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This lecture focuses on sequences, limits, and topology. Similar material is covered in
chapters 12 and 29 of Simon and Blume, or 1.3 of Carter.

1. SEQUENCES AND LIMITS

A sequence is a list of elements, {x1, x2, ...} or {xn}∞
n=1 or sometimes just {xn}. Al-

though the notation for a sequence is similar to the notation for a set, they should not be
confused. Sequences are different from sets in that the order of elements in a sequence
matters, and the same element can appear many times in a sequence. Some examples of
sequences with xi ∈ R include

(1) {1, 1, 2, 3, 5, 8, ...}
(2) {1, 1

2 , 1
3 , 1

4 , ...}
(3) { 1

2 , −2
3 , 3

4 , −4
5 , 5

6 , ...}
Some sequences, like 2, have elements that all get closer and closer to some fixed point.
We say that these types of sequences converge. A sequence that does not converge di-
verges. Some divergent sequences like 1, increase without bound. Other divergent se-
quences, like 3, are bounded, but they do not converge to any single point.

To analyze sequences with elements that are not necessarily real numbers, we need to
be able to say how far apart the entries in the sequence are.

Definition 1.1. A metric space is a set, X, and function d : X × X → R called a metric (or
distance) such that ∀x, y, z ∈ X

(1) d(x, y) > 0 unless x = y and then d(x, x) = 0
(2) (symmetry) d(x, y) = d(y, x)
(3) (triangle inequality) d(x, y) ≤ d(x, z) + d(z, y).

Example 1.1. R is a metric space with d(x, y) = |x − y|.

Example 1.2. Any normed vector space is a metric space with d(x, y) = ∥x − y∥.

The most common metric space that we will encounter will be Rn with the Euclidean
metric, d(x, y) = ∥x − y∥ =

√
∑n

i=1(xi − yi)2.

Definition 1.2. A sequence {xn}∞
n=1 in a metric space converges to x if ∀ϵ > 0 ∃N such

that
d(xn, x) < ϵ

for all n ≥ N. We call x the limit of {xn}∞
n=1 and write limn→∞ xn = x or xn → x.
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Example 1.3. The sequence {1, 1
2 , 1

3 , 1
4 , ...} = {1/n}∞

n=1 converges. To see this, take any
ϵ > 0. Then ∃ N such that 1/N < ϵ. For all n ≥ N, d(1/n, 0) = 1/n < ϵ.

If a sequence does not converge, it diverges.

Example 1.4. The Fibonacci sequence, {1, 1, 2, 3, 5, 8, ...} diverges.

Definition 1.3. a is an accumulation point of {xn}∞
n=1 if ∀ϵ > 0 ∃ infinitely many xi such

that
d(a, xi) < ϵ.

Example 1.5. The sequence {1
2 , −2

3 , 3
4 , −4

5 , 5
6 , ...} has two accumulation points, 1 and −1.

The limit of any convergent sequence is an accumulation point of the sequence. In fact,
it is the only accumulation point.

Lemma 1.1. If xn → x, then x is the only accumulation point of {xn}∞
n=1.

Proof. Let ϵ > 0 be given. By the definition of convergence, ∃N such that

d(xn, x) < ϵ

for all n ≥ N. {n ∈ N : n ≥ N} is infinite, so x is an accumulation point.
Suppose x′ is another accumulation point. Then ∀ϵ > 0 ∃N and N′ such that if n ≥

N and n ≥ N′, then d(xn, x) < ϵ/2 and d(xn, x′) < ϵ/2). By the triangle inequality,
d(x, x′) ≤ d(xn, x′) + d(xn, x) < ϵ. Since this inequality holds for any ϵ, it must be that
d(x, x′) = 0. d is a metric, so then x = x′, and the limit of sequence is the sequence’s
unique accumulation point. □

The third example of a sequence at the start of this section, 3, shows that the converse
of this lemma is false. Not every accumulation point is a limit.

Definition 1.4. Given {xn}∞
n=1 and any sequence of positive integers, {nk} such that n1 <

n2 < ... we call {xnk} a subsequence of {xn}∞
n=1.

