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Correction from last time

Theorem (Rouché-Capelli)
A system of linear equations with n variables has a solution
if and only if the rank of its coefficient matrix, A, is equal to
the rank of its augmented matrix, Â. If a solution exists and
rankA is equal to its number of columns, the solution is
unique. If a solution exists and rankA is less than its number
of columns

{s + x∗ ∈ Rn : s ∈ S and Ax∗ = b}

where S is a linear subspace of dimension n − rankA given
by the set of solutions to Ax = 0, and x∗ is a solution to
Ax = b.



Matrix algebra
and

introduction to
vector spaces

Paul Schrimpf

Vector spaces
and linear
transforma-
tions
Vector spaces
Examples
Linear combinations
Dimension and
basis

Linear trans-
formations

Matrix
operations
and properties
Addition
Scalar multiplication

Matrix multiplication
Transpose
Transpose and
inner products
Transpose and dual
spaces

Types of matrices
Invertibility

Determinants

Computational
efficiency

Matrix decom-
positions

.....
.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
.....

.
....

.
....

.

Overview
..1 Vector spaces and linear transformations

Vector spaces
Examples
Linear combinations
Dimension and basis

..2 Linear transformations

..3 Matrix operations and properties
Addition

Scalar multiplication
Matrix multiplication
Transpose

Transpose and inner products
Transpose and dual spaces

Types of matrices
Invertibility

..4 Determinants

..5 Computational efficiency

..6 Matrix decompositions



Matrix algebra
and

introduction to
vector spaces

Paul Schrimpf

Vector spaces
and linear
transforma-
tions
Vector spaces
Examples
Linear combinations
Dimension and
basis

Linear trans-
formations

Matrix
operations
and properties
Addition
Scalar multiplication

Matrix multiplication
Transpose
Transpose and
inner products
Transpose and dual
spaces

Types of matrices
Invertibility

Determinants

Computational
efficiency

Matrix decom-
positions

.....
.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
.....

.
....

.
....

.

Definition
A vector space is a set V and a field F with two operations,
addition +, which takes two elements of V and produces
another element in V , and scalar multiplication ·, which
takes an element in V and an element in F and produces an
element in V , such that

..1 (V ,+) is a commutative group, i.e. addition is close,
associative, invertible, and commutative.

..2 Scalar multiplication has the following properties:
..1 Closure: ∀v ∈ V and f ∈ F we have vf ∈ V
..2 Distributivity: ∀v1, v2 ∈ V and f1, f2 ∈ F

f1(v1 + v2) = f1v1 + f1v2

and

(f1 + f2)v1 = f1v1 + f2v1

..3 Consistent with field multiplication: ∀v ∈ V and
f1, f2 ∈ V we have

1v = v

and

(f1f2)v = f1(f2v)
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Example (Euclidean space)
Rn over the field R is a vector space. Vector addition and
multiplication are defined in the usual way. If
x1 = (x11, ..., xn1) and x2 = (x12, ..., xn2), then

x1 + x2 = (x11 + x12, ..., xn1 + xn2).

Scalar multiplication is defined as

ax = (ax1, ...,axn)

for a ∈ R and x ∈ Rn.
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Example
Any linear subspace of Rn.

Example
(Qn,Q,+, ·) is a vector space where + and · defined as in 3.

Example
(Cn,C,+, ·) where + and · defined as in 3 except with
complex addition and multiplication taking the place of real
addition and multiplication.
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Example
Take V = R+. Define “addition” as x ⊕ y = xy and define
“scalar multiplication” as α⊙ x = xα. Then (R+,R,⊕,⊙) is a
vector space with identity element 1.
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Vector spaces of functions

Example
Let V = all functions from [0,1] to R. For f ,g ∈ V , define
f + g by (f + g)(x) = f(x) + g(x). Define scalar multiplication
as (αf)(x) = αf(x). Then this is a vector space.

Example
The set of all continuous functions with addition and scalar
multiplication defined as in 8.

Example
The set of all k times continuously differentiable functions
with addition and scalar multiplication defined as in 8.
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Example
The set of all polynomials with addition and scalar
multiplication defined as in 8.

Example
The set of all polynomials of degree at most d with addition
and scalar multiplication defined as in 8.

