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The last lecture introduced vector spaces. In this lecture we will explore vector spaces
in more detail, which will eventually let us complete our characterization of the set of
solutions to systems of linear equations.

Remember that our the vector space with which we are most interested is Euclidean
space, R". In fact, a good way to think about other vector spaces is that they are just vari-
ations of R". The whole reason for defining and studying abstract vector spaces is to take
our intuitive understanding of two and three dimensional Euclidean space and apply it
to other contexts. If you find the discussion of abstract vector spaces and their variations
to be confusing, you can ignore it and think of two or three dimensional Euclidean space
instead. For the exams in this course, I am unlikely to ask about vector spaces other than
R". It is likely that you will not need to know anything about vector spaces other than
R" throughout the masters program. However, if you read enough articles in economics
journals, you will come across abstract vector spaces, and hopefully what we have cov-
ered in this course will be helpful. Also, if you plan to continue and get a PhD it will be
useful to know about abstract vector spaces.

1. NORMED VECTOR SPACES

One property of two and three dimensional Euclidean space is that vectors have lengths.
Our definition of vector spaces from last lecture does not guarantee that we have a way of
measuring length in all vector spaces, so let’s define a special type of vector space where
we can measure length.

Definition 1.1. A normed vector space, (V,IF, +,,||-||), is a vector space with a function,
called the norm, from V to [F and denoted by ||v| with the following properties:

(1) ||7|| > 0and ||v|| =0iffv =0,

(2) ||av|| = |a| ||v|| for all « € F,

(3) The triangle inequality holds:

o1 4 02| < [o1]] + [[v2]]
forall v1,v, € V.

As in the previous lecture, when the field, addition, multiplication, and norm are clear
from context, we will just write V instead of (V,F,+,-,|-||) to denote a normed vector
space. Like length, a norm is always non-negative and only zero for the zero vector. Also,

similar to length, if we multiply a vector by a scalar, the norm also gets multiplied by the
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scalar. The triangular inequality means that norm obeys the idea that the shortest distance
between two points is a straight line. If you go directly from x to y you “travel” ||x — y||.
If you stop at point z in between, you travel ||x — z|| + ||z — y||. The triangle inequality
guarantees that

I =yl < llx =zl +lz =yl
1.1. Examples.

Example 1.1. R is a normed vector space with norm

|x|| = /23 + x5 + x3.

This norm is exactly how we usually measure distance. For this reason, it is called the
Euclidean norm.
More generally, for any 1, R", is a normed vector space with norm

n
x| =/ X xF-
i=1

The Euclidean norm is the most natural way of measuring distance in IR", but it is not
the only one. A vector space can often be given more than one norm, as the following
example shows.

Example 1.2. R" with the norm

p 1/p
[ x][, = <Z|xi|p>
i=1

for p € [1,0]"is a normed vector space. This norm is called the p-norm.

For nearly all practical purposes, R" with any p-norm is essentially the same as R"
with any other p-norm. IR" is the same collection of elements regardless of the choice of
p-norm, and the choice of p-norm does not affect the topology of IR" or the definition of
derivatives.” However, there are normed vector spaces where the choice of norm makes
a difference.

Example 1.3. £7(0,1) with p-norm

i1, = ([ 1reoras)”

is a normed vector space. Moreover, LF(0,1) is a different space for different p. For
example, xll—/p ¢ L£P(0,1), but -~ € £9(0,1) for g < p.

x/p

IWhere ||x|,, = maxi<j<p |X;l
2We will discuss topology next lecture, and derivatives soon afterward, so do not worry if you do not

know what that means.
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2. INNER PRODUCT SPACES

Another example of a normed vector space is any inner product space. Recall the defi-
nition of an inner product space from last lecture.

Definition 2.1. A real inner product space is a vector space over the field R with an
additional operation called the inner product that is function from V' x V to IR. We denote
the inner product of v1,v; € V by (v, v2). It has the following properties:

(1) Symmetry: (v1,v2) = (v2,v1)

(2) Linear: (avy + bvp, v3) = a (v1,v3) + b (vp,v3) fora,b € R

(3) Positive definite: (v, v) > 0 and equals 0 iff v = 0.

