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Definition

Partial derivatives

Let f : R"—R. The ith partial derivative of f is

of
aX,'

=i
o) = Jim

f(X()l, vy X0i's ...X()n) — f(Xo)

h
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Example
Let f : R"—R be a production function. Then we call g—)’; the
marginal product of x;. If f is Cobb-Douglas,
f(k,1) = Ak®I8, where k is capital and / is labor, then the
marginal products of capital and labor are

O kN —Aake—1)8
ak(k, ) =Aak® "1
of

e _ aB-1
57k ) =ABK 1071,
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Example

If u:R" R is a utility function, then we call % the marginal
utility of x;. If uis CRRA,

u(er,...,cr Zﬂt Ct

then the marginal utility of consumption in period t is

ou

_ pt =7
— = C .
oe, Bre
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e g1 : R3=R is a demand function with three arguments:
Partial own price p;, the price of another good, p», and consumer

derivatives

Examples income, y
Total derivatives !
Mean value

theorem e Own price elasticity

Functions from

Chain rule

Higher order € — 8q1 p1

derivatives qi,p1 — A e )
Taylor series 8P1 a1 (pla P2, y)

e Cross price elasticity

dq p2

€ B —
WP 0py q1(p1, P2, y)

e Income elasticity of demand

oq y

€y = 7 —F——~-
™0y qi(p1s P2 )
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X2+ y? if xy <0
x+yifxy >0

f(x,y) =
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Fyttwq‘ns from Defl n ition

Chain rule . . . .

Higher order Let f : R"™—R. The derivative (or total derivative or

d ti

Tyt s differential) of f at xp is a linear mapping, Dfy, : R"—R! such
that

o 10+ h) = F(x0) = Dfghl _

0.
h=0 1Al
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= Let f : R"—=R be differentiable at xg, then %(Xo) exists for
hain rule 1

Higher order each i and
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Df h — (%(Xo) ...gxfn(xo)> h.
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Proof.
The definition of derivative says that

im [fO0 + eit) — F(x0) — Df(eit)|
i Tl
im f(xo + et) — f(x0) — tDf €
t—0 |t|

=0

=0

This implies that

f(XO + e,-t) — f(Xo) = thXOe,- + r,'(Xo, l')

with limg_yo il — g Dividing by t,

Il
fxo + ei:) —flxo) _ D& + ri(xo, t)
and taking the limit
m f(xo + eit) — f(xo) ~ Dfe;

t—0 t
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Theorem
Let f : R"—=R and suppose its partial derivatives exist and are
continuous in Ns(xo) for some 6 > 0. Then f is differentiable
at xp with

Dfy = ($500) -+ ().

Corollary

f : R"—=R has a continuous derivative on an open set U C R”
if and only if its partial derivatives are continuous on U
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Mean value theorem

Theorem (mean value)

Let f : R"—=R! be in C1(U) for some open U. Let x,y € U be
such that the line connecting x and y,

Ux,y)={z€eR":z=X x+ (1= Ny, A €]0,1]}, is also in U.
Then there is some x € {(x,y) such that

f(x) — f(y) = Dfx(x — y).
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Results needed to prove mean
value theorem |

Theorem
Let f : R"—R be continuous and K C R" be compact. Then
Ix* € K such that f(x*) > f(x)Vx € K.

Definition
Let f : R"—R. we say that f has a local maximum at x if
36 > 0 such that f(y) < f(x) for all y € Nj(x).

Theorem
Let f : R"—=R and suppose f has a local maximum at x and is
differentiable at x. Then Df, = 0.
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Partial
derivatives

S .. Proof.
Mean value Let g(z) = f( ) f(z) %}f;(}/)( ) NOte that

theorem

e g(x) = g(y) = 0. The set ell(x,y) is closed and bounded, so it

Chain rule . . . .
Higher order is compact. Hence, g(z) must attain its maximum on {(x, y),
Taylor series say at X, then the previous theorem shows that Dgz = 0.

Simple calculation shows that

) - fly)
xX—y

Dgz = —Dfsx + =0

SO
Dfz(x —y) = f(x) — f(y).
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Definition
dervatives Let f : R"—R™. The derivative (or total derivative or
iu’)‘ differential) of f at xp is a linear mapping, Dfy, : R"—=R"™ such
Fncions fom LML
R"—R"
i [0 1) = F0) = DR _
Taylor series h—0 || h ||

e Theorems 6 and 7 sill hold
e The total derivative of f can be represented by the m by n
matrix of partial derivatwives (the Jacobian),

of Of
ae(x0) - gt(x0)
Dfy=| :

of; of,
a2(x0) - F2(x)



Differential
Calculus

Paul Schrimpf

Partial
derivatives

Examples
Total derivatives

Mean value
theorem
Functions from
R"—R"

Chain rule

Higher order
derivatives

Taylor series

Corollary (mean value for R"—R™)

Let f : R"—=R™ be in C1(U) for some open U. Let x,y € U be
such that the line connecting x and y,

Ux,y)={zeR":z=X x+ (1= Ny, A€]0,1]}, is also in U.
Then there are X; € {(x,y) such that

fi(x) = fi(y) = Dfjg (x = y)
and
Dt
f(x)—fly) = C | (x=y)
Dfrs,,
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Chain rule

