Paul Schrimpf

Derivatives

Partial derivatives Examples Total derivatives Mean value theorem Functions from $\mathbb{R}^n \rightarrow \mathbb{R}^m$ Chain rule Higher order derivatives Taylor series

Functions on vector spaces

Differential Calculus

Paul Schrimpf

UBC Economics 526

October 11, 2013

Paul Schrimpf

derivatives Taylor series

Derivatives

Partial derivatives Examples Total derivatives Mean value theorem Functions from $\mathbb{R}^n \to \mathbb{R}^m$ Chain rule Higher order derivatives Taylor series

2 Functions on vector spaces

Paul Schrimpf

Derivatives

Partial derivatives Examples Total derivatives Mean value theorem Functions from $\mathbb{R}^n \to \mathbb{R}^m$ Chain rule Higher order derivatives Taylor series

Functions on vector spaces

Section 1

Derivatives

Paul Schrimpf

Partial derivatives

Derivatives

Partial derivatives

Total derivativ Mean value theorem Functions from $\mathbb{R}^n \rightarrow \mathbb{R}^m$ Chain rule Higher order derivatives Taylor series

Functions on vector spaces

Definition Let $f : \mathbb{R}^n \rightarrow R$. The *i*th **partial derivative** of f is

$$\frac{\partial f}{\partial x_i}(x_0) = \lim_{h \to 0} \frac{f(x_{01}, \dots, x_{0i}, \dots x_{0n}) - f(x_0)}{h}.$$

Paul Schrimpf

Derivatives

Partial derivative

Examples

Total derivative: Mean value theorem Functions from $\mathbb{R}^n \to \mathbb{R}^m$ Chain rule Higher order derivatives Taylor series

Functions on vector spaces

Example

Let $f : \mathbb{R}^n \to \mathbb{R}$ be a production function. Then we call $\frac{\partial f}{\partial x_i}$ the **marginal product** of x_i . If f is Cobb-Douglas, $f(k, l) = Ak^{\alpha}l^{\beta}$, where k is capital and l is labor, then the marginal products of capital and labor are

$$\frac{\partial f}{\partial k}(k,l) = A\alpha k^{\alpha-1} l^{\beta}$$
$$\frac{\partial f}{\partial l}(k,l) = A\beta k^{\alpha} l^{\beta-1}.$$

Paul Schrimpf

Derivatives

Partial derivatives

Examples

Total derivatives Mean value theorem Functions from $\mathbb{R}^n \to \mathbb{R}^m$ Chain rule Higher order derivatives Taylor series

Functions on vector spaces

Example

If $u : \mathbb{R}^n \to \mathbb{R}$ is a utility function, then we call $\frac{\partial u}{\partial x_i}$ the marginal utility of x_i . If u is CRRA,

$$u(c_1,...,c_T) = \sum_{t=1}^T \beta^t \frac{c_t^{1-\gamma}}{1-\gamma}$$

then the marginal utility of consumption in period t is

$$\frac{\partial u}{\partial c_t} = \beta^t c_t^{-\gamma}.$$

Paul Schrimpf

Derivatives

Partial derivative

Examples

Total derivatives Mean value theorem Functions from $\mathbb{R}^n \to \mathbb{R}^m$ Chain rule Higher order derivatives Taylor series

Functions on vector spaces

Example (Demand elasticities)

- q₁: ℝ³→ℝ is a demand function with three arguments: own price p₁, the price of another good, p₂, and consumer income, y
- Own price elasticity

$$\epsilon_{q_1,p_1} = \frac{\partial q_1}{\partial p_1} \frac{p_1}{q_1(p_1,p_2,y)}.$$

• Cross price elasticity

$$\epsilon_{q_1,p_2} = \frac{\partial q_1}{\partial p_2} \frac{p_2}{q_1(p_1,p_2,y)}.$$

