems of linear equations
and doing comparative statics. For an example, see Simon and Blume 9.3. However, it is
a very inefficient way to compute A−1 or solve a system of equations.

5. COMPUTATIONAL EFFICIENCY

Last class, someone asked about whether there was a more efficient way to calculate the
rank of a matrix than Gaussian elimination. The way we usually compare the efficiency
of algorithms is by looking at the rate at which number of steps required grows as the size
of the problem increases. As an example, we will compare solving a system of equations
by Gaussian elimination to using Cramer’s rule.

Let’s start by considering computing the determinant recursively as in definition 4.2.
Let d(n) be the number of steps required to compute the determinant for an n by n matrix.
Given the recursive definition, d(n) must satisfy

d(n) = nd(n − 1) + 2n

since detA−1,−i must be computed n times, and there are n additions and multiplications.
We could show by induction that

d(n) = 2n!
n

∑
k=1

1
(n − k)!

.

When comparing algorithms, we often mainly care about the number of steps for large n.
We say d(n) is on the order of f (n) or d(n) is big O of f (n) and write d(n) = O( f (n)) if
∃n0 such that

d(n) ≤ M f (n)

for some constant M and all n ≥ n0. From the above, d(n) = O(n!). Factorial grows very
fast, so the determinant is quite expensive to compute using the recursive definition for
large matrices.11 To actually solve a system of equations using Cramer’s rule, we would
have to compute n + 1 determinants, so Cramer’s rule is O((n + 1)!).

Now lets look at Gaussian elimination. Let g(n) be the maximal number of steps Gauss-
ian elimination takes on an n by n matrix. In the worst case, Gaussian elimination on the
first row involves multiplying the first row by n − 1 numbers, so there are n(n − 1) mul-
tiplications, and adding it to each of the n − 1 rows, so there are n(n − 1) additions. The

11Any reasonable computer program will not be computing determinants this way. It will compute
some matrix decomposition (LU, QR, or Cholesky, or less likely, SVD) and then use that to compute the
determinant.
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total number of steps to get to the next n − 1 by n − 1 submatrix is then 2n(n − 1). Hence,
g(n) is given by

g(n) = 2n(n − 1) + g(n − 1)

and,

g(n) =2
n

∑
k=1

k(k − 1)

=
2
3
(n3 − n)

Therefore, g(n) = O(n3). To solve a system of equations, we also have to back substitute.
The first substitution involes one division, and then n − 1 additions. The second involves
one division and n − 2 additions. In total there will be ∑n

k=1 k = 1
2 n(n − 1) steps. So

solving a system by Gaussian elimination takes 2
3(n

3 − n) + 1
2(n

2 − n) = O(n3) steps. It
is much faster than Cramer’s rule.

6. MATRIX DECOMPOSITIONS

There are number of matrix decompositions that are useful for computing solutions to
systems of linear equations, inverting matrices, and computing determinants.

Definition 6.1. The LU decomposition of a square matrix is a decomposition of the form

PA = LU

where P is a permutation matrix, L is lower triangular, and U is upper triangular.

We already know how to compute an LU decomposition by performing Gaussian elim-
ination. All row interchange operations can be represented by the permutation matrix P.
Adding multiples of one row to another are represented by L, and the resulting row ech-
elon form is U. The LU decomposition exists for any nonsingular matrix. Sometimes
it is also required that the diagonal of L by all 1’s. In that case, the LU decomposition
is unique. The LU decomposition is used to solve linear equations, compute A−1, and
compute detA.

Definition 6.2. The Cholesky decomposition of a square, symmetric, and positive defi-
nite (detA > 0) matrix A is

A = LLT

where L is lower triangular with positive entries on the diagonal.

The Cholesky decomposition takes half as many steps to compute than the LU decom-
position and can be used for all the same purposes. Symmetric positive definite matrices
are quite common in economics. Examples include covariance matrices and the matrix of
second derivatives of a convex minimization problem.

Definition 6.3. The QR decomposition of an m by n matrix is

A = QR

where R is m by n and upper triangular and Q is m by m and orthogonal (i.e. QT = Q−1).
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The QR decomposition can be used for all the things the LU decomposition can be used
for. The QR decomposition takes twice as many steps to compute, but can be computed
more accurately (which can matter for very large matrices, but usually isn’t important for
small ones). The QR decomposition is also used for solving least square problems. We
will (likely) learn how to calculate the QR decomposition and learn an interpretation of
Q next lecture.

Definition 6.4. The singular value decomposition of a matrix m by n matrix A is

A = UΣV

where U is m by m and orthogonal, Σ is m by n and diagonal, and V is n by n and
orthogonal.

We will study the singular value decomposition in more detail next week.
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