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Section 1

Inverse functions
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Inverse functions

• f : Rn→Rm

• When can we solve f (x) = y for x?

• Use derivative and what we know about linear equations
to get a local answer
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Inverse functions

• If f (a) = b, expand f around a.

f (x) = f (a) = Dfa(x − a) + r1(a, x − a) = y

• If r1 is small, we almost have a system of linear equations

Dfax = y − f (a) + Dfaa

• Know:
• Solution exists if

rankDfa = rank
(
Dfa y − f (a) + Dfaa

)
• Solution unique and if rankDfa = n
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Theorem (Inverse function)

Let f : Rn→Rn be continuously differentiable on an open set
E . Let a ∈ E , f (a) = b, and Dfa be invertible . Then

1 there exist open sets U and V such that a ∈ U, b ∈ V , f
is one-to-one on U and f (U) = V , and

2 the inverse of f exists and is continuously differentiable on
V with derivative

(
Dff −1(x)

)−1
.
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Proof.
Choose λ such that λ

∥∥Df −1
a

∥∥ = 1/2. Since Dfa is continuous,
there is an open neighborhood U of a such that
‖Dfx − Dfa‖ < λ for all x ∈ U. For any y ∈ Rn, consider
ϕy (x) = x + Df −1

a (y − f (x)). Note that

Dϕy
x =I − Df −1

a Dfx

=Df −1
a (Dfa − Dfx) ≤

∥∥Df −1
a

∥∥λ =
1

2
(1)

Then, by the mean value theorem for x1, x2 ∈ U,

‖ϕy (x1)− ϕy (x2)‖ =
∥∥Dϕy

x̄ (x1 − x2)
∥∥ ≤ 1

2
‖x1 − x2‖ .

. ϕy is a contraction, so it has a unique fixed point. When
ϕy (x) = x , it must be that y = f (x). Thus for each y ∈ f (U),
there is at most one x such that f (x) = y . That is, f is
one-to-one on U. This proves the first part of the theorem and
that f −1 exists.
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Section 2

Contraction mappings
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Definition
Let f : Rn→Rn. f is a contraction mapping on U ⊆ Rn if for
all x , y ∈ U,

‖f (x)− f (y)‖ ≤ c ‖x − y‖

for some 0 ≥ c < 1.

If f is a contraction mapping, then an x such that f (x) = x is
called a fixed point of the contraction mapping.
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Lemma
Let f : Rn→Rn be a contraction mapping on U ⊆ Rn. If
x1 = f (x1) and x2 = f (x2) for some x1, x2 ∈ U, then x1 = x2.

Proof.
Since f is a contraction mapping,

‖f (x1)− f (x2)‖ ≤ c ‖x1 − x2‖ .

f (xi ) = xi , so
‖x1 − x2‖ ≤ c ‖x1 − x2‖ .

Since 0 ≥ c < 1, the previous inequality can only be true if
‖x1 − x2‖ = 0. Thus, x1 = x2.
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Lemma
Let f : Rn→Rn be a contraction mapping on U ⊆ Rn, and
suppose that f (U) ⊆ U. Then f has a unique fixed point.

Proof.
Pick x0 ∈ U. As in the discussion before the lemma, construct
the sequence defined by xn = f (xn−1). Each xn ∈ U because
xn = f (xn−1) ∈ f (U) and f (U) ⊆ U by assumption. Since f is
a contraction on U, ‖xn+1 − xn‖ ≤ cn ‖x1 − x0‖, so
limn→∞ ‖xn+1 − xn‖ = 0, and {xn} is a Cauchy sequence. Let
x = limn→∞ xn. Then

‖x − f (x)‖ ≤‖x − xn‖+ ‖f (x)− f (xn)‖
≤‖x − xn‖+ c ‖x − xn‖

xn→x , so for any ε > 0 ∃N, such that if n ≥ N, then
‖x − xn‖ < ε

1+c . Then,

‖x − f (x)‖ < ε

for any ε > 0. Therefore, x = f (x).
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Section 3

Implicit functions
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Implicit functions

• Cannot always write conditions of a model as f (x) = y

• Often only f (x , y) = c .

• Using same sort of idea, can get x as a function of y .



Implicit and
inverse

function
theorems

Paul Schrimpf

Inverse
functions

Contraction
mappings

Implicit
functions

Applications

Roy’s Identity

Comparative
statics

• f : Rn+m→Rn, x ∈ Rn, y ∈ Rm

• Have a model that requires f (x , y) = c

• Know that f (x0, y0) = c

• Expand f around x0 and y0

f (x , y) =f (x0, y0) + Dx f(x0,y0)︸ ︷︷ ︸
n×n

(x − x0) + Dy f(x0,y0)︸ ︷︷