Matrix algebra and introduction to vector spaces

Paul Schrimpf

Vector spaces and linear transformations
Vector spaces
Examples
Linear combinations

Matrix algebra and introduction to vector spaces

Paul Schrimpf

UBC
Economics 526

September 20, 2013

Correction from last time

Theorem (Rouché-Capelli)

A system of linear equations with n variables has a solution if and only if the rank of its coefficient matrix, A, is equal to the rank of its augmented matrix, \hat{A}. If a solution exists and $\operatorname{rank} A$ is equal to its number of columns, the solution is unique. If a solution exists and rankA is less than its number of columns

$$
\left\{s+x^{*} \in \mathbb{R}^{n}: s \in S \text { and } A x^{*}=b\right\}
$$

where S is a linear subspace of dimension $n-\operatorname{rank} A$ given by the set of solutions to $A x=0$, and x^{*} is a solution to $A x=b$.

Overview

(1) Vector spaces and linear transformations
Vector spaces
Examples
Linear combinations
Dimension and basis
(2) Linear transformations
(3) Matrix operations and properties
Addition
Scalar multiplication
Matrix multiplication
Transpose
Transpose and inner products
Transpose and dual spaces
Types of matrices
Invertibility
(4) Determinants
(5) Computational efficiency
(6) Matrix decompositions

Definition

A vector space is a set V and a field \mathbb{F} with two operations, addition + , which takes two elements of V and produces another element in V, and scalar multiplication \cdot, which takes an element in V and an element in \mathbb{F} and produces an element in V, such that
(1) $(V,+)$ is a commutative group, i.e. addition is close, associative, invertible, and commutative.
(2) Scalar multiplication has the following properties:
(1) Closure: $\forall v \in V$ and $f \in \mathbb{F}$ we have $v f \in V$
(2) Distributivity: $\forall v_{1}, v_{2} \in V$ and $f_{1}, f_{2} \in \mathbb{F}$

$$
f_{1}\left(v_{1}+v_{2}\right)=f_{1} v_{1}+f_{1} v_{2}
$$

and

$$
\left(f_{1}+f_{2}\right) v_{1}=f_{1} v_{1}+f_{2} v_{1}
$$

(3) Consistent with field multiplication: $\forall v \in V$ and $f_{1}, f_{2} \in V$ we have

Example (Euclidean space)
\mathbb{R}^{n} over the field \mathbb{R} is a vector space. Vector addition and multiplication are defined in the usual way. If
$\mathbf{x}_{1}=\left(x_{11}, \ldots, x_{n 1}\right)$ and $\mathbf{x}_{2}=\left(x_{12}, \ldots, x_{n 2}\right)$, then

$$
\mathbf{x}_{1}+\mathbf{x}_{2}=\left(x_{11}+x_{12}, \ldots, x_{n 1}+x_{n 2}\right)
$$

Scalar multiplication is defined as

$$
a \mathbf{x}=\left(a x_{1}, \ldots, a x_{n}\right)
$$

for $a \in \mathbb{R}$ and $\mathbf{x} \in R^{n}$.

Matrix algebra

Example

Any linear subspace of \mathbb{R}^{n}.

Example

$\left(\mathbb{Q}^{n}, \mathbb{Q},+, \cdot\right)$ is a vector space where + and \cdot defined as in 3.

Example

($\left.\mathbb{C}^{n}, \mathbb{C},+, \cdot\right)$ where + and \cdot defined as in 3 except with complex addition and multiplication taking the place of real addition and multiplication.
Matrix algebra
vector spaces
Paul Schrimpf
Vector spaces
and linear
transforma
tions
Vector spaces
Examples
Linear combinations
Dimension and
basis
Linear trans-
formations

Matrix

Example

Take $V=\mathbb{R}^{+}$. Define "addition" as $x \oplus y=x y$ and define "scalar multiplication" as $\alpha \odot x=x^{\alpha}$. Then ($\left.\mathbb{R}^{+}, \mathbb{R}, \oplus, \odot\right)$ is a vector space with identity element 1.

Vector spaces of functions

Example

Let $V=$ all functions from $[0,1]$ to \mathbb{R}. For $f, g \in V$, define $f+g$ by $(f+g)(x)=f(x)+g(x)$. Define scalar multiplication as $(\alpha f)(x)=\alpha f(x)$. Then this is a vector space.