In example 3, there are two accumulation points, −1 and 1, and you can find subse-
quences that converge to these points.

Lemma 1.2. Let a be an accumulation point of {xn}. Then ∃ a subsequence that converges to a.

Proof. We can construct a subsequence as follows. Let {ϵk} be a sequence that converges
to zero with ϵk > 0∀k, (for example, ϵk = 1/k). By the definition of accumulation point,
for each ϵk ∃ infinitely many xn such that

d(xn, a) < ϵk (1)

Pick any xn1 such that (1) holds for ϵ1. For k > 1, pick nk ̸= nj for all j < k and such that
(1) holds for ϵk. Such an nk always exists because there are infinite xn that satisfy (1). By
construction, limk→∞ xnk = a (you should verify this using the definition of limit). □

Convergence of sequences is often preserved by arithmetic operations, as in the follow-
ing two theorems.
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Theorem 1.1. Let {xn} and {yn} be sequences in a normed vector space V. If xn → x and
yn → y, then

xn + yn → x + y.

Proof. Let ϵ > 0 be given. Then ∃ Nx such that for all n ≥ Nx,

d(xn, x) < ϵ/2,

and ∃Ny such that for all n ≥ Ny,

d(yn, y) < ϵ/2.

Let N = max{Nx, Ny}. Then for all n ≥ N,

d(xn + yn, x + y) = ∥(xn + yn)− (x + y)∥ ≤ ∥xn − x∥+ ∥yn − y∥
<ϵ/2 + ϵ/2 = ϵ.

□

Theorem 1.2. Let {xn} be a sequence in a normed vector space with scalar field R and let {cn}
be a sequence in R. If xn → x and cn → c then

xncn → xc.

Proof. On problem set. □
In fact, in the next lecture we will see that if f (·, ·) is continuous, then lim f (xn, yn) =

f (x, y). The previous two theorems are examples of this with f (x, y) = x+ y and f (c, x) =
cx, respectively.

1.1. Series. Infinite sums or series are formally defined as the limit of the sequence of
partial sums.

Definition 1.5. Let {xn}∞
n=1 be a sequence in a normed vector space. Let sn = ∑n

i=1 xi
denote the sum of the first n elements of the sequence. We call sn the nth partial sum. We
define the sum of all the xis as

∞

∑
i=1

xi ≡ lim
n→∞

sn

This is called a(n infinite) series.

Example 1.6. Let β ∈ R. ∑∞
i=0 βi is called a geometric series. Geometric series appear

often in economics, where β will be the subjective discount factor or perhaps 1/(1 + r).
Notice that

sn =1 + β + β2 + · · ·+ βn

=1 + β(1 + β + · · ·+ βn−1)

=1 + β(1 + β + · · ·+ βn−1 + βn)− βn+1

sn(1 − β) =1 − βn+1

sn =
1 − βn+1

1 − β
,
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so,
∞

∑
i=0

βi = lim sn

= lim
1 − βn+1

1 − β

=
1

1 − β
if |β| < 1.

1.2. Cauchy sequences. We have defined convergent sequences as ones whose entries
all get close to a fixed limit point. This means that all the entries of the sequence are also
getting closer together. You might imagine a sequence where the entries get close together
without necessarily reaching a fixed limit.

Definition 1.6. A sequence {xn}∞
n=1 is a Cauchy sequence if for any ϵ > 0 ∃N such that

for all i, j ≥ N, d(xi, xj) < ϵ.

It turns that in Rn Cauchy sequences and convergent sequences are the same. This is a
consequence of R having the least upper bound property.

Theorem 1.3. A sequence in Rn converges if and only if it is a Cauchy sequence.

There is a proof of this in Chapter 29.1 of Simon and Blume. If you want more practice
with the sort of proofs in this lecture, it would be good to read that section. The conver-
gence of Cauchy sequences in the real numbers is a consequence of the least upper bound
property that we discussed in lecture 1. Cauchy sequences do not converge in all metric
spaces. For example, the rational numbers are a metric space, and any sequence of ratio-
nals that converges to an irrational number in R is a Cauchy sequence in Q but has no
limit in Q. Having Cauchy sequences converge is necessary for proving many theorems,
so we have a special name for metric spaces where Cauchy sequences converge.