Any inner product space is also a normed vector space with norm

] = 4/ {x %)

Recall from the previous lecture that the inner product on R" is the dot product,

n

(xy)=x-y= inyi-
i=1

The norm induced by the inner product is then

ol = /( x) = ,/éx%,

which is the usual Euclidean norm. Henceforth, whenever talking about inner product
spaces we will use ||x|| to denote the norm induced by the inner product (which is the
same as the 2-norm or Euclidean norm).

Inner product spaces are special in another way. Remember that we are studying vec-
tor spaces and their variants to try to generalize our understand of three dimensional
Euclidean space to other contexts. Vector spaces are places where we can add elements
and multiply by scalars, just like in 3-d Euclidean space. In normed vector spaces, we
can also measure distance. Another thing that we know how to do in Euclidean space
is measure angles. Inner product spaces are vector spaces where we can also measure
angles.

Suppose we have an inner product space then:

lx+y|> =(x+y,x+y)

=(x,x) +2(x,¥) + (1, y)

In R" with the Euclidean norm when x and y are at right angles to one other, (x,y) = 0,
and we have the Pythagorean theorem:

2 2 2
e+ yl™ = llx "+ [lylI~
This motivates the following definition
Definition 2.2. Let x,y € V, an inner product space. x and y are orthogonal iff (x, y) = 0.

In Euclidean space, the inner product and angle are related by the following theorem,
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Theorem 2.1. Let u,v € R", then the angle between them is

0 = cos ! {w0)

lull ol
Proof. We can prove this using the definition of the cosine and the Pythagorean theorem.
See Blume and Simon theorem 10.3 for pictures. Imagine u and v in R?. Form a right-
angle triangle by drawing a line orthogonal to the line from the origin to v and passing
through u. Let tv, with t € R, be the point at the right-angle of the triangle. By definition,
cosine is the ratio of the length of the adjacent side to the hypotenuse, which is

o]
[l

cosf =

Now we just need to relate ||tv|| to (u,v). The opposite side of the triangle is length
||u — tv]|, so by the Pythagorean theorem,

2 2 2
[ul[* = |lto]|” + [[u — to]]
]| =£ [0 + [|]|* = 2t (,0) + £ |]o]|?
2t (u,v) =2¢ ||v|)

_(w9)
ol

Plugging this result into the previous equation gives the conclusion. g

In inner product spaces other than R”, we could define angles to fit theorem 1. For
example, this would allow us to talk about the angle between two functions in £2(0,1).
We will not use this definition of angle very much though. The really important thing to
remember about inner product spaces and angles is that vectors can be orthogonal and
the Pythagorean theorem holds.

2.1. Useful inequalities. When we start looking at limits next week, will we often need
to prove that the norm of something is small. There are a number of inequalities that we
will repeatedly use. The most common is the triangle inequality, which was part of our
definition of norms. The triangle inequality has many implications, some of which are
not obvious. These implications are often useful in proofs. The most common is what is
known as the reverse triangle inequality.

Theorem 2.2 (Reverse triangle inequality). Let V' be a normed vector space and x,y € V. Then
[l =l lIT < > = wll-
Proof. By the usual triangle inequality,

]+ [l =yl = llwll

1 =yl = llyll =]
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and
[yl + [y — x[| = [[x]]
ly —x[| = [[x[| = llyll-
Also, [ly —x|| = (=) (x —y)|| = | = 1| |lx — y|| = [[x — y|| is greater than both ||x|| — |||
and ||yl — [[x[| and

1 =yl = [l = [lylll-
0

After the triangle inequality, arguably the most important inequality in mathematics is
the Cauchy-Schwarz inequality.

Theorem 2.3 (Cauchy-Schwarz inequality ). Let V' be an inner product space and let u,v € V.
Then,

[(u, 0)| < Jlul o]l -

Proof. The idea of this proof can be illustrated in R? by forming a right angle triangle with
vertices at 0, u, and tv and sides of lengths ||tv||, ||u — tv||, and ||v||, where t is chosen such
that v and u — tv are orthogonal, as shown in the following diagram.