Example
The set of all continuous functions with addition and scalar multiplication defined as in 8.

Example

The set of all k times continuously differentiable functions with addition and scalar multiplication defined as in 8.

Example

The set of all polynomials with addition and scalar multiplication defined as in 8.

Example

The set of all polynomials of degree at most d with addition and scalar multiplication defined as in 8.

Example

The set of all functions from $\mathbb{R} \rightarrow \mathbb{R}$ such that $f(29481763)=0$ with addition and scalar multiplication defined as in 8.

Example

Let $1 \leq p<\infty$ and let $\mathcal{L}^{p}(0,1)$ be the set of functions from $(0,1)$ to \mathbb{R} such that $\int_{0}^{1}|f(x)|^{p} d x$ is finite. Then $\mathcal{L}^{p}(0,1)$ with the field \mathbb{R} and addition and scalar multiplication defined as

$$
\begin{aligned}
(f+g)(x) & =f(x)+g(x) \\
(\alpha f)(x) & =\alpha f(x)
\end{aligned}
$$

is a vector space.
Matrix algebra

Definition

Let V be a vector space and $v_{1}, \ldots, v_{k} \in V$. A linear combination of v_{1}, \ldots, v_{k} is any vector

$$
c_{1} v_{1}+\ldots+c_{k} v_{k}
$$

where $c_{1}, \ldots, c_{k} \in \mathbb{F}$.
Question
How can we be sure that $c_{1} v_{1}+\ldots+c_{k} v_{k} \in V$?

```
Matrix algebra
    and
introduction to
vector spaces
Paul Schrimpf
Vector spaces
and linear
transforma
tions
Vector spaces
Examples

\section*{Definition}
```