Definition 1.7. A metric space, X, is complete if every Cauchy sequence of points in X
converges in X.

Completeness is important for so many results that complete version of vector spaces
are named after the mathematicians who first studied them extensively. A Banach space
is a complete normed vector space. A Hilbert space is a complete inner product space.
Since any inner product space is a normed vector space with norm ∥x∥ =

√
⟨x, x⟩, any

Hilbert space is also a Banach space.

Example 1.7. Rn is a Hilbert space.

Example 1.8. ℓp = {(x1, x2, ...) s.t. xi ∈ R, ∑∞
i=1 |xi|p < ∞} with norm

∥x∥ =

(
∞

∑
i=1

|xi|p
)1/p

is a Banach space.
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ℓ2 with

⟨x, y⟩ =
∞

∑
i=1

xiyi

is a Hilbert space.
Showing that ℓp is complete is slightly tricky because you have deal with a sequence of

xi ∈ ℓp, each element of which is itself an infinite sequence. You should not worry if you
have difficulty following the rest of this example.

To show that ℓp is complete, let {xn}∞
n=1 be a Cauchy sequence. Denote the elements of

xi by xi1, xi2, .... First, let’s show that for any n, x1n, x2n, ... is a Cauchy sequence in R. Let
ϵ > 0. Since {xn}∞

n=1 is Cauchy, ∃Nϵ such that for all i, j ≥ Nϵ,∥∥xi − xj
∥∥ < ϵ.

Since ∥∥xi − xj
∥∥p

=

(
∞

∑
m=1

∣∣xim − xjm
∣∣p)

All terms in the sum on the right are non-negative and the sum includes
∣∣xin − xjn

∣∣, so∣∣xin − xjn
∣∣p ≤

∥∥xi − xj
∥∥p∣∣xin − xjn

∣∣ ≤ ∥∥xi − xj
∥∥

Therefore,
∣∣xin − xjn

∣∣ < ϵ for all i, j ≥ Nϵ, i.e. x1n, x2n, ... is a Cauchy sequence in R. R is
complete, so it has some limit. Denote the limit by x∗n.

Now we will show that x∗ = (x∗1 , x∗2 , ...) is the limit of {xn}∞
n=1. First, we should show

that x∗ ∈ ℓp. Let

s∗m =
m

∑
n=1

|x∗n|p.

We need to show that lim s∗m exists. Since {xn}∞
n=1 is Cauchy, ∃j such that if i ≥ j,∥∥xi − xj

∥∥ < 1. Using the triangle inequality,

∥xi∥ ≤
∥∥xi − xj

∥∥+ ∥∥xj
∥∥ = 1 +

∥∥xj
∥∥ ≡ M

for all i ≥ j and some fixed j. Thus, ∥xi∥ ≤ M for some constant M and all i ≥ j. Then,

s∗m = lim
i→∞

m

∑
n=1

|xin|p ≤ Mp

for all m. s∗m is a bounded weakly increasing sequence in R, so it must converge.1

1Let {xn}∞
n=1 ∈ R and suppose x1 ≤ x2 ≤ x3 ≤ ... and {xn}∞

n=1 is bounded, then we will show {xn}∞
n=1

converges. Suppose not. Then the sequence has no accumulation points. In particular, xi is not an accumu-
lation point of the sequence for any i i.e. there is an ϵ > 0 such that for all i there are finitely many j with
d(xi, xj) < ϵ. Then we can construct a subsequence by choosing jk such that jk > jk−1 and |xjk − xjk−1

| > ϵ.
But then

xjk =xj1 + (xj2 − xj1) + (xj3 − xj2) + ... + (xjk − xjk−1
)

≥xj1 + (k − 1)ϵ

which is not bounded.
5



LIMITS AND TOPOLOGY OF METRIC SPACES

Finally, we should show that {xn}∞
n=1 converges to x∗. Let ϵ > 0. Since the original

sequence is Cauchy, there is a N such that if i, j > N, then
M

∑
m=1

∣∣xim − xjm
∣∣p ≤

∥∥xi − xj
∥∥p

< ϵ

for all M. Therefore,

lim
j→∞

M

∑
m=1

∣∣xim − xjm
∣∣p =

M

∑
m=1

|xim − x∗m| < ϵ

for all i ≥ N and all M. Thus,

∥xi − x∗∥ = lim
M→∞

M

∑
m=1

|xim − x∗m| < ϵ

for all i ≥ N, so the sequence converges.