Example
The set of all functions from R → R such that
f(29481763) = 0 with addition and scalar multiplication
defined as in 8.
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Example
Let 1 ≤ p < ∞ and let Lp(0,1) be the set of functions from
(0,1) to R such that

∫ 1
0 |f(x)|pdx is finite. Then Lp(0,1) with

the field R and addition and scalar multiplication defined as

(f + g)(x) =f(x) + g(x)
(αf)(x) =αf(x)

is a vector space.
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Definition
Let V be a vector space and v1, ..., vk ∈ V . A linear
combination of v1, ..., vk is any vector

c1v1 + ...+ ckvk

where c1, ..., ck ∈ F.

Question
How can we be sure that c1v1 + ...+ ckvk ∈ V?
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Definition
Let V be a vector space and W ⊆ V . The span of W is the
set of all finite linear combinations of elements of W .

Lemma
The span of any W ⊆ V is a linear subspace.
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Example
Let V be the vector space of all functions from [0,1] to R as
in example 8. The span of {1, x, ..., xn} is the set of all
polynomials of degree less than or equal n.
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Definition
A set of vectors v1, ..., vk ∈ V , is linearly independent if the
only solution to

k∑
j=1

cjvj = 0

is c1 = c2 = ... = ck = 0.
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Definition
The dimension of a vector space, V , is the cardinality of the
largest set of linearly independent elements in V .

Definition
A basis of a vector space V is any set of linearly
independent vectors b1, ..., bk such that the span of b1, ...,bk
is V .
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Example
A basis for Rn is e1 = (1,0, ...,0), e2 = (0,1,0, ..., 0), ...,
en = (0, ..., 0,1). This basis is called the standard basis of
Rn.

Example
What is the dimension of each of the examples of vector
spaces above? Can you find a basis for them?
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Basis gives coordinates

Lemma
Let {b1, ..., bk} be a basis for a vector space V. Then
∀v ∈ V there exists a unique v1, ..., vk ∈ F and such that
v =

∑k
i=1 vibi

Proof.
• B spans V , so such (v1, ..., vk) exist.
• Suppose there exists another such (v ′

1, ..., v ′
k). Then

v =
∑

vibi =
∑

v ′
i bi∑

vibi −
∑

v ′
i bi =0∑

(vi − vi)
′bi =0.
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Dimension = |Basis |

Lemma
If B is a basis for a vector space V and I ⊆ V is a set of
linearly independent elements then |I| ≤ |B|.

Corollary
Any two bases for a vector space have the same cardinality.
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Definition
Let V and W be vector spaces over the field F. V and W
are isomorphic if there exists a one-to-one and onto
function, I : V → W such that

I(v1 + v2) = I(v1) + I(v2)

for all v1, v2 ∈ V , and

I(αv) = αI(v)

for all v ∈ V , α ∈ F. Such an I is called an isomorphism.
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Rn is the “unique” n-dimensional
vector space

Theorem
Let V be an n-dimensional vector space over the field F.
Then V is isomorphic to Fn.
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Definition
A linear transformation (aka linear function) is a function,
A, from a vector space (V ,F,+, ·) to a vector space
(W ,F,+, ·) such that ∀v1, v2 ∈ V ,

A(v1 + v2) = Av1 + Av2

and

A(fv1) = fAv1

for all scalars f .
• Linear transformation from V → V is called a linear

operator
• Linear transformation from V → R is called a linear

functional
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Examples

Example
Any isomorphism

Example
The identity operator: I : V → V defined by I(v) = v

Example
The zero transformation: 0T : V → W defined by
0T (v) = 0w

Example
f : R2 → R defined by f((x1, x2) = x1
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Theorem
For any linear transformation, A, from Rn to Rm there is an
associated m by n matrix,a11 · · · a1n

... . . . ...
am1 · · · amn


where aij is defined by Aej =

∑m
i=1 aijei . Conversely, for any

m by n matrix, there is an associated linear transformation
from Rn to Rm defined by Aej =

∑n
i=1 aij .
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Proof.
• Let A be a linear transformation from Rn to Rm

• b1,b2, .., bn basis for Rn

• ∀v ∈ V ∃αj ∈ R s.t. v =
∑n

j=1 αjbj

• Av =
∑n

j=1 αjAbj so only need Abj to determine A
• d1, ..., dm basis for Rm , so

Abj =
m∑

i=1
aijdi .
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Other examples of linear
transformations

Example (Integral operator)
Let k(x, y) be a function from (0,1) to (0,1) such that∫ 1

0
∫ 1

0 k(x, y)2dxdy is finite. Define K : L2(0,1) → L2(0,1)
by

(Kf)(x) =
∫ 1

0
k(x, y)f(y)dy

Then K is a linear transformation.
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Other examples of linear
transformations..