Let V be a vector space and $W \subseteq V$. The span of W is the set of all finite linear combinations of elements of W.
Lemma
The span of any $W \subseteq V$ is a linear subspace.

```
Matrix algebra
vector spaces
Paul Schrimpf
Vector spaces
and linear
transforma
tions
Vector spaces
Examples
Linear combinations

\section*{Example}

Let \(V\) be the vector space of all functions from \([0,1]\) to \(\mathbb{R}\) as in example 8. The span of \(\left\{1, x, \ldots, x^{n}\right\}\) is the set of all polynomials of degree less than or equal \(n\).

Matrix algebra and introduction to vector spaces

Paul Schrimpf

Vector spaces and linear

\section*{transforma} tions
Vector spaces

\section*{Examples}

Linear combinations

Definition
A set of vectors \(v_{1}, \ldots, v_{k} \in V\), is linearly independent if the only solution to
\[
\sum_{j=1}^{k} c_{j} v_{j}=0
\]
is \(c_{1}=c_{2}=\ldots=c_{k}=0\).
Definition
The dimension of a vector space, \(V\), is the cardinality of the largest set of linearly independent elements in \(V\).
Definition
A basis of a vector space \(V\) is any set of linearly independent vectors \(b_{1}, \ldots, b_{k}\) such that the span of \(b_{1}, \ldots, b_{k}\) is \(V\).

\section*{Example}

A basis for \(\mathbb{R}^{n}\) is \(e_{1}=(1,0, \ldots, 0), e_{2}=(0,1,0, \ldots, 0), \ldots\), \(e_{n}=(0, \ldots, 0,1)\). This basis is called the standard basis of \(\mathbb{R}^{n}\).

\section*{Example}

What is the dimension of each of the examples of vector spaces above? Can you find a basis for them?

\section*{Lemma}

Let \(\left\{b_{1}, \ldots, b_{k}\right\}\) be a basis for a vector space \(V\). Then \(\forall v \in V\) there exists a unique \(v_{1}, \ldots, v_{k} \in \mathbb{F}\) and such that \(v=\sum_{i=1}^{k} v_{i} b_{i}\)

\section*{Proof.}
- \(B\) spans \(V\), so such \(\left(v_{1}, \ldots, v_{k}\right)\) exist.
- Suppose there exists another such \(\left(v_{1}^{\prime}, \ldots, v_{k}^{\prime}\right)\). Then
\[
\begin{aligned}
v=\sum v_{i} b_{i} & =\sum v_{i}^{\prime} b_{i} \\
\sum v_{i} b_{i}-\sum v_{i}^{\prime} b_{i} & =0 \\
\sum\left(v_{i}-v_{i}\right)^{\prime} b_{i} & =0
\end{aligned}
\]

\section*{Dimension \(=\mid\) Basis}

Lemma
If \(B\) is a basis for a vector space \(V\) and \(I \subseteq V\) is a set of linearly independent elements then \(|\| \leq|B|\).

\section*{Corollary}

Any two bases for a vector space have the same cardinality.

\section*{Definition}

Let \(V\) and \(W\) be vector spaces over the field \(\mathbb{F}\). \(V\) and \(W\) are isomorphic if there exists a one-to-one and onto function, \(I: V \rightarrow W\) such that
\[
I\left(v^{1}+v^{2}\right)=I\left(v^{1}\right)+I\left(v^{2}\right)
\]
for all \(v^{1}, v^{2} \in V\), and
\[
I(\alpha v)=\alpha I(v)
\]
for all \(v \in V, \alpha \in \mathbb{F}\). Such an I is called an isomorphism.
Matrix algebra

\section*{Vector spaces}

\section*{\(\mathbb{R}^{n}\) is the "unique" \(n\)-dimensional vector space}

Theorem
Let \(V\) be an n-dimensional vector space over the field \(\mathbb{F}\). Then \(V\) is isomorphic to \(\mathbb{F}^{n}\).

\section*{Definition}

A linear transformation (aka linear function) is a function, \(A\), from a vector space \((V, \mathbb{F},+, \cdot)\) to a vector space ( \(W, \mathbb{F},+, \cdot\) ) such that \(\forall v_{1}, v_{2} \in V\),
\[
A\left(v_{1}+v_{2}\right)=A v_{1}+A v_{2}
\]
and
\[
A\left(f v_{1}\right)=f A v_{1}
\]
for all scalars \(f\).
- Linear transformation from \(V \rightarrow V\) is called a linear operator