2. OPEN SETS

Definition 2.1. Let X be a metric space and x ∈ X. A neighborhood of x is the set

Nϵ(x) = {y ∈ X : d(x, y) < ϵ.

A neighborhood is also called an open ϵ-ball of x and written Bϵ(x).

Definition 2.2. A set, S ⊆ X is open if ∀x ∈ S, ∃ ϵ > 0 such that

Nϵ(x) ⊂ S.

For every point in an open set, you can find a small neighborhood around that point
such that the neighborhood lies entirely within the set.

Example 2.1. Any open interval, (a, b) = {x ∈ R : a < x < b}, is an open set.

Example 2.2. Any linear subspace of dimension k < n in Rn is not open.

Theorem 2.1.
(1) Any union of open sets is open. (finite or infinite)
(2) The finite intersection of open sets is open.

Proof. Let Sj, j ∈ J be a collection of open sets. Pick any j0 ∈ J. If x ∈ ∪j∈JSj, then there
must be ϵj0 > 0 such that Nϵj0

(x) ⊂ Sj0 . It is immediate that Nϵj0
(x) ⊂ ∪j∈JSj as well.

Let S1, .., Sk be a finite collection of open sets. For each i ∃ϵi > 0 such that Nϵi(x) ⊂ Si.
Let ϵ = mini∈{1,...,k} ϵi. Then ϵ > 0 since it is the minimum of a finite set of positive
numbers. Also, Nϵ(x) ⊂ Si for each i, so Nϵ(x) ⊂ ∩k

i=1Si. □
Definition 2.3. The interior of a set A is the union of all open sets contained in A. It is
denoted as int(A).

From the previous, theorem, we know that the interior of any set is open.

Example 2.3. Here some examples of the interior of sets in R.
(1) A = (a, b), int(A) = (a, b).
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(2) A = [a, b], int(A) = (a, b).
(3) A = {1, 2, 3, 4, ...}, A = ∅

3. CLOSED SETS

A closed set is the opposite of an open set.

Definition 3.1. A set S ⊆ X is closed if its complement, Xc, is open.

Theorem 3.1.
(1) The intersection of any collection of closed sets is closed.
(2) The union of any finite collection of closed sets is closed.

Proof. Let Cj, j ∈ J be a collection of closed sets. Then
(
∩j∈JCj

)c
= ∪j∈JCc

j . Cc
j are open, so

by theorem 2.1, ∪j∈JCc
j =

(
∩j∈JCj

)c
= is open.

The proof of part 2 is similar. □

Example 3.1 (Closed sets). Some examples of closed sets include

(1) [a, b] ⊆ R

(2) Any linear subspace of Rn

(3) {(x, y) ∈ R2 : x2 + y2 ≤ 1}

Closed sets can also be defined as sets that contain the limit of any convergent sequence
in the set. Simon and Blume use this definition. The next theorem shows that their defi-
nition is equivalent to ours.

Theorem 3.2. Let {xn} be any convergent sequence with each element contained in a set C. Then
lim xn = x ∈ C for all such {xn} if and only if C is closed.

Proof. First, we will show that any set that contains the limit points of all its sequences is
closed. Let x ∈ Cc. Consider N1/n(x). If for any n, N1/n(x) ⊂ Cc, then Cc is open, and
C is closed as desired. If for all n, N1/n(x) ̸⊂ Cc, then ∃yn ∈ N1/n(x) ∩ C. The sequence
{yn} is in C and yn → x. However, by assumption C contains the limit of any sequence
within it. Therefore, there can be no such x, and Cc must be open and C is closed.

