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Partial derivatives

Definition
Let f : Rn→R. The ith partial derivative of f is

∂f

∂xi
(x0) = lim

h→0

f (x01, ..., x0i , ...x0n)− f (x0)

h
.
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Example

Let f : Rn→R be a production function. Then we call ∂f
∂xi

the
marginal product of xi . If f is Cobb-Douglas,
f (k, l) = Akαlβ, where k is capital and l is labor, then the
marginal products of capital and labor are

∂f

∂k
(k, l) =Aαkα−1lβ

∂f

∂l
(k, l) =Aβkαlβ−1.
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Example

If u : Rn→R is a utility function, then we call ∂u
∂xi

the marginal
utility of xi . If u is CRRA,

u(c1, ..., cT ) =
T∑
t=1

βt c
1−γ
t

1− γ

then the marginal utility of consumption in period t is

∂u

∂ct
= βtc−γ

t .
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Example (Demand elasticities)

• q1 : R3→R is a demand function with three arguments:
own price p1, the price of another good, p2, and consumer
income, y

• Own price elasticity

ϵq1,p1 =
∂q1
∂p1

p1
q1(p1, p2, y)

.

• Cross price elasticity

ϵq1,p2 =
∂q1
∂p2

p2
q1(p1, p2, y)

.

• Income elasticity of demand

ϵq1,y =
∂q1
∂y

y

q1(p1, p2, y)
.
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 (x 2 + y 2)  (x  y < 0) + (x + y)  (x  y >= 0)
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f (x , y) =

{
x2 + y2 if xy < 0

x + y if xy ≥ 0
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Total derivative

Definition
Let f : Rn→R. The derivative (or total derivative or
differential) of f at x0 is a linear mapping, Dfx0 : Rn→R1 such
that

lim
h→0

|f (x0 + h)− f (x0)− Dfx0h|
∥h∥

= 0.
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Theorem
Let f : Rn→R be differentiable at x0, then

∂f
∂xi

(x0) exists for
each i and

Dfx0h =
(

∂f
∂x1

(x0) · · · ∂f
∂xn

(x0)
)
h.
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..

Proof.
The definition of derivative says that

lim
t→0

|f (x0 + ei t)− f (x0)− Dfx0(ei t)|
∥ei t∥

= 0

lim
t→0

f (x0 + ei t)− f (x0)− tDfx0ei
|t|

= 0

This implies that

f (x0 + ei t)− f (x0) = tDfx0ei + ri (x0, t)

with limt→0
|ri (x0,t)|

|t| = 0. Dividing by t,

f (x0 + ei t)− f (x0)

t
= Dfx0ei +

ri (x0, t)

t

and taking the limit

lim
t→0

f (x0 + ei t)− f (x0)

t
= Dfx0ei
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Theorem
Let f : Rn→R and suppose its partial derivatives exist and are
continuous in Nδ(x0) for some δ > 0. Then f is differentiable
at x0 with

Dfx0 =
(

∂f
∂x1

(x0) · · · ∂f
∂xn

(x0)
)
.

Corollary

f : Rn→R has a continuous derivative on an open set U ⊆ Rn

if and only if its partial derivatives are continuous on U
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Mean value theorem

Theorem (mean value)

Let f : Rn→R1 be in C 1(U) for some open U. Let x , y ∈ U be
such that the line connecting x and y,
ℓ(x , y) = {z ∈ Rn : z = λx + (1− λ)y , λ ∈ [0, 1]}, is also in U.
Then there is some x̄ ∈ ℓ(x , y) such that

f (x)− f (y) = Dfx̄(x − y).
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Results needed to prove mean
value theorem I

Theorem
Let f : Rn→R be continuous and K ⊂ Rn be compact. Then
∃x∗ ∈ K such that f (x∗) ≥ f (x)∀x ∈ K.

Definition
Let f : Rn→R. we say that f has a local maximum at x if
∃δ > 0 such that f (y) ≤ f (x) for all y ∈ Nδ(x).