- Linear transformation from \(V \rightarrow \mathbb{R}\) is called a linear functional

\section*{Examples}

\section*{Example \\ Any isomorphism}

Example
The identity operator: \(I: V \rightarrow V\) defined by \(I(v)=v\)
Example
The zero transformation: \(0_{T}: V \rightarrow W\) defined by
\(0_{T}(v)=0_{w}\)
Example
\(f: \mathbb{R}^{2} \rightarrow \mathbb{R}\) defined by \(f\left(\left(x_{1}, x_{2}\right)=x_{1}\right.\)
where \(a_{i j}\) is defined by \(A e_{j}=\sum_{i=1}^{m} a_{i j} e_{i}\). Conversely, for any \(m\) by \(n\) matrix, there is an associated linear transformation from \(\mathbb{R}^{n}\) to \(\mathbb{R}^{m}\) defined by \(A e_{j}=\sum_{i=1}^{n} a_{i j}\).
\[
\left(\begin{array}{ccc}
a_{11} & \cdots & a_{1 n} \\
\vdots & \ddots & \vdots \\
a_{m 1} & \cdots & a_{m n}
\end{array}\right)
\]

Theorem
For any linear transformation, \(A\), from \(\mathbb{R}^{n}\) to \(\mathbb{R}^{m}\) there is an associated \(m\) by \(n\) matrix,

\section*{Proof.}
- Let \(A\) be a linear transformation from \(\mathbb{R}^{n}\) to \(\mathbb{R}^{m}\)
- \(b_{1}, b_{2}, . ., b_{n}\) basis for \(\mathbb{R}^{n}\)
- \(\forall v \in V \exists \alpha_{j} \in \mathbb{R}\) s.t. \(v=\sum_{j=1}^{n} \alpha_{j} b_{j}\)
- \(A v=\sum_{j=1}^{n} \alpha_{j} A b_{j}\) so only need \(A b_{j}\) to determine \(A\)
- \(d_{1}, \ldots, d_{m}\) basis for \(\mathbb{R}^{m}\), so
\[
A b_{j}=\sum_{i=1}^{m} a_{i j} d_{i}
\]

\section*{Other examples of linear transformations}

\section*{Example (Integral operator)}

Let \(k(x, y)\) be a function from \((0,1)\) to \((0,1)\) such that \(\int_{0}^{1} \int_{0}^{1} k(x, y)^{2} d x d y\) is finite. Define \(K: \mathcal{L}^{2}(0,1) \rightarrow \mathcal{L}^{2}(0,1)\) by
\[
(K f)(x)=\int_{0}^{1} k(x, y) f(y) d y
\]

Then \(K\) is a linear transformation.

\title{
Other examples of linear transformations
}

\section*{Example (Conditional expectation)}
\(X\) and \(Y\) are real valued random variables with joint pdf \(f_{x y}(x, y)\) and marginal pdfs \(f_{x}(x)=\int_{\mathbb{R}} f(x, y) d y\) and \(f_{y}(y)=\int_{\mathbb{R}} f(x, y) d x\). Define the vector spaces
\(V=\mathcal{L}^{2}\left(\mathbb{R}, f_{y}\right)=\left\{g: \mathbb{R} \rightarrow \mathbb{R}\right.\) such that \(\left.\int_{\mathbb{R}} f_{y}(y) g(y)^{2} d y<\infty\right\}\)
and
\(W=\mathcal{L}^{2}\left(\mathbb{R}, f_{x}\right)=\left\{g: \mathbb{R} \rightarrow \mathbb{R}\right.\) such that \(\left.\int_{\mathbb{R}} f_{x}(x) g(x)^{2} d x<\infty\right\}\)
The conditional expectation function is \(\mathcal{E}: V \rightarrow W\) defined by
\[
(\mathcal{E} g)(x)=E[g(Y) \mid X=x]=\int_{\mathbb{R}} \frac{f_{x y}(x, y)}{f_{x}(x) f_{y}(y)} g(y) f_{y}(y) d y
\]

\section*{Other examples of linear transformations}

\section*{Example (Differential operator)}

Let \(C^{\infty}(0,1)\) be the set of all infinitely differentiable functions from \((0,1)\) to \(\mathbb{R}\). It can easily be shown that \(C^{\infty}(0,1)\) is a vector space. Let \(D: C^{\infty}(0,1) \rightarrow C^{\infty}(0,1)\) be defined by
\[
(D f)(x)=\frac{d f}{d x}(x)
\]

Then \(D\) is a linear transformation.
\[
\begin{aligned}
& \text { - } A=\left(\begin{array}{ccc}
a_{11} & \cdots & a_{1 n} \\
\vdots & \ddots & \vdots \\
a_{m 1} & \cdots & a_{m n}
\end{array}\right), B=\left(\begin{array}{ccc}
b_{11} & \cdots & b_{1 n} \\
\vdots & \ddots & \vdots \\
b_{m 1} & \cdots & b_{m n}
\end{array}\right) \\
& \text { - Linear transformation implies }(A+B) x=A x+B x \\
& (A+B) e_{i}=A e_{i}+B e_{i} \\