Suppose C is closed. Then Cc is open. Let {xn} be in C and xn → x. Then d(xn, x) → 0,
and for any ϵ > 0, ∃xn ∈ Nϵ(x). Hence, there can be no ϵ neighborhood of x contained in
Cc. Cc is open by assumption, so x ̸∈ Cc and it must be that x ∈ C. □

Definition 3.2. The closure of a set S, denoted by S (or cl(S)), is the intersection of all
closed sets containing S.

Example 3.2. If S is closed, S = S.

Example 3.3. (0, 1] = [0, 1]

Lemma 3.1. S is the set of limits of convergent sequences in S.

Proof. Let {xn} be a convergent sequence in S with limit x. If C is any closed set containing
S, then {xn} is in C and by theorem 3.2, x ∈ C. Therefore, x ∈ S.
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Let x ∈ S. For any ϵ > 0, Nϵ(x) ∩ S ̸= ∅ because otherwise Nϵ(x)c is a closed set
containing S, but not x. Therefore, we can construct a sequence xn ∈ S ∩ N1/n(x) that
converges to x and is in S. □

Example 3.4. {1/n}n∈N = {0, 1, 1/2, 1/3, ...}

Definition 3.3. The boundary of a set S is S ∩ Sc.

Example 3.5. The boundary of [0, 1] is {0, 1}.

Example 3.6. The boundary of the unit ball, {x ∈ R2 : ∥x∥ < 1} is the unit circle, {x ∈
R2 : ∥x∥ = 1}.

Lemma 3.2. If x is in the boundary of S then ∀ϵ > 0, Nϵ(x) ∩ S ̸= ∅ and Nϵ(x) ∩ Sc ̸= ∅.

Proof. As in the proof of lemma 3.1, all ϵ-neighborhoods of x ∈ S must intersect with S.
The same applies to Sc. □

4. COMPACT SETS

Definition 4.1. An open cover of a set S is a collection of open sets, {Gα} α ∈ A such that
S ⊂ ∪α∈AGα.

Example 4.1. Some open covers of R are:
• {R}
• {(−∞, 1), (−1, ∞)
• {..., (−3,−1), (−2, 0), (−1, 1), (0, 2), (1, 3), ...}
• {(x, y) : x < y}

The first two are finite open covers since they consist of finitely many open sets. The third
is a countably infinite open cover. The fourth is an uncountably infinite open cover.

Example 4.2. Let X be a metric space and A ⊆ X. The set of open balls of radius ϵ centered
at all points in A is an open cover of A. If A is finite / countable / uncountable, then this
open cover will also be finite / countable / uncountable.

Open covers of the form in the previous example are often used to prove some property
applies to all of A by verifying the property in each small Nϵ(x). Unfortunately, this often
involves taking a maximum or sum of something for each set in the open cover. When
the open cover is infinite, it can be hard to ensure that the infinite sum or maximum stays
finite. When we have a finite open cover, we know that things will remain finite.

Definition 4.2. A set K is compact if every open cover of K has a finite subcover.

By a finite subcover, we mean that there is finite set Gα1 , ...Gαk such that S ⊂ ∪k
j=1Gαj .

Compact sets are a generalization of finite sets. Many facts that are obviously true of
finite sets are also true for compact sets, but not true for infinite sets that are not compact.
Suppose we want to show a set has some property. If the set is compact, we can cover it
with a finite number of small ϵ balls and then we just need to show that each small ball
has the property we want. We will see many concrete examples of this technique in the
next few weeks.
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Example 4.3. R is not compact. {..., (−3,−1), (−2, 0), (−1, 1), (0, 2), (1, 3), ...} is an infinite
cover, but if we leave out any single interval (the one beginning with n) we will fail to
cover some number (n + 1).

Example 4.4. Let K = {x}, a set of a single point. Then K is compact. Let {Gα}α∈A be an
open cover of K. Then ∃ α such that x ∈ Gα. This single set is a finite subcover.

Example 4.5. Let K = {x1, ..., xn} be a finite set. Then K is compact. Let {Gα}α∈A be an
open cover of K. Then for each i, ∃ αi such that xi ∈ Gαi . The collection {Gα1 , ...Gαn} is a
finite subcover.