We are choosing t so that (v, u — tv) = 0, so solving for ¢,

(v,u —tv) =0
(v,v) =t (u,v)
_{u,0)
ol

We can choose such a t in any inner product space, not just R?.
Now, let z = u — tv. By construction, (z,v) = 0 and u = tv + z. Hence, by the
Pythagorean theorem,

2 2 2
[l ™ = [t )" + 1=
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Iz > 0, s0

2

2 <ulv>

[l ===

o]
[l {lol} = | (u, ) |-

U
Notice that in the proof, we also saw that ||u|| ||| = | (4, v) | if and only if ||z|| = 0. ||z]|

is zero whenever u and v are linearly dependent i.e. u = av where « € R.

3. PROJECTIONS

The mapping from u to tv that we saw in the proofs of theorem T and 3 is so common
that it has a name.

Definition 3.1. Let V be an inner product space and x, y € V. The (orthogonal) projection
of y onto x is
(v, %)
Py = > X.
Il

More generally, the projection of y onto a finite set {x1, xp, ..., X } is

k
P{xj}}‘:ly =) ij_p{xi}i#xjy.

Equivalently,
Py Y = X(XTx)"1xTy

j=1
where X as an n by k matrix whose columns are xy.
More generally still, if X C V' is a linear subspace, then the projection of y onto X is

Pxy = P{bj};.;ly

where by, ..., by are an orthogonal basis for X.
Finally, if Y C V the projection of Y onto X is just the set consisting of the projection of
each element of y onto X, i.e.

PxY = {ny 1y € Y}

In R? the projection of y onto x can be visualized by drawing a line that passes through
y and is perpendicular to the line connecting x and the origin. In general, the projec-
tion of y onto a subspace X will be the point in x that is closest to y. This point will lie
on a line that is orthogonal to X and passes through y. Projections are related to linear
transformations and matrices as well.

Lemma 3.1. Any projection is an idempotent linear transformation.

Proof. First, we verify that projections have the two properties required for them to be

linear transformations.
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(1)

oy )

Px(]/1+y2): ||xH2

(x,y1>x+ (. y2)

()

Now, we show that projections are idempotent.

Py(Pyy) =Py <<x,y2> x)
IEdl
(35
llx[l N

_xy) (v x)

- 2 2
[l 1]

= xy.

g

It turns out that any symmetric idempotent linear transformation can be written in
the form used to define (orthogonal) projections. Therefore, projections are sometimes
defined as idempotent linear transformations instead. This definition is equivalent to
ours. We will not prove this, but we will have the tools to prove it after this lecture so you

might want to do it as an exercise.

4. LINEAR INDEPENDENCE

Recall the definition of linear independence from last lecture.

Definition 4.1. A set of vectors vy, ..., v € V, is linearly independent if the only solution

to
k
) cuj=0
=1

isci =c¢y=..=c=0.
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4.1. Checking linear independence. Given a set of vectors, vy,.., v, € R" (or any n-
dimensional vector space), how do check whether they are linearly independent? Well,

by definition, they are linearly independent if c; = ¢, = ... = ¢;; = 0 is the only solution
to
n
) cvj =0
j=1

If we write this condition as a system of linear equations we have

v11€1 + 012¢2 + ... + V16, =0

Um1€1 + UmC2 + oo + Uyncy = 0

or in matrix form,

011 - Uln 1
=0

Om1 **° Umn Cn
Ve =0

We call any system with 0 on the right hand side a homogeneous system. Any homoge-
neous system always has ¢ = 0 as a solution. We know from lecture 2 that it will have
other solutions if the rank of V is less than n. This proves the following lemma.

Lemma 4.1. Vectors vy, ..., vy, € R"™ are linearly independent if and only if
rank(vy, ..., vy) = n.
Corollary 4.1. Any set of k > m vectors in R™ are linearly dependent.
For sets of m vectors in R" we can restate the lemma in terms of the determinant.
Corollary 4.2. Vectors vy, ..., vy, € R™ are linearly independent if and only if

det(vy,...,vy) # 0.