• Income elasticity of demand

$$\epsilon_{q_1,y} = \frac{\partial q_1}{\partial y} \frac{y}{q_1(p_1,p_2,y)}.$$

Paul Schrimpf

Derivatives

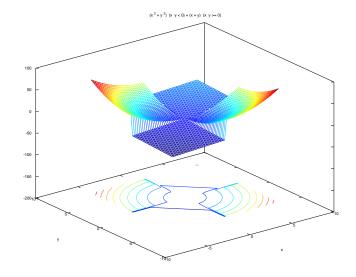
Partial derivatives Examples **Total derivatives** Mean value theorem

Functions from $\mathbb{R}^n \rightarrow \mathbb{R}^m$

Chain rule

Higher order derivatives Taylor series

Functions on vector spaces



$$f(x,y) = \begin{cases} x^2 + y^2 & \text{if } xy < 0\\ x + y \text{ if } xy \ge 0 \end{cases}$$

Paul Schrimpf

Total derivative

Derivatives

Partial derivatives Examples **Total derivatives** Mean value theorem Functions from $\mathbb{R}^n \rightarrow \mathbb{R}^m$ Chain rule Higher order derivatives Taylor series

Functions on vector spaces

Definition

Let $f : \mathbb{R}^n \to \mathbb{R}$. The **derivative** (or total derivative or differential) of f at x_0 is a linear mapping, $Df_{x_0} : \mathbb{R}^n \to \mathbb{R}^1$ such that

$$\lim_{h\to 0}\frac{|f(x_0+h)-f(x_0)-Df_{x_0}h|}{\|h\|}=0.$$

Paul Schrimpf

Derivatives

Partial derivatives Examples Total derivatives Mean value theorem Functions from $\mathbb{R}^n \to \mathbb{R}^m$

Chain rule Higher order derivatives Taylor series

Functions on vector spaces

Theorem

Let $f : \mathbb{R}^n \to \mathbb{R}$ be differentiable at x_0 , then $\frac{\partial f}{\partial x_i}(x_0)$ exists for each i and

$$Df_{x_0}h = \left(\frac{\partial f}{\partial x_1}(x_0) \quad \cdots \quad \frac{\partial f}{\partial x_n}(x_0) \right) h.$$

Paul Schrimpf

Derivatives

Partial derivatives Examples Total derivatives Mean value theorem Functions from $\mathbb{R}^n \rightarrow \mathbb{R}^m$ Chain rule Higher order derivatives Taylor series

Functions on vector spaces

The definition of derivative says that

$$\lim_{t \to 0} \frac{|f(x_0 + e_i t) - f(x_0) - Df_{x_0}(e_i t)|}{\|e_i t\|} = 0$$
$$\lim_{t \to 0} \frac{f(x_0 + e_i t) - f(x_0) - tDf_{x_0}e_i}{|t|} = 0$$

This implies that

Proof.

$$f(x_0 + e_i t) - f(x_0) = tDf_{x_0}e_i + r_i(x_0, t)$$

with
$$\lim_{t\to 0} \frac{|r_i(x_0,t)|}{|t|} = 0$$
. Dividing by t ,
 $\frac{f(x_0 + e_i t) - f(x_0)}{t} = Df_{x_0}e_i + \frac{r_i(x_0,t)}{t}$

and taking the limit

$$\lim_{t \to 0} \frac{f(x_0 + e_i t) - f(x_0)}{t} = Df_{x_0} e_i$$

Paul Schrimpf

Derivatives

Partial derivatives Examples **Total derivatives** Mean value theorem Functions from $\mathbb{R}^n \to \mathbb{R}^m$ Chain rule Higher order derivatives Taylor series

Functions on vector spaces

Theorem

Let $f : \mathbb{R}^n \to \mathbb{R}$ and suppose its partial derivatives exist and are continuous in $N_{\delta}(x_0)$ for some $\delta > 0$. Then f is differentiable at x_0 with

$$Df_{x_0} = \left(\frac{\partial f}{\partial x_1}(x_0) \quad \cdots \quad \frac{\partial f}{\partial x_n}(x_0) \right).$$

Corollary

 $f : \mathbb{R}^n \to \mathbb{R}$ has a continuous derivative on an open set $U \subseteq \mathbb{R}^n$ if and only if its partial derivatives are continuous on U