Example 4.6. (0, 1) ⊆ R is not compact. {(1/n, 1)}∞
n=2 is an open cover, but there can be

no finite subcover. Any finite subcover would have a largest n and could not contain, e.g.
1/(n + 1).

Example 4.7. Let x ∈ V, a normed vector space. Let K = {x 1
2 , x 2

3 , x 3
4 , ...}. Then K is not

compact. Consider the open cover N∥x∥ 1
3(n+2)2

(x n
n+1) for n = 1, 2, .... Assuming x ̸= 0, each

of these neighborhoods contains exactly one point of K, so there is no finite subcover.

Before using compactness, let’s investigate how being compact relates to other proper-
ties of sets, such as closed/open.

Lemma 4.1. Let X be a metric space and K ⊆ X. If K is compact, then K is closed.

Proof. Let x ∈ Kc. The collection {Nd(x.y)/3(y)}, y ∈ K is an open cover of K. K is compact,
so there is a finite subcover, Nd(x,y1)/3(y1), ..., Nd(x,yn)/3(yn). For each i, Nd(x,yi)/3(yi) ∩
Nd(x,yi)/3(x) = ∅, so

∩n
i=1Nd(x,yi)/3(x)

is an open neighborhood of x that is contained in Kc. Kc is open, so K is closed. □
Lemma 4.2. Let X be a metric space, C ⊆ K ⊆ X. If K is compact and C is closed. Then C is also
compact.

Proof. Let {Gα}α∈A be an open cover for C. Then {Gα}α∈A plus Cc is an open cover for K.
Since K is compact there is a finite subcover. Since C ⊆ K, the finite subcover also covers
C. Therefore, C is compact. □

The definition of compactness is somewhat abstract. We just saw that compact sets are
always closed. Another property of compact sets is that they are bounded.

Definition 4.3. Let X be a metric space and S ⊆ X. S is bounded if ∃x0 ∈ S and r ∈ R

such that
d(x, x0) < r

for all x ∈ S.

A bounded set is one that fits inside an open ball of finite radius. For subsets of R this
definition is equivalent to there being a lower and upper bound for the set. For subsets of
a normed vector space, if S is bounded then there exists some M such that ∥x∥ < M for
all x ∈ S.
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Lemma 4.3. Let K ⊆ X be compact. Then K is bounded.

Proof. Pick x0 ∈ K. {Nr(x0)}r∈R is an open cover of K, so there must be a finite subcover.
The finite subcover has some maximum r∗. Then K ⊆ Nr∗(x0), so K is bounded. □

This lemma along with lemma 4.1 show that if a set is compact then it is also closed and
bounded. In Rn, the converse is also true.

Theorem 4.1 (Heine-Borel). A set S ⊆ Rn is compact if and only if it is closed and bounded.

Proof. We already showed that if S is compact, then it is closed and bounded.
Now suppose S is closed and bounded. Since S is bounded, it is a subset of some n-

dimensional cube, say [−a, a]n (i.e. the set of all vectors x = (x1, .., xn) with −a ≤ xi ≤ a).
We will show [−a, a]n is compact, and then use the fact that a closed subset of a compact
set is compact.

Let’s just show [−a, a]n is compact for n = 1. The argument for larger n is similar, but
the notation is more cumbersome. If [−a, a] is not compact, then there is an infinite open
cover with no finite subcover, say {Gα}α∈A. If we cut the interval into two halves, [−a, 0]
and [0, a], at least one of them must have no finite subcover. We can repeat this argument
many times to get nested closed intervals of length a/(2k) for any k. Call the kth interval
Ik. We claim that ∩∞

k=1 Ik ̸= ∅. To show this take the sequence of lower endpoints of the
intervals, call it {xn}∞

n=1. This is a Cauchy sequence, so it converges to some limit, x0.
Also, for any k, {xn}∞

n=k is a sequence in Ik. Ik is closed so x0 ∈ Ik. Thus x0 ∈ ∩∞
k=1 Ik. On

the other hand, Ik ⊂ ∪α∈AGα for all k. Therefore, x0 must be in some open Gα as part of
this cover. Then ∃ϵ > 0 such that Nϵ(x0) ⊂ Gα. However, for k > 1/ϵ, Ik ⊂ Nϵ(x0) ⊂ Gα,
and then Ik has a finite subcover. Therefore, [−a, a] must be compact. The argument for
n > 1 is very similar. For n = 2, we would divide the square [−a, a]2 into four smaller
squares. For n = 3, we would divide the cube into eight smaller cubes. In general we
would divide the hypercube [−a, a]n into 2n hypercubes with half the side length. □