5. ROW, COLUMN, AND NULL SPACE

5.1. Row space.

Definition 5.1. Let A be an m by n matrix. The row space of A, denoted Row(A), is the
space spanned by the row vectors of A.

The row space of A is a subspace of R".
Lemma 5.1. Performing Gaussian elimination does not change the row space of a matrix.

Proof. Let ay, ..., a,, be the row vectors of A. Each step of Gaussian elimination transforms
some 4; into a; + ga, with k # jor ¢ # —1. It suffices to show that

span(ay, ..., am) = span(ay + gag, ..., m).
8
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If x € span(ay, ..., am ), then
m
x = Zciai

=c1(ay + gax) + Z Cidj) — €18ax,

so x € span(aj + gag, ..., m)-
Conversely if x € span(ay + gay, ...., ), then

m
x =c1(a + gax) + Y _ cia;
i—2

m
=C184k + Z Cid;
i=1

so x € span(ay, ..., am)- O
Corollary 5.1. The dimension of the row space of a matrix is equal to its rank.

Proof. Let rq, ...,y be the row vectors of the row echelon form of A. If the rank of Ais k <
m,thenr,, 1 =0,..,r, =0. Also, for j <=k, r; has more leading zeros than ri—1. A quick
inductive argument then shows that rq, ..., 7 are linearly independent. For k = 1, linear
independence follows from r; # 0. For k > 1, assume 79, ..., 7, are linearly independent.
We cannot write r{ = (11,12, ..., "1, ) as a combination of 7y, ..., 7 be they all begin with 0
and r1; # 0. Therefore rq, ..., 7 are linearly independent, and dimRow(A) = rankA. [

5.2. Column space.

Definition 5.2. Let A be an m by n matrix. The column space of A, denoted Col(A), is
the space spanned by the column vectors of A.

We know that the column space of an n by n matrix is R" if and only if the matrix is
nonsingular. We will see that the column space plays an important role in describing the
set of solutions to systems of linear equations.

Lemma 5.2. Let A be an m by n matrix. Then Ax = b has a solution iff b € Col(A).

Proof. If x solves Ax = b, then b is in the column space of A by definition. Conversely if b
is in the column space of A, then there must exist an x such that Ax = b. 4

Let us examine the dimension of the column space of A.

Definition 5.3. A column of a matrix A is basic if the corresponding column of the row
echelon form, A, contains a pivot.

Theorem 5.1. The basic columns of A form a basis for Col(A).

Proof. Let A be m x n and denote its columns as vy, ..., v,. Let A, be the row echelon form

of A and denotes its columns as wy, ..., wy,. Let w;,, ..., w;, be the basic columns of A,. Then

w;, must end with more zeros than w;,, and w;, must end with more zeros than w;,, etc. By

the same argument as in corollary b1, w;, ..., w;, are linearly independent. By definition
9
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of row echelon form, the final m — k rows of A, are all zero. Therefore dimCol(A,) < k,
and w,, ..., w; must span Col(A,) and be a basis.
Now we must show that v; , ..., v;, are a basis for Col(A). Suppose

C10j; + ... + Ck0j, = 0.
Then we could do Gaussian elimination to convert this system to
cwj, + ... + ¢w;, = 0.

wj,, ..., w;, are linearly independent so ¢; = 0,...cy = 0 and v;, ..., v;, are linearly indepen-
dent too. Moreover, if we add any other vj, j & {i1,...,ix}, then by the same argument
there must exist a non-zero c than solves

C10j; + ... + CkUj, + CjU; = 0.
Thus, v;, ..., v;,_is a basis for Col(A). O
Corollary 5.2. The dimensions of the row and column spaces of any matrix are equal.

Proof. The previous proof showed that dimCol(A) = rankA, and earlier we showed that
dimRow(A) = rankA. O

This also proves that the ranks of A and A transpose are equal. We stated this fact
earlier without proof.

Corollary 5.3. rankA = rankAT.

When talking about linear transformations in general instead of just matrices, the col-
umn space is called the image or range of the transformation. All the results in this section
still apply.