Theorem
Let f : Rn→R and suppose f has a local maximum at x and is
differentiable at x. Then Dfx = 0.
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Proof of mean value theorem

Proof.
Let g(z) = f (y)− f (z) + f (x)−f (y)

x−y (z − y). Note that
g(x) = g(y) = 0. The set ell(x , y) is closed and bounded, so it
is compact. Hence, g(z) must attain its maximum on ℓ(x , y),
say at x̄ , then the previous theorem shows that Dgx̄ = 0.
Simple calculation shows that

Dgx̄ = −Dfx̄ +
f (x)− f (y)

x − y
= 0

so
Dfx̄(x − y) = f (x)− f (y).
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Functions from Rn→Rm
..

Definition
Let f : Rn→Rm. The derivative (or total derivative or
differential) of f at x0 is a linear mapping, Dfx0 : Rn→Rm such
that

lim
h→0

∥f (x0 + h)− f (x0)− Dfx0h∥
∥h∥

= 0.

• Theorems 6 and 7 sill hold
• The total derivative of f can be represented by the m by n
matrix of partial derivatwives (the Jacobian),

Dfx0 =


∂f1
∂x1

(x0) · · · ∂f1
∂xn

(x0)
...

...
∂fm
∂x1

(x0) · · · ∂fm
∂xn

(x0)

 .
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Corollary (mean value for Rn→Rm)

Let f : Rn→Rm be in C 1(U) for some open U. Let x , y ∈ U be
such that the line connecting x and y,
ℓ(x , y) = {z ∈ Rn : z = λx + (1− λ)y , λ ∈ [0, 1]}, is also in U.
Then there are x̄j ∈ ℓ(x , y) such that

fj(x)− fj(y) = Dfj x̄j (x − y)

and

f (x)− f (y) =

Df1x̄1
...

Dfmx̄m

 (x − y).
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Chain rule

• f (g(x)) = f ′(g(x))g ′(x).

Theorem
Let f : Rn→Rm and g : Rk→Rn. Let g be continuously
differentiable on some open set U and f be continuously
differentiable on g(U). Then h : Rk→Rm, h(x) = f (g(x)) is
continuously differentiable on U with

Dhx = Dfg(x)Dgx
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Proof.
Let x ∈ U. Consider

∥f (g(x + d))− f (g(x))∥
∥d∥

.

Since g is differentiable by the mean value theorem,
g(x + d) = g(x) + Dgx̄(d)d , so

∥f (g(x + d))− f (g(x))∥ =
∥∥f (g(x) + Dgx̄(d)d)− f (g(x))

∥∥
≤∥f (g(x) + Dgxd)− f (g(x))∥+ ϵ

where the inequality follows from the the continuity of Dgx and
f , and holds for any ϵ > 0. f is differentiable, so

lim
Dgxd→0

∥∥f (g(x) + Dgxd)− f (g(x))− Dfg(x)Dgxd
∥∥

∥Dgxd∥
= 0

Using the Cauchy-Schwarz inequality, ∥Dgxd∥ ≤ ∥Dgx∥ ∥d∥, so

lim
d→0

∥∥f (g(x) + Dgxd)− f (g(x))− Dfg(x)Dgxd
∥∥

∥d∥
= 0.
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Higher order derivatives

• Take higher order derivatives of multivariate functions just
like of univariate functions.

• If f : Rn→Rm, then is has nm partial first derivatives.
Each of these has n partial derivatives, so f has n2m

partial second derivatives, written ∂2fk
∂xi∂xj

.
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Theorem
Let f : Rn→Rm be twice continuously differentiable on some
open set U. Then

∂2fk
∂xi∂xj

(x) =
∂2fk
∂xj∂xi

(x)

for all i , j , k and x ∈ U.
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Corollary

Let f : Rn→Rm be k times continuously differentiable on some
open set U. Then

∂k f

∂x j11 × · · · × ∂x jnn
=

∂k f

∂x
jp(1)
p(1) × · · · × ∂x

jp(n)
p(n)

where
∑n

i=1 ji = k and p : {1, .., n}→{1, ..., n} is any
permutation (i.e. reordering).
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Taylor series

Theorem (Univarite Taylor series)

Let f : R→R be k + 1 times continuously differentiable on
some open set U, and let a, a+ h ∈ U. Then

f (a+h) = f (a)+f ′(a)h+
f 2(a)

2
h2+...+

f k(a)

k!
hk+

f k+1(ā)

(k + 1)!
hk+1

where ā is between a and h.
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Theorem (Multivariate Taylor series)

Let f : Rn→Rm be k times continuously differentiable on some
open set U and a, a+ h ∈ U. Then there exists a k times
continuously differentiable function rk(a, h) such that

f (a+h) = f (a)+
k∑

∑n
i=1 ji=1

1

k!