& =\sum_{j=1}^{n} a_{i j} e_{j}+\sum_{j=1}^{n} b_{i j} e_{j} \\
& =\sum_{j=1}^{n}\left(a_{i j}+b_{i j}\right) e_{j}, \\
& \text { - so } A+B=\left(\begin{array}{ccc}
a+b_{11} & \cdots & a+b_{1 n} \\
\vdots & \ddots & \vdots \\
a+b_{m 1} & \cdots & a+b_{m n}
\end{array}\right) \text {. }
\end{aligned}
\]

\section*{Addition properties}
(1) Associative: \(A+(B+C)=(A+B)+C\),
(2) Commutative: \(A+B=B+A\),
(3) Identity: \(A+\mathbf{0}=A\), where \(\mathbf{0}\) is an \(m\) by \(n\) matrix of zeros, and
(4) Invertible \(A+(-A)=0\) where
\[
-A=\left(\begin{array}{ccc}
-a_{11} & \cdots & -a_{1 n} \\
\vdots & \ddots & \vdots \\
-a_{m 1} & \cdots & -a_{m n}
\end{array}\right)
\]
Matrix algebra

\author{
Paul Schrimpf
}

\section*{Vector spaces} and linear

\section*{transforma} tions
Vector spaces
Examples
Linear combinations

\section*{Scalar multiplication}
- Linear transformation requires \(A \alpha x=\alpha A x\)
- so,
\[
\alpha \boldsymbol{A}=\left(\begin{array}{ccc}
\alpha \boldsymbol{a}_{11} & \cdots & \alpha \boldsymbol{a}_{1 n} \\
\vdots & \ddots & \vdots \\
\alpha \boldsymbol{a}_{m 1} & \cdots & \alpha \boldsymbol{a}_{m n}
\end{array}\right)
\]

\section*{The space of matrices is a vector space}
- \(L\left(\mathbb{R}^{n}, \mathbb{R}^{m}\right) \equiv\) all \(m\) by \(n\) matrices \(\equiv\) all linear transformations from \(\mathbb{R}^{n}\) to \(\mathbb{R}^{m}\) with addition and multiplication as above is a vector space
- Question: \(L\left(\mathbb{R}^{n}, \mathbb{R}^{m}\right)\) is isomorphic to what other vector space that we have seen?
- \(L(V, W) \equiv\) all linear transformations from \(V \rightarrow W\) is a vector space


\section*{Multiplication properties}
(1) Associative: \(A(B C)=(A B) C\)
(2) Distributive: \(A(B+C)=A B+A C\) and \((A+B) C=A C+B C\)
(3) Identity: \(A I_{n}=A\) where \(A\) is \(m\) by \(n\) and \(I_{n}\) is the identity linear transformation from \(\mathbb{R}^{n}\) to \(\mathbb{R}^{n}\) such that \(I_{n} x=x \forall x \in \mathbb{R}^{n}\)
(4) Not commutative

\section*{Definition}

A real inner product space is a vector space over the field \(\mathbb{R}\) with an additional operation called the inner product that is function from \(V \times V\) to \(\mathbb{R}\). We denote the inner product of \(v_{1}, v_{2} \in V\) by \(\left\langle v_{1}, v_{2}\right\rangle\). It has the following properties:
(1) Symmetry: \(\left\langle v_{1}, v_{2}\right\rangle=\left\langle v_{2}, v_{1}\right\rangle\)
(2) Linear: \(\left\langle a v_{1}+b v_{2}, v_{3}\right\rangle=a\left\langle v_{1}, v_{3}\right\rangle+b\left\langle v_{2}, v_{3}\right\rangle\) for \(a, b \in \mathbb{R}\)
(3) Positive definite: \(\langle v, v\rangle \geq 0\) and equals 0 iff \(v=0\).
Matrix algebra and introduction to vector spaces

\author{
Paul Schrimpf
}

\section*{Example}
\(\mathbb{R}^{n}\) with the dot product, \(x\) cdoty \(=\sum_{i=1}^{n} x_{i} y_{i}\), is an inner product space.

\section*{Example}
\(\mathcal{L}^{2}(0,1)\) with \(\langle f, g\rangle \equiv \int_{0}^{1} f(x) g(x) d x\) is an inner product space.

\section*{Transpose}

\section*{Definition}

Given a linear transformation, \(A\), from a real inner product space \(V\) to a real inner product space \(W\), the transpose of \(A\), denoted \(A^{T}\) (or often \(A^{\prime}\) ) is a linear transformation from \(W\) to \(V\) such that \(\forall v \in V, w \in W\)
\[
\langle A v, w\rangle=\left\langle v, A^{T} w\right\rangle
\]

\section*{Transpose for matrices}
\[