Paul Schrimpf

Mean value theorem

Derivatives

Partial derivatives Examples Total derivatives

Mean value theorem

Functions from $\mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ Chain rule Higher order derivatives Taylor series

Functions on vector spaces

Theorem (mean value)

Let $f : \mathbb{R}^n \to \mathbb{R}^1$ be in $C^1(U)$ for some open U. Let $x, y \in U$ be such that the line connecting x and y, $\ell(x, y) = \{z \in \mathbb{R}^n : z = \lambda x + (1 - \lambda)y, \lambda \in [0, 1]\}$, is also in U. Then there is some $\bar{x} \in \ell(x, y)$ such that

$$f(x)-f(y)=Df_{\bar{x}}(x-y).$$

Paul Schrimpf

Derivatives

Partial derivatives Examples Total derivatives

Mean value theorem

Functions from $\mathbb{R}^n \rightarrow \mathbb{R}^m$ Chain rule Higher order derivatives Taylor series

Functions on vector spaces

Results needed to prove mean value theorem I

Theorem

Let $f : \mathbb{R}^n \to \mathbb{R}$ be continuous and $K \subset \mathbb{R}^n$ be compact. Then $\exists x^* \in K$ such that $f(x^*) \ge f(x) \forall x \in K$.

Definition

Let $f : \mathbb{R}^n \to \mathbb{R}$. we say that f has a local maximum at x if $\exists \delta > 0$ such that $f(y) \leq f(x)$ for all $y \in N_{\delta}(x)$.

Theorem

Let $f : \mathbb{R}^n \to \mathbb{R}$ and suppose f has a local maximum at x and is differentiable at x. Then $Df_x = 0$.

Paul Schrimpf

Derivatives

Partial derivatives Examples Total derivatives

Mean value theorem

Functions from $\mathbb{R}^n \to \mathbb{R}^m$ Chain rule Higher order derivatives Taylor series

Functions on vector spaces

Proof of mean value theorem

Proof. Let $g(z) = f(y) - f(z) + \frac{f(x) - f(y)}{x - y}(z - y)$. Note that g(x) = g(y) = 0. The set ell(x, y) is closed and bounded, so it is compact. Hence, g(z) must attain its maximum on $\ell(x, y)$, say at \bar{x} , then the previous theorem shows that $Dg_{\bar{x}} = 0$. Simple calculation shows that

$$Dg_{\bar{x}} = -Df_{\bar{x}} + \frac{f(x) - f(y)}{x - y} = 0$$

SO

$$Df_{\overline{x}}(x-y) = f(x) - f(y).$$

1

Paul Schrimpf

Derivatives

Partial derivatives Examples Total derivatives Mean value theorem Functions from

Rⁿ→R^m Chain rule

derivatives Taylor series

Functions on vector spaces

Definition

Let $f : \mathbb{R}^n \to \mathbb{R}^m$. The **derivative** (or total derivative or differential) of f at x_0 is a linear mapping, $Df_{x_0} : \mathbb{R}^n \to \mathbb{R}^m$ such that

$$\lim_{h\to 0}\frac{\|f(x_0+h)-f(x_0)-Df_{x_0}h\|}{\|h\|}=0.$$

- Theorems 6 and 7 sill hold
- The total derivative of *f* can be represented by the *m* by *n* matrix of partial derivatwives (the **Jacobian**),

$$Df_{x_0} = \begin{pmatrix} \frac{\partial f_1}{\partial x_1}(x_0) & \cdots & \frac{\partial f_1}{\partial x_n}(x_0) \\ \vdots & & \vdots \\ \frac{\partial f_m}{\partial x_1}(x_0) & \cdots & \frac{\partial f_m}{\partial x_n}(x_0) \end{pmatrix}$$

٠

Functions from $\mathbb{R}^n \rightarrow \mathbb{R}^m$

Paul Schrimpf

Derivatives

Partial derivatives Examples Total derivatives Mean value theorem

Functions from $\mathbb{R}^n \rightarrow \mathbb{R}^m$

Chain rule Higher order derivatives Taylor series

Functions on vector spaces

Corollary (mean value for $\mathbb{R}^n \rightarrow \mathbb{R}^m$)