Example (Conditional expectation)
X and Y are real valued random variables with joint pdf
fxy(x, y) and marginal pdfs fx(x) =

∫
R f(x, y)dy and

fy(y) =
∫
R f(x, y)dx. Define the vector spaces

V = L2(R, fy) = {g : R → R such that
∫
R

fy(y)g(y)2dy < ∞}

and

W = L2(R, fx) = {g : R → R such that
∫
R

fx(x)g(x)2dx < ∞}

The conditional expectation function is E : V → W defined
by

(Eg)(x) = E[g(Y )|X = x] =
∫
R

fxy(x, y)
fx(x)fy(y)

g(y)fy(y)dy.
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Other examples of linear
transformations

Example (Differential operator)
Let C∞(0,1) be the set of all infinitely differentiable functions
from (0,1) to R. It can easily be shown that C∞(0,1) is a
vector space. Let D : C∞(0,1) → C∞(0,1) be defined by

(Df)(x) = df
dx (x)

Then D is a linear transformation.
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Addition

• A =

a11 · · · a1n
... . . . ...

am1 · · · amn

, B =

b11 · · · b1n
... . . . ...

bm1 · · · bmn


• Linear transformation implies (A + B)x = Ax + Bx

(A + B)ei =Aei + Bei

=
n∑

j=1
aijej +

n∑
j=1

bijej

=
n∑

j=1
(aij + bij)ej ,

• so A + B =

a + b11 · · · a + b1n
... . . . ...

a + bm1 · · · a + bmn

.
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Addition properties

..1 Associative: A + (B + C) = (A + B) + C,

..2 Commutative: A + B = B + A ,

..3 Identity: A + 0 = A, where 0 is an m by n matrix of
zeros, and

..4 Invertible A + (−A) = 0 where

−A =

−a11 · · · −a1n
... . . . ...

−am1 · · · −amn

.
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Scalar multiplication

• Linear transformation requires Aαx = αAx
• so,

αA =

αa11 · · · αa1n
... . . . ...

αam1 · · · αamn


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The space of matrices is a
vector space

• L(Rn,Rm) ≡ all m by n matrices ≡ all linear
transformations from Rn to Rm with addition and
multiplication as above is a vector space

• Question: L(Rn,Rm) is isomorphic to what other vector
space that we have seen?

• L(V ,W ) ≡ all linear transformations from V → W is a
vector space
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Matrix multiplication..
• Multiplication ≡ composition of linear transformations
• A : Rn → Rm, B : Rp → Rn.
• Consider A(Bek)

A(Bek) =A(
n∑

j=1
bjkei)

=
n∑

j=1
bjkAei

=
n∑

j=1
bjk

( m∑
l=1

aijel

)

=
m∑

l=1

 n∑
j=1

aijbjk

el

=


∑n

j=1 a1jbj1 · · ·
∑n

j=1 a1jbjp
... . . . ...∑n

j=1 amjbj1 · · ·
∑n

j=1 amjbjp

el

=(AB)el .
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Multiplication properties

..1 Associative: A(BC) = (AB)C

..2 Distributive: A(B + C) = AB + AC and
(A + B)C = AC + BC

..3 Identity: AIn = A where A is m by n and In is the identity
linear transformation from Rn to Rn such that
Inx = x∀x ∈ Rn

..4 Not commutative
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Definition
A real inner product space is a vector space over the field
R with an additional operation called the inner product that
is function from V × V to R. We denote the inner product of
v1, v2 ∈ V by ⟨v1, v2⟩. It has the following properties:

..1 Symmetry: ⟨v1, v2⟩ = ⟨v2, v1⟩

..2 Linear: ⟨av1 + bv2, v3⟩ = a ⟨v1, v3⟩+ b ⟨v2, v3⟩ for
a,b ∈ R

..3 Positive definite: ⟨v, v⟩ ≥ 0 and equals 0 iff v = 0.
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Example
Rn with the dot product, xcdoty =

∑n
i=1 xiyi , is an inner

product space.