Theorem

Let f : R"—R™ and g : RKX—>R". Let g be continuously
differentiable on some open set U and f be continuously
differentiable on g(U). Then h: R*—R™, h(x) = f(g(x)) is
continuously differentiable on U with

DhX = ng(x) DgX
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Proof.
Let x € U. Consider

[f(g(x +d)) — Fle())ll
d]l '

Since g is differentiable by the mean value theorem,
g(x + d) = g(x) + Dgx(a)d., so
If(g(x + d)) = f(g(x))| = | f(g(x) + Dex(a)d) — f(g(x))]|
<|[f(g(x) + Dgxd) — f(g (X))II +e

where the inequality follows from the the continuity of Dg, and
f, and holds for any € > 0. f is differentiable, so

. Hf(g(x) + Dgxd) - f(g(X)) - Df:g(x)Dgde
lim
Dgyd—0 ||Dgde

=0

Using the Cauchy-Schwarz inequality, ||Dgxd|| < ||Dgx|| ||d]|. so

i || f(g(x) + Dgxd) — f(g(x)) — Dfy(x)Dgsd||
d—0 lld]l

=0.
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Higher order derivatives

e Take higher order derivatives of multivariate functions just
like of univariate functions.

e If f: R"—R™, then is has nm partial first derivatives.

Each of these has n partial derivatives, so f has n?m

. . . 2
partial second derivatives, written 8,&,.
Ox;0X;
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Theorem
Let f: R"—=R™ be twice continuously differentiable on some
open set U. Then

0 fi ) — 0% f N
0x;0x; N Ox;Ox;

foralli,j, k and x € U.
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Mz vl Let f : R"—R™ be k times continuously differentiable on some

theorem
Functions from
o open set U. Then
Chain rule
Higher order

derivati
) o f o“f

Oxi' X x a9 X x axi)

where 37 1 ji =k and p: {1,..,n}—{1,...,n} is any
permutation (i.e. reordering).
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Taylor series

Theorem (Univarite Taylor series)

Let f : R—R be k + 1 times continuously differentiable on
some open set U, and let a, a+ h € U. Then

fk+1(§) hk+1
CE]

flath) = f(a)+f'(a)h+f2§a)h2+...+ fkk(!a) et

where 3 is between a and h.
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Theorem (Multivariate Taylor series)

Let f : R"—=R™ be k times continuously differentiable on some
open set U and a,a+ h € U. Then there exists a k times
continuously differentiable function ry(a, h) such that

k .
1 9xdif o .
f(a+h) = f(a)+ D Em(a)hfhjf -+ hp+ri(a, h)
Sigg=1 T n

and limp_s || r(a, h)| [|A][* = 0
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Proof.
Follows from the mean value theorem. For k = 1, the mean
value theorem says that

f(a+ h) — f(a) =Dfsh
f(a+ h) =f(a) + Dfsh
=f(a) + Df,h + (Df; — Dfy)h
~—_——
ri(a,h)
Df, is continuous as a function of a, and as h—0, 3—a, so
limp—o0 ri(a, h) = 0, and the theorem is true for k = 1. For
general k, suppose we have proven the theorem up to kK — 1.

Then repeating the same argument with the k — 1st derivative
of f in place of f shows that theorem is true for k. O
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Definition
Let f : V—W. The Fréchet derivative of f at xg is a
continuous?! linear mapping, Df,, : V=W such that

- 1f(x0 + h) — f(x0) — Do hll

lim

h—0 || Al 0

e Just another name for total derivative

Y V and W are finite dimensional, then all linear functions are
continuous. In infinite dimensions, there can be discontinuous linear
functions.
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Example
Let V = £>(0,1) and W = R. Suppose f is given by

1
Fx) = /0 g(x(7), (7))dr

for some continuously differentiable function g : R2—R. Then
Df, is a linear transformation from V to R. How can we
calculate Df,?
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Definition

Let f: V=W, veVand x e U C V for some open U. The
directional derivative (or Gateaux derivative when V' is
infinite dimensional) in direction v at x is

df (x;v) = lim fix+av) = f(X).

a—0 «

where o € R is a scalar.
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Relationship between directional
and total derivative
Lemma

If f : V—W is Fréchet differentiable at x, then the Gateaux
derivative, df (x; v), exists for all v € V, and

df (x; v) = Dfv.

Lemma

If f : V—W has Giteaux derivatives that are linear in v and
“continuous” in x in the sense that Ve > 0 36 > 0 such that if
|x1 — x|| <6, then

sup | df (x1; v) — df (x; v)||

vev v

then f is Fréchet differentiable with Df, v = df (x; v).
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Calculating Fréchet derivative

Example
Let V = £>(0,1) and W = R. Suppose f is given by

1
)= / g(x(7), (7)dr

o Directional (Gateaux) derivatives:

dF(x: v) :;TO jo +aa\/( 7),T)dT
' og
~ [ St vt

o Check that continuous and linear in v
e Or guess and verify that

D) = [ Z(x(r) ()

satisfies

i IFC B) = F(x) = DA(A)]|

PRt Al =0
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