∂
∑

ji f

∂x j11 · · · ∂x jnn
(a)hj11 h

j2
2 · · · hjnn +rk(a, h)

and limh→0 ∥rk(a, h)∥ ∥h∥k = 0



Differential
Calculus

Paul Schrimpf

Derivatives

Partial
derivatives

Examples

Total derivatives

Mean value
theorem

Functions from
Rn→Rm

Chain rule

Higher order
derivatives

Taylor series

Functions on
vector spaces

Proof.
Follows from the mean value theorem. For k = 1, the mean
value theorem says that

f (a+ h)− f (a) =Dfāh

f (a+ h) =f (a) + Dfāh

=f (a) + Dfah + (Dfā − Dfa)h︸ ︷︷ ︸
r1(a,h)

Dfa is continuous as a function of a, and as h→0, ā→a, so
limh→0 r1(a, h) = 0, and the theorem is true for k = 1. For
general k, suppose we have proven the theorem up to k − 1.
Then repeating the same argument with the k − 1st derivative
of f in place of f shows that theorem is true for k.
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Section 2

Functions on vector spaces
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Definition
Let f : V→W . The Fréchet derivative of f at x0 is a
continuous1 linear mapping, Dfx0 : V→W such that

lim
h→0

∥f (x0 + h)− f (x0)− Dfx0h∥
∥h∥

= 0.

• Just another name for total derivative

1If V and W are finite dimensional, then all linear functions are
continuous. In infinite dimensions, there can be discontinuous linear
functions.
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Example

Let V = L∞(0, 1) and W = R. Suppose f is given by

f (x) =

∫ 1

0
g(x(τ), (τ))dτ

for some continuously differentiable function g : R2→R. Then
Dfx is a linear transformation from V to R. How can we
calculate Dfx?



Differential
Calculus

Paul Schrimpf

Derivatives

Partial
derivatives

Examples

Total derivatives

Mean value
theorem

Functions from
Rn→Rm

Chain rule

Higher order
derivatives

Taylor series

Functions on
vector spaces

Definition
Let f : V→W , v ∈ V and x ∈ U ⊆ V for some open U. The
directional derivative (or Gâteaux derivative when V is
infinite dimensional) in direction v at x is

df (x ; v) = lim
α→0

f (x + αv)− f (x)

α
.

where α ∈ R is a scalar.
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Relationship between directional
and total derivative

Lemma
If f : V→W is Fréchet differentiable at x, then the Gâteaux
derivative, df (x ; v), exists for all v ∈ V , and

df (x ; v) = Dfxv .

Lemma
If f : V→W has Gâteaux derivatives that are linear in v and
“continuous” in x in the sense that ∀ϵ > 0 ∃δ > 0 such that if
∥x1 − x∥ < δ, then

sup
v∈V

∥df (x1; v)− df (x ; v)∥
∥v∥

< ϵ

then f is Fréchet differentiable with Dfx0v = df (x ; v).
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Calculating Fréchet derivative..

Example

Let V = L∞(0, 1) and W = R. Suppose f is given by

f (x) =

∫ 1

0
g(x(τ), (τ))dτ

• Directional (Gâteaux) derivatives:

df (x ; v) = lim
α→0

∫ 1
0 g(x(τ) + αv(τ), τ)dτ

α

=

∫ 1

0

∂g

∂x
(x(τ), τ)v(τ)dτ

• Check that continuous and linear in v
• Or guess and verify that

Dfx(v) =

∫ 1

0

∂g

∂x
(x(τ), τ)v(τ)dτ

satisfies

lim
h→0

∥f (x + h)− f (x)− Dfx(h)∥
∥h∥

= 0
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