\begin{aligned}
\langle A v, w\rangle & =\sum_{i=1}^{m}\left(\sum_{j=1}^{n} a_{i j} v_{j}\right) w_{i} \\
& =\sum_{i=1}^{m} \sum_{j=1}^{n} a_{i j} w_{i} v_{j} \\
\left\langle v, A^{T} w\right\rangle & =\sum_{j=1}^{n} v_{j}\left(\sum_{i=1}^{m} a_{j i}^{T} w_{i}\right) \\
& =\sum_{i=1}^{m} \sum_{j=1}^{n} a_{j i}^{T} w_{i} v_{j}
\end{aligned}
\]
- If \(\langle A v, w\rangle=\left\langle v, A^{T} w\right\rangle\), for any \(v\) and \(w\) we must have \(a_{j i}^{T}=a_{i j}\)
- The transpose of a matrix simply swaps rows for
Matrix algebra
    and
introduction to
vector spaces
Paul Schrimpf
Vector spaces
and linear
transforma-
tions
Vector spaces
Examples
Linear combinations
Dimension and
basis
Linear trans-
formations

\section*{Matrix}
Scalar multiplication Matrix multiplication Transpose
Transpose and inner products
Transpose and dual spaces
Types of matrices Invertibility
(1) \((A+B)^{T}=A^{T}+B^{T}\)
(2) \(\left(A^{T}\right)^{T}=A\)
(3) \((\alpha \boldsymbol{A})^{T}=\alpha \boldsymbol{A}^{T}\)
(4) \((A B)^{T}=B^{T} A^{T}\).
(5) \(\operatorname{rank} A=\operatorname{rank} A^{T}\)

\section*{Transpose and dual space}

\author{
Paul Schrimpf
}

\section*{Definition}

Let \(V\) be a vector space. The dual space of \(V\), denote \(V^{*}\) is the set of all (continuous) linear functionals, \(v^{*}: V \rightarrow \mathbb{R}\).

\section*{Example}

The dual space of \(\mathbb{R}^{n}\) is the set of \(1 \times n\) matrices. In fact, for any finite dimensional vector space, the dual space is the set of row vectors from that space.
Matrix algebra and introduction to vector spaces
Paul Schrimpf
Vector spaces and linear transformations
Vector spaces
Examples
Linear combinations
Dimension and
basis
Linear transformations
Matrix
operations and properties Addition
Scalar multiplication Matrix multiplication
Transpose
Transpose and inner products
Transpose and dual spaces
Types of matrices Invertibility

\section*{Example}

\section*{Let \(1 \leq p \leq \infty\), define}
\[
\ell^{p}=\left\{\left(x_{1}, x_{2}, \ldots\right): \sum_{i=1}^{\infty}\left|x_{i}\right|^{p}<\infty\right\}
\]
and
\[
\ell^{\infty}=\left\{\left(x_{1}, x_{2}, \ldots\right): \max _{i \in \mathbb{N}}\left|x_{i}\right|<\infty\right\}
\]

What is the dual space of \(\ell_{\infty}\) ?
\[
\begin{aligned}
& \text { Matrix algebra } \\
& \text { Dual space of } V=\mathcal{L}^{2}\left(\mathbb{R}, f_{x}\right)=\{g: \mathbb{R} \rightarrow \\
& \left.\mathbb{R} \text { such that } \int_{\mathbb{R}} f_{x}(x) g(x)^{2} d x<\infty\right\} \text { ? } \\
& \text { - Let } h \in \mathcal{L}^{2}\left(\mathbb{R}, f_{x}\right) \text {, define } \\
& h^{*}(g)=\int_{\mathbb{R}} f_{x}(x) g(x) h(x) d x . \\
& \text { then if } h^{*}(g) \text { is finite for all } g, h^{*} \in V^{*} \\
& \text { - Can show } h^{*} \text { is finite for } g, h \& V^{*}=\left\{h^{*}: h \in V\right\} \\
& \text { - The mapping } h \rightarrow h^{*} \text { is an isomorphism between } V \text { and } \\
& V^{*}
\end{aligned}
\]

\section*{Dual space definition of transpose}

\section*{Definition}

If \(A: V \rightarrow W\) is a linear transformation, then the transpose (or dual) of \(A\) is \(A^{T}: W^{*} \rightarrow V^{*}\) defined by \(\left(A^{T} w^{*}\right) v=w^{*}(A v)\).
- This definition is the same as the previous one when \(V\) and \(W\) are inner product spaces
- Show that if \(V, W\) are inner product spaces then \(V^{*}\) is isomorphic to \(V, W^{*}\) is isomorphic to \(W\)
- Show definitions are same
```