Let $f : \mathbb{R}^n \to \mathbb{R}^m$ be in $C^1(U)$ for some open U. Let $x, y \in U$ be such that the line connecting x and y, $\ell(x, y) = \{z \in \mathbb{R}^n : z = \lambda x + (1 - \lambda)y, \lambda \in [0, 1]\}$, is also in U. Then there are $\bar{x}_j \in \ell(x, y)$ such that

$$f_j(x) - f_j(y) = Df_{j_{\bar{X}_j}}(x - y)$$

and

$$f(x) - f(y) = \begin{pmatrix} Df_{1\bar{x}_1} \\ \vdots \\ Df_{m\bar{x}_m} \end{pmatrix} (x - y).$$

Chain rule

Derivatives

Differential Calculus

Paul Schrimpf

 $\begin{array}{l} \mbox{Partial} \\ \mbox{derivatives} \\ \mbox{Examples} \\ \mbox{Total derivatives} \\ \mbox{Mean value} \\ \mbox{theorem} \\ \mbox{Functions from} \\ \mbox{$\mathbb{R}^n \rightarrow \mathbb{R}^m$} \end{array}$

Chain rule Higher order derivatives Taylor series

Functions on vector spaces

•
$$f(g(x)) = f'(g(x))g'(x)$$
.

Theorem

Let $f : \mathbb{R}^n \to \mathbb{R}^m$ and $g : \mathbb{R}^k \to \mathbb{R}^n$. Let g be continuously differentiable on some open set U and f be continuously differentiable on g(U). Then $h : \mathbb{R}^k \to \mathbb{R}^m$, h(x) = f(g(x)) is continuously differentiable on U with

$$Dh_x = Df_{g(x)}Dg_x$$

Paul Schrimpf

Derivatives

Partial derivatives Examples Total derivatives Mean value theorem Functions from $\mathbb{R}^n \to \mathbb{R}^m$

Chain rule Higher order derivatives Taylor series

Functions on vector spaces Let $x \in U$. Consider

Proof.

$$\frac{\|f(g(x+d))-f(g(x))\|}{\|d\|}$$

Since g is differentiable by the mean value theorem, $g(x + d) = g(x) + Dg_{\bar{x}(d)}d$, so

$$egin{aligned} \|f(g(x+d))-f(g(x))\| &= \left\|f(g(x)+Dg_{ar{x}(d)}d)-f(g(x))
ight\| \ &\leq \|f(g(x)+Dg_{x}d)-f(g(x))\|+\epsilon \end{aligned}$$

where the inequality follows from the the continuity of Dg_x and f, and holds for any $\epsilon > 0$. f is differentiable, so

$$\lim_{Dg_xd\to 0}\frac{\left\|f(g(x)+Dg_xd)-f(g(x))-Df_{g(x)}Dg_xd\right\|}{\left\|Dg_xd\right\|}=0$$

Using the Cauchy-Schwarz inequality, $\|Dg_{x}d\| \leq \|Dg_{x}\| \|d\|$, so

$$\lim_{d \to 0} \frac{\|f(g(x) + Dg_x d) - f(g(x)) - Df_{g(x)} Dg_x d\|}{\|d\|} = 0$$

Paul Schrimpf

Derivatives

Partial derivatives Examples Total derivatives Mean value theorem Functions from $\mathbb{R}^n \to \mathbb{R}^m$ (bain rule

Higher order derivatives Taylor series

Functions on vector spaces

Higher order derivatives

- Take higher order derivatives of multivariate functions just like of univariate functions.
- If $f : \mathbb{R}^n \to \mathbb{R}^m$, then is has nm partial first derivatives. Each of these has n partial derivatives, so f has n^2m partial second derivatives, written $\frac{\partial^2 f_k}{\partial x_i \partial x_i}$.

Paul Schrimpf

Derivatives

Partial derivatives Examples Total derivatives Mean value theorem Functions from $\mathbb{R}^n \to \mathbb{R}^m$ Chain rule

Higher order derivatives Taylor series

Theorem

Let $f : \mathbb{R}^n \to \mathbb{R}^m$ be twice continuously differentiable on some open set U. Then

$$\frac{\partial^2 f_k}{\partial x_i \partial x_j}(x) = \frac{\partial^2 f_k}{\partial x_j \partial x_i}(x)$$

for all i, j, k and $x \in U$.