Example
L2(0,1) with ⟨f ,g⟩ ≡

∫ 1
0 f(x)g(x)dx is an inner product

space.
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Transpose

Definition
Given a linear transformation, A, from a real inner product
space V to a real inner product space W , the transpose of
A, denoted AT (or often A′) is a linear transformation from W
to V such that ∀v ∈ V ,w ∈ W

⟨Av,w⟩ =
⟨

v,AT w
⟩
.



Matrix algebra
and

introduction to
vector spaces

Paul Schrimpf

Vector spaces
and linear
transforma-
tions
Vector spaces
Examples
Linear combinations
Dimension and
basis

Linear trans-
formations

Matrix
operations
and properties
Addition
Scalar multiplication

Matrix multiplication
Transpose
Transpose and
inner products
Transpose and dual
spaces

Types of matrices
Invertibility

Determinants

Computational
efficiency

Matrix decom-
positions

.....
.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
.....

.
....

.
....

.

Transpose for matrices
•

⟨Av,w⟩ =
m∑

i=1

 n∑
j=1

aijvj

wi

=
m∑

i=1

n∑
j=1

aijwivj

• ⟨
v,AT w

⟩
=

n∑
j=1

vj

( m∑
i=1

aT
ji wi

)

=
m∑

i=1

n∑
j=1

aT
ji wivj

• If ⟨Av,w⟩ =
⟨
v,AT w

⟩
, for any v and w we must have

aT
ji = aij

• The transpose of a matrix simply swaps rows for
columns
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Transpose properties

..1 (A + B)T = AT + BT

..2 (AT )T = A

..3 (αA)T = αAT

..4 (AB)T = BT AT .

..5 rankA = rankAT
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Transpose and dual space

Definition
Let V be a vector space. The dual space of V , denote V∗ is
the set of all (continuous) linear functionals, v∗ : V → R.

Example
The dual space of Rn is the set of 1 × n matrices. In fact, for
any finite dimensional vector space, the dual space is the
set of row vectors from that space.
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Example
Let 1 ≤ p ≤ ∞, define

ℓp = {(x1, x2, ...) :
∞∑

i=1
|xi |p < ∞}

and
ℓ∞ = {(x1, x2, ...) : max

i∈N
|xi | < ∞}

What is the dual space of ℓ∞?
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Example
Dual space of V = L2(R, fx) = {g : R →
R such that

∫
R fx(x)g(x)2dx < ∞}?

• Let h ∈ L2(R, fx), define

h∗(g) =
∫
R

fx(x)g(x)h(x)dx.

then if h∗(g) is finite for all g, h∗ ∈ V∗

• Can show h∗ is finite for g, h & V∗ = {h∗ : h ∈ V}
• The mapping h → h∗ is an isomorphism between V and

V∗
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Dual space definition of
transpose

Definition
If A : V → W is a linear transformation, then the transpose
(or dual) of A is AT : W ∗ → V∗ defined by
(AT w∗)v = w∗(Av).

• This definition is the same as the previous one when V
and W are inner product spaces

• Show that if V ,W are inner product spaces then V∗ is
isomorphic to V , W∗ is isomorphic to W

• Show definitions are same
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Types of matrices

Definition
A column matrix is any m by 1 matrix.

Definition
A row matrix is any 1 by n matrix.

Definition
A square matrix has the same number of rows and
columns.
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Definition
A diagonal matrix is a square matrix with non-zero entries
only along its diagonal, i.e. aij = 0 for all i ̸= j.

Definition
An upper triangular matrix is a square matrix that has
non-zero entries only on or above its diagonal, i.e. aij = 0 for
all j > i. A lower triangular matrix is the transpose of an
upper triangular matrix.

Definition
A matrix is symmetric if A = AT .
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Definition
A matrix is idempotent if AA = A.

Definition
A permutation matrix is a square matrix of 1’s and 0’s with
exactly one 1 in each row or column.

Definition
A nonsingular matrix is a square matrix whose rank equals
its number of columns.