5.3. Null space.

Definition 5.4. Let A be m by n. The set of solutions to the homogeneous equation Ax = 0
is the null space (or kernel) of A, denoted by N'(A) (or Null(A)).

Definition 5.5. Let V C IR” be a linear subspace, and let ¢ € IR" be a fixed vector. The set
{x e R":x=0v+cforsomev € V}

is called the set of translates of V by c, and is denoted ¢ + V. Any set of translates of a
linear subspace is called an affine space.

Like linear subspaces, affine spaces are points, lines, planes, and hyperplanes. Unlike
linear subspaces, affine spaces do not necessarily contain 0.

Lemma 5.3. Let Ax = b be an m by n system of linear equations. Let xo be any particular
solution. Then the set of solutions is xy + N (A).

Proof. Letw € xg +N(A). Then
Aw =A(x9) + A(w — x0)
——
eN(A)
=b+0.
10
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Let w be a solution to Ax = b. Then

A(w —x9) = Aw — Axp =0
sow—x9 € N(A)and w € xg + N (A). O
Theorem 5.2. Let A be an m by n matrix. Then dimN (A) = n — rankA

Proof. Let uy, ..., uy be a basis for N'(A). If k = n, then dimN'(A) = n and Ax = 0 for all
x € R". It follows that A must be all zeros so rankA = 0 and the theorem is true.

If k < n, then we add uy, 1, ..., 4y to us, ..., uy to form a basis for R”. We can do this be-
cause Uy, ..., ux do not span R”, so there must be 1y, 1 & span(uy, ..., u). This implies that
ui, ..., Uy, ugy1 are linearly independent. Repeating this argument we can add uy o, ..., uy.

Now we will show that Auy 1, ..., Au, are a basis for the column space. They are in the
column space by definition. They are linearly independent because

Cri1Algs1 + oo + cnAuy =A(Cki1Ugst + o + Cnlty)

A(Cki1Ugy1 + - + Cntty) equals zero only if (cxyqugy1 + ... + cutin) € N(A), but by con-
struction this is only possible for ¢y 1 = ... = ¢, = 0.
Finally Auy,1, ..., Au, span ColA since if Ax = b we can write x = cju; + ... + ¢,a,, and

b= Ax =A (ciuy + ... + cpay)
=c1A uy H..+cA up Acpp1Augiq + o+ cnAuy
~— ~—
EN(A) eN(A)
b =0+ cxi1Augs1 + ... + cnAuy

so b € span(Auy,1, ..., Auy). Thus,
dimCol(A) =n —k = n — dimN (A) = rankA.
O

Collecting all the above results, we have finally completed our description of the set of
all solutions to a system of linear equations.

Theorem 5.3 (Rouché-Capelli). A system of linear equations with n variables has a solution if
and only if the rank of its coefficient matrix, A, is equal to the rank of its augmented matrix, A.
Equivalently, a solution exists if and only if b € Col(A).

If a solution exists and rankA is equal to its number of columns, the solution is unique. If a
solution exists and rank A is less than its number of columns, there are infinite solutions. In this
case the set of solutions forms is an affine space, xo + N (A), where x is any particular solution
to Ax = b. This set of solutions is an affine subspace of dimension n — rankA.

5.4. Relationship among row, column, and null space. Let’s examine how the row, col-
umn, and null spaces of a matrix are related. Suppose A is m by n, then Col(A) C R"™,
Row(A) C R"” and N(A) C R". Given that the row and null space are both subsets of

R", it is natural to wonder how they are related. Since the transpose just switches rows
11
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with columns, we know that Row(AT) = Col(A) and Col(AT) = Row(A). Suppose
x € N(A), then Ax = 0. The definition of the transpose requires that for all w € R™,

<ATw,x> = (w, Ax)
<ATw,x> = (w,0)
<ATw,x> =0

But, the set {ATw : w € R™} is Col(AT) = Row(A). Thus, we can conclude that for any
x € N(A) and y € Row(A), (y,x) = 0. In other words, the row and null spaces of a
matrix are orthogonal. Similarly, N'(AT) and Row(AT) = Col(A) are orthogonal.
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