You may wonder whether closed and bounded sets are always compact. We know that
all finite dimensional real vector spaces are isomorphic to Rn. In any such space, sets are
compact iff they are closed and bounded. However, in infinite dimensional spaces, there
are closed and bounded sets that are not compact. The argument in the previous proof
does not apply to infinite-dimensional spaces because an infinite dimensional hypercube
can only be divided into infinitely many hypercubes with half the side length.

Example 4.8. ℓ∞ = {(x1, x2, ...) : supi |xi| < ∞ with norm ∥x∥ = supi |xi| is a normed
vector space. Let ei be the element of all 0s except for the ith position, which is 1. Then
E = {ei}∞

i=1 is closed and bounded. However, E is not compact because {N1/2(ei)}∞
i=1 is

an open cover with no finite subcover.

We saw that closed sets contain the limit points of all their convergent sequences. There
is also a relationship between compactness and sequences.

Definition 4.4. Let X be a metric space and K ⊆ X. K is sequentially compact if every
sequence in K has an accumulation point in K.
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Sometimes this definition is written as: K is sequentially compact if every sequence in
K has a subsequence that converges in K. Compactness implies sequential compactness.

Lemma 4.4. Let X be a metric space and K ⊆ X be compact. Then K is sequentially compact.

Proof. Let {xn}∞
n=1 be a sequence in K. Pick any ϵ > 0, Nϵ(x), x ∈ K is an open cover of

K, so there is a finite subcover. Therefore, one of the ϵ neighborhoods must contain an
infinite number of the elements from the sequence. Call this neighborhood Nϵ(x∗1). Pick
the smallest n such that xn ∈ Nϵ(x∗1) and call it n1. Nϵ(x∗1) ∩ K is a closed subset of the
compact set K, so is itself compact. Repeat the above argument with ϵ/2 in place of ϵ

and Nϵ(x∗1) ∩ K in place of K to find an n2, n3, etc. Then the subsequence xn1 , xn2 , ... is a
Cauchy sequence, so it converges. Its limit is an accumulation point. Its limit must be in
K because K is compact, and so, closed. Therefore, K is sequentially compact. □

In Rn, a set is sequentially compact iff it is compact iff it is closed and bounded.

Theorem 4.2 (Bolzano-Weierstrass). A set S ⊆ Rn is closed and bounded if and only if it is
sequentially compact.

Proof. Let S be closed and bounded. By the Heine-Borel theorem (4.1), S is compact. By
lemma 4.4, S is sequentially compact.

Let S be sequentially compact. Let {xn} be a convergent sequence in S. Its limit is an
accumulation point, so it must be in S. Therefore, S is closed. To show S is bounded, pick
x0 ∈ S. Suppose ∃x1 ∈ S such that d(x1, x0) ≥ 1, and x2 ∈ S such that d(x2, x0) ≥ 2 etc.
This sequence is not Cauchy because of the reverse triangle inequality,

d(xi, xj) ≥
∣∣d(xi, x0)− d(xj, x0)

∣∣ = |i − j|
Therefore, this would be a sequence in S with no accumulation points. Therefore, it must
not always be possible to find such xn. In other words, S must be bounded. □
Comment 4.1. This theorem is sometimes stated as “each bounded sequence in Rn has a
convergent subsequence.” As an exercise, you may want to verify that this statement is
equivalent to the one above.

Simon and Blume also prove this theorem in chapter 29.2. They do not prove the Heine-
Borel theorem first though, so their proof is of the Bolzano-Weierstrass theorem is longer.
Perhaps unsurprisingly, the details of their proof are somewhat similar to our proof of the
Heine-Borel theorem.