Matrix algebra
and
introduction to
vector spaces
Paul Schrimpf
Vector spaces
and linear
transforma-
tions

Definition
A column matrix is any m by 1 matrix.
Definition
A row matrix is any 1 by n matrix.
Definition
A square matrix has the same number of rows and columns.

Types of matrices

Definition

A diagonal matrix is a square matrix with non-zero entries only along its diagonal, i.e. $a_{i j}=0$ for all $i \neq j$.

Definition

An upper triangular matrix is a square matrix that has non-zero entries only on or above its diagonal, i.e. $a_{i j}=0$ for all $j>i$. A lower triangular matrix is the transpose of an upper triangular matrix.

Definition
A matrix is symmetric if $A=A^{T}$.

Definition
 A matrix is idempotent if $A A=A$.

Definition
A permutation matrix is a square matrix of 1's and 0's with exactly one 1 in each row or column.

Definition
A nonsingular matrix is a square matrix whose rank equals its number of columns.

Definition
An orthogonal matrix is a square matrix such that $A^{T} A=I$.

Invertibility

Definition

Let A be a linear transformation from V to W. Let B be a linear transfromation from W to $V . B$ is a right inverse of A if $A B=I_{V}$. Let C be a linear tranfromation from V to $W . C$ is a left inverse of A if $C A=I_{W}$.

Lemma
If A is a linear transformation from V to V and B is a right inverse, and C a left inverse, then $B=C$.
Matrix algebra

Lemma

Let A be a linear tranformation from V to V, and suppose A is invertible. Then A is nonsingular and the unique solution to $A x=b$ is $x=A^{-1} b$.

Lemma

If A is nonsingular, then A^{-1} exists.
Corollary
A square matrix A is invertible if and only if $\operatorname{rank} A$ is equal to its number of columns.
Matrix algebra
and
introduction to
vector spaces
Paul Schrimpf
Vector spaces
and linear
transforma-
tions
Vector spaces
Examples
Linear combinations
Dimension and
basis
Linear trans-
formations
Matrix
operations
and properties
Addition
Scalar multiplication
Matrix multiplication
Transpose
Transpose and
inner products
Transpose and dual
spaces
Types of matrices
Invertibility
(1) $(A B)^{-1}=B^{-1} A^{-1}$
2 $\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}$
(3) $\left(A^{-1}\right)^{-1}=A$

Properties of matrix inverse

Determinants

- Determinant: geometry and invertibility
- Invert 2 by 2 matrix by Gauss-Jordan elimination:

$$
\begin{aligned}
\left(\begin{array}{llll}
a & b & 1 & 0 \\
c & d & 0 & 1
\end{array}\right) & \simeq\left(\begin{array}{cccc}
a & b & 1 & 0 \\
0 & \frac{a d-b c}{a} & -\frac{c}{a} & 1
\end{array}\right) \\
& \simeq\left(\begin{array}{cccc}
a & b & 1 & 0 \\
0 & 1 & -\frac{c}{a d-b c} & \frac{a}{a d-b c}
\end{array}\right) \\
& \simeq\left(\begin{array}{cccc}
a & 0 & \frac{a d}{a d-b c} & \frac{-b a}{a d-b c} \\
0 & 1 & -\frac{c}{a d-b c} & \frac{a}{a d-b c}
\end{array}\right) \\
& \simeq\left(\begin{array}{cccc}
1 & 0 & \frac{d}{a d-b c} & \frac{-b}{a d-b c} \\
0 & 1 & -\frac{c}{a d-b c} & \frac{a}{a d-b c} .
\end{array}\right)
\end{aligned}
$$

- Needed $a d-b c \neq 0$.

Computational efficiency
and linear
transforma-
tions

Matrix algebra and introduction to vector spaces

Paul Schrimpf

```
Vector spaces
```

```
Vector spaces
```

Vector spaces
Examples

Linear combinations
Dimension and
basis
Linear transformations

Matrix

 operations and properties AdditionScalar multiplication Matrix multiplication
Transpose
Transpose and inner products
Transpose and dual spaces
Types of matrices
Invertibility
Determinants
Computational efficiency

Definition

Let A be an n by n matrix consisting of column vectors a_{1}, \ldots, a_{n}. The determinant of A is the unique function such that
(1) $\operatorname{det} I_{n}=1$.
(2) As a function of the columnes, det is an alternating form: $\operatorname{det}(A)=0$ iff a_{1}, \ldots, a_{n} are linearly dependent.
(3) As a function of the columnes, det is multi-linear:

$$
\operatorname{det}\left(a_{1}, \ldots, b a_{j}+c v, \ldots, a_{n}\right)=b \operatorname{det}(A)+c \operatorname{det}\left(a_{1}, \ldots, v, \ldots a_{n}\right)
$$