Paul Schrimpf

Derivatives

Partial derivatives Examples Total derivatives Mean value theorem Functions from $\mathbb{R}^n \to \mathbb{R}^m$ Chain rule

Higher order derivatives Taylor series

Functions on vector spaces

Corollary

Let $f : \mathbb{R}^n \to \mathbb{R}^m$ be k times continuously differentiable on some open set U. Then

$$\frac{\partial^{k} f}{\partial x_{1}^{j_{1}} \times \cdots \times \partial x_{n}^{j_{n}}} = \frac{\partial^{k} f}{\partial x_{p(1)}^{j_{p(1)}} \times \cdots \times \partial x_{p(n)}^{j_{p(n)}}}$$

where $\sum_{i=1}^{n} j_{i} = k$ and $p : \{1, ..., n\} \rightarrow \{1, ..., n\}$ is any permutation (i.e. reordering).

Paul Schrimpf

Taylor series

Derivatives

Partial derivatives Examples Total derivatives Mean value theorem Functions from $\mathbb{R}^n \to \mathbb{R}^m$ Chain rule Higher order derivatives **Taylor series**

Functions on vector spaces

Theorem (Univarite Taylor series)

Let $f : \mathbb{R} \to \mathbb{R}$ be k + 1 times continuously differentiable on some open set U, and let a, $a + h \in U$. Then

$$f(a+h) = f(a) + f'(a)h + \frac{f^2(a)}{2}h^2 + \dots + \frac{f^k(a)}{k!}h^k + \frac{f^{k+1}(\bar{a})}{(k+1)!}h^{k+1}$$

where \bar{a} is between a and h.

Paul Schrimpf

Derivatives

Partial derivatives Examples Total derivatives Mean value theorem Functions from $\mathbb{R}^n \rightarrow \mathbb{R}^m$ Chain rule Higher order derivatives **Taylor series**

Functions on vector spaces

Theorem (Multivariate Taylor series)

Let $f : \mathbb{R}^n \to \mathbb{R}^m$ be k times continuously differentiable on some open set U and $a, a + h \in U$. Then there exists a k times continuously differentiable function $r_k(a, h)$ such that

$$f(a+h) = f(a) + \sum_{\sum_{i=1}^{n} j_i = 1}^{k} \frac{1}{k!} \frac{\partial^{\sum j_i} f}{\partial x_1^{j_1} \cdots \partial x_n^{j_n}}(a) h_1^{j_1} h_2^{j_2} \cdots h_n^{j_n} + r_k(a, h)$$

and $\lim_{h\to 0} ||r_k(a, h)|| ||h||^k = 0$

Paul Schrimpf

Derivatives

Partial derivatives Examples Total derivatives Mean value theorem Functions from $\mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ Chain rule Higher order derivatives **Taylor series**

Functions on vector spaces

Proof.

Follows from the mean value theorem. For k = 1, the mean value theorem says that

$$f(a+h) - f(a) = Df_{\bar{a}}h$$

$$f(a+h) = f(a) + Df_{\bar{a}}h$$

$$= f(a) + Df_{a}h + \underbrace{(Df_{\bar{a}} - Df_{a})h}_{r_{1}(a,h)}$$

 Df_a is continuous as a function of a, and as $h \rightarrow 0$, $\bar{a} \rightarrow a$, so $\lim_{h \rightarrow 0} r_1(a, h) = 0$, and the theorem is true for k = 1. For general k, suppose we have proven the theorem up to k - 1. Then repeating the same argument with the k - 1st derivative of f in place of f shows that theorem is true for k.