In Rn, compactness, sequential compactness, and closed and bounded are all the same.
In general metric spaces, this need not be true. We saw above that in infinite dimen-
sional normed vector spaces, there are closed and bounded sets which are not compact.
However it is always true that sequential compactness and compactness are the same for
metric spaces. We already showed that compactness implies sequential compactness. The
proof that sequential compactness implies compactness is a somewhat long and difficult,
and you may want to skip it unless you are especially interested.

Theorem 4.3. Let X be a metric space and K ⊆ X. K is compact if and only if K is sequentially
compact.

11
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Proof. Lemma 4.4 shows that if K is compact, then K is sequentially compact.
Suppose every sequence in K has a convergent subsequence with a limit point in K. Let

Gα, α ∈ A be an open cover of K. A could be uncountable, so we will begin by showing
that there must be a countable subcover. Let n = 1. Pick x1 ∈ K. If possible choose x2 ∈ K
such that d(x1, x2) ≥ 1/n. Repeat this process, choosing xj in K such that d(xj, xi) ≥ 1/n
for each i < j. Eventually this will no longer be possible because otherwise we could
construct a sequence with no convergent subsequence. When it is no longer possible, set
n = n + 1. This gives a countable collection of open neighborhoods N1/n(xi) that cover
K for each n and get arbitrarily small as n increases. Call these neighborhoods ηj for
j = 1, 2, ... Let J be set of all ηj such that ηj ⊆ Gα for some α. J is a subset of a countable
set, so J is countable. Note that ∪j∈Jηj ⊃ K because if x ∈ K, then x ∈ Gα for some α, and
then ∃ϵ such that Nϵ(x) ∈ Gα and ∃j s.t. ηj ⊂ Nϵ(x). Finally, for each j ∈ J choose Gαj

such that ηj ⊆ Gαj . Such αj exist by construction. Also ∪j∈JGαj ⊃ ∪j∈Jηj ⊃ K. So Gαj is a
countable subcover.

If Gαj has no finite subcover, then for each n,

Fn = (∪n
i=1Gαi)

c ∩ K

is not empty (if it were empty, then ∪n
i=1Gαi would be a finite subcover). Choose xn ∈ Fn.

Then {xn} is a sequence in K, and it must have a convergent subsequence with a limit, x0,
in K. However, each Fi+1 ⊂ Fi and Fi are all closed. Therefore, the sequence {xj}∞

j=i is also
in Fi and so is its limit. Then x0 ∈ ∩∞

i=1Fi. However,

∩∞
i=1Fi = (∪∞

i=1Gαi)
c ∩ K,

but Gαi is a countable cover of K, which implies

∩∞
i=1Fi = (∪∞

i=1Gαi)
c ∩ K = ∅

and we have a contradiction. Therefore, Gαj must have a finite subcover, and K is compact.
□

Comment 4.2. There are non-metric spaces where sequential compactness and compact-
ness are not equivalent. One can define open sets on a space without a metric by simply
specifying which sets are open and making it such that theorem 2.1 holds. Such a space is
called a topological space. You can then define closed sets, compact sets, and sequential
compactness in terms of open sets. On the problem set, you will see that you can define
continuity of functions in terms of open and closed sets. Topology is the branch of mathe-
matics that studies topological spaces. One interesting observation is that on Rn, if a set is
open with respect to some p-norm, then it is also open with respect to any other p-norm.
Thus, we say that Rn with the p-norms are topologically equivalent or homeomorphic.
Properties like continuity and compactness are the same regardless of what p-norm we
use.

As far as I know, topological spaces that are not metric spaces do not come up very
often in economics, so we will not be studying them.

To review, in Rn a set is compact if any of the following three things hold:
(1) For every open cover there exists a finite subcover,
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(2) Every sequence in the set has a convergent subsequence, or
(3) The set is closed and bounded.

In infinite dimensional spaces, closed and bounded sets need not be compact, but com-
pact sets are always closed and bounded. In any metric space, a set is compact iff it is
sequentially compact.
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