Matrix algebra

- 1 natural, needed for volume interpretation
- 2 ensures $\operatorname{det} A=0$ iff A singular
Lemma
Let A be an n by n matrix. The A is singular if and only if the columns of A are linearly dependent.
Corollary
A is nonsingular if and only if $\operatorname{det} A \neq 0$.
Matrix algebra
vector spaces
Paul Schrimpf
Vector spaces
and linear
transforma-
tions
Vector spaces
Examples
Linear combinations
Dimension and
basis
Linear trans
formations
Matrix
operations
and properties
Addition
Scalar multiplication
Matrix multiplication
Transpose
Transpose and
inner products
Transpose and dual
spaces
Types of matices
Invertibility
Determinants
- 3 is related to volume interpretation
- Consider diagonal matrices, volume interpretation require multi-linearity

Definition

The determinant of a square matrix A is defined recursively as
(1) For 1 by 1 matrices, $\operatorname{det} A=a_{11}$
2 For n by n matrices,

$$
\operatorname{det} A=\sum_{j=1}^{n}(-1)^{1+j} a_{1 j} \operatorname{det} A_{-1,-j}
$$

where $A_{-i,-j}$ is the $n-1$ by $n-1$ matrix obtained by deleting the i th row and j th column of A.

- minor: $\operatorname{det} A_{-i,-j}$
- cofactor: $(-1)^{i+j} \operatorname{det} A_{-i,-j}$

Determinant properties

Theorem
The two definitions of the determinant, (62) and (65), are equivalent.
(1) $\operatorname{det} A^{T}=\operatorname{det} A$
(2) $\operatorname{det}(A B)=(\operatorname{det} A)(\operatorname{det} B)$
(3) $\operatorname{det} A^{-1}=(\operatorname{det} A)^{-1}$
(4) Usually, $\operatorname{det}(A+B) \neq \operatorname{det} A+\operatorname{det} B$
(5) If A is diagonal, $\operatorname{det} A=\prod_{i=1}^{n} a_{i i}$
(6) If A is upper or lower triangular $\operatorname{det} A=\prod_{i=1}^{n} a_{i i}$.

Matrix algebra
Theorem
Let A be nonsingular. Then,
(1) $A^{-1}=$

$$
\frac{1}{\operatorname{det} A}\left(\begin{array}{ccc}
\operatorname{det} A_{-1,-1} & \cdots & (-1)^{1+n} \operatorname{det} A_{-n,-1} \\
\vdots & \ddots & \vdots \\
(-1)^{1+n} \operatorname{det} A_{-1,-n} & \cdots & (-1)^{n+n} \operatorname{det} A_{-n,-n}
\end{array}\right)
$$

(2) (Cramer's rule) The unique solution to $A x=b$ is

$$
x_{i}=\frac{\operatorname{det} B_{i}}{\operatorname{det} A}
$$

where B_{i} is the matrix A with the ith column replaced by b.

Computational efficiency

- Calculate determinant as defined above in $d(n)$ steps

$$
\begin{aligned}
d(n) & =n d(n-1)+2 n \\
& =2 n!\sum_{k=1}^{n} \frac{1}{(n-k)!}
\end{aligned}
$$

- Big O notation: $d(n)=O(f(n))$ if $\exists n_{0}$ such that

$$
d(n) \leq M f(n)
$$

for some constant M and all $n \geq n_{0}$

- $d(n)=O(n!)$
- Cramer's formula $=O((n+1)!)$
Matrix algebra
and
- Gaussian elimination in $g(n)$ steps

$$
\begin{aligned}
g(n) & =2 \sum_{k=1}^{n} k(k-1) \\
& =\frac{2}{3}\left(n^{3}-n\right)=\quad O\left(n^{3}\right)
\end{aligned}
$$

- Back substitute: $\sum_{k=1}^{n} k=\frac{1}{2} n(n-1)$ step
- Total: $O\left(n^{3}\right)$