Paul Schrimpf

Derivatives

Partial derivatives Examples Total derivatives Mean value theorem Functions from $\mathbb{R}^n \rightarrow \mathbb{R}^m$ Chain rule Higher order derivatives Taylor series

Functions on vector spaces

Section 2

Functions on vector spaces

Paul Schrimpf

Derivatives

Partial derivatives Examples Total derivatives Mean value theorem Functions from $\mathbb{R}^n \to \mathbb{R}^m$ Chain rule Higher order derivatives Taylor series

Functions on vector spaces

Definition

Let $f: V \rightarrow W$. The Fréchet **derivative** of f at x_0 is a continuous¹ linear mapping, $Df_{x_0}: V \rightarrow W$ such that

$$\lim_{h\to 0} \frac{\|f(x_0+h)-f(x_0)-Df_{x_0}h\|}{\|h\|} = 0.$$

Just another name for total derivative

¹If V and W are finite dimensional, then all linear functions are continuous. In infinite dimensions, there can be discontinuous linear functions.

Paul Schrimpf

Derivatives

Partial derivatives Examples Total derivatives Mean value theorem Functions from $\mathbb{R}^n \to \mathbb{R}^m$ Chain rule Higher order derivatives Taylor series

Functions on vector spaces

Example

Let $V = \mathcal{L}^\infty(0,1)$ and $W = \mathbb{R}$. Suppose f is given by

$$f(x) = \int_0^1 g(x(\tau), (\tau)) d\tau$$

for some continuously differentiable function $g : \mathbb{R}^2 \to \mathbb{R}$. Then Df_x is a linear transformation from V to \mathbb{R} . How can we calculate Df_x ?

Paul Schrimpf

Derivatives

Partial derivatives Examples Total derivatives Mean value theorem Functions from $\mathbb{R}^n \to \mathbb{R}^m$ Chain rule Higher order derivatives Taylor series

Functions on vector spaces

Definition

Let $f: V \rightarrow W$, $v \in V$ and $x \in U \subseteq V$ for some open U. The **directional derivative** (or Gâteaux derivative when V is infinite dimensional) in direction v at x is

$$df(x; v) = \lim_{\alpha \to 0} \frac{f(x + \alpha v) - f(x)}{\alpha}.$$

where $\alpha \in \mathbb{R}$ is a scalar.

Paul Schrimpf

Derivatives

Partial derivatives Examples Total derivatives Mean value theorem Functions from $\mathbb{R}^n \rightarrow \mathbb{R}^m$ Chain rule Higher order derivatives Taylor series

Functions on vector spaces

Relationship between directional and total derivative

Lemma

If $f: V \rightarrow W$ is Fréchet differentiable at x, then the Gâteaux derivative, df(x; v), exists for all $v \in V$, and

$$df(x;v)=Df_xv.$$

Lemma

If $f: V \rightarrow W$ has Gâteaux derivatives that are linear in v and "continuous" in x in the sense that $\forall \epsilon > 0 \ \exists \delta > 0$ such that if $||x_1 - x|| < \delta$, then

$$\sup_{v \in V} \frac{\|df(x_1; v) - df(x; v)\|}{\|v\|} < \epsilon$$

then f is Fréchet differentiable with $Df_{x_0}v = df(x; v)$.

Paul Schrimpf

Derivatives

Partial derivatives Examples Total derivatives Mean value theorem Functions from $\mathbb{R}^n \to \mathbb{R}^m$ Chain rule Higher order derivatives Taylor series

Functions on vector spaces

Calculating Fréchet derivative

Example

Let $V = \mathcal{L}^{\infty}(0,1)$ and $W = \mathbb{R}$. Suppose f is given by

$$f(x) = \int_0^1 g(x(\tau), (\tau)) d\tau$$

• Directional (Gâteaux) derivatives:

$$df(x; v) = \lim_{\alpha \to 0} \frac{\int_0^1 g(x(\tau) + \alpha v(\tau), \tau) d\tau}{\alpha}$$
$$= \int_0^1 \frac{\partial g}{\partial x}(x(\tau), \tau) v(\tau) d\tau$$

- Check that continuous and linear in v
- Or guess and verify that

$$Df_x(v) = \int_0^1 \frac{\partial g}{\partial x}(x(\tau),\tau)v(\tau)d\tau$$

satisfies

$$\lim_{h \to 0} \frac{\|f(x+h) - f(x) - Df_x(h)\|}{\|h\|} = 0$$