Definition
An orthogonal matrix is a square matrix such that AT A = I.
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Invertibility

Definition
Let A be a linear transformation from V to W . Let B be a
linear transfromation from W to V . B is a right inverse of A
if AB = IV . Let C be a linear tranfromation from V to W . C is
a left inverse of A if CA = IW .

Lemma
If A is a linear transformation from V to V and B is a right
inverse, and C a left inverse, then B = C.
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Lemma
Let A be a linear tranformation from V to V, and suppose A
is invertible. Then A is nonsingular and the unique solution
to Ax = b is x = A−1b.

Lemma
If A is nonsingular, then A−1 exists.

Corollary
A square matrix A is invertible if and only if rankA is equal to
its number of columns.
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Properties of matrix inverse

..1 (AB)−1 = B−1A−1

..2 (AT )−1 = (A−1)T

..3 (A−1)−1 = A
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Determinants

• Determinant: geometry and invertibility
• Invert 2 by 2 matrix by Gauss-Jordan elimination:(

a b 1 0
c d 0 1

)
≃
(

a b 1 0
0 ad−bc

a − c
a 1

)
≃
(

a b 1 0
0 1 − c

ad−bc
a

ad−bc

)
≃
(

a 0 ad
ad−bc

−ba
ad−bc

0 1 − c
ad−bc

a
ad−bc

)
≃
(

1 0 d
ad−bc

−b
ad−bc

0 1 − c
ad−bc

a
ad−bc .

)
• Needed ad − bc ̸= 0.
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Definition
Let A be an n by n matrix consisting of column vectors
a1, ..., an. The determinant of A is the unique function such
that

..1 detIn = 1.

..2 As a function of the columnes, det is an alternating
form: det(A) = 0 iff a1, ..., an are linearly dependent.

..3 As a function of the columnes, det is multi-linear:

det(a1, ..., baj+cv, ..., an) = bdet(A)+cdet(a1, ..., v, ...an)
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• 1 natural, needed for volume interpretation
• 2 ensures detA = 0 iff A singular

Lemma
Let A be an n by n matrix. The A is singular if and only if the
columns of A are linearly dependent.

Corollary
A is nonsingular if and only if detA ̸= 0.
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• 3 is related to volume interpretation
• Consider diagonal matrices, volume interpretation

require multi-linearity
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Definition
The determinant of a square matrix A is defined recursively
as

..1 For 1 by 1 matrices, detA = a11

..2 For n by n matrices,

detA =
n∑

j=1
(−1)1+ja1jdetA−1,−j

where A−i,−j is the n − 1 by n − 1 matrix obtained by
deleting the ith row and jth column of A.

• minor: detA−i,−j

• cofactor: (−1)i+jdetA−i,−j
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Determinant properties

Theorem
The two definitions of the determinant, (62) and (65), are
equivalent.

..1 detAT = detA

..2 det(AB) = (detA)(detB)

..3 detA−1 = (detA)−1

..4 Usually, det(A + B) ̸= detA + detB

..5 If A is diagonal, detA =
∏n

i=1 aii

..6 If A is upper or lower triangular detA =
∏n

i=1 aii .
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Theorem
Let A be nonsingular. Then,

..1 A−1 =

1
detA

 detA−1,−1 · · · (−1)1+ndetA−n,−1
... . . . ...

(−1)1+ndetA−1,−n · · · (−1)n+ndetA−n,−n


..2 (Cramer’s rule) The unique solution to Ax = b is

xi =
detBi
detA

where Bi is the matrix A with the ith column replaced by
b.
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Computational efficiency

• Calculate determinant as defined above in d(n) steps

d(n) =nd(n − 1) + 2n

=2n!
n∑

k=1

1
(n − k)!

• Big O notation: d(n) = O(f(n)) if ∃n0 such that

d(n) ≤ Mf(n)

for some constant M and all n ≥ n0
• d(n) = O(n!)
• Cramer’s formula = O((n + 1)!)
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• Gaussian elimination in g(n) steps

g(n) =2
n∑

k=1
k(k − 1)

=
2
3(n

3 − n) = O(n3)

• Back substitute:
∑n

k=1 k = 1
2n(n − 1) step

• Total: O(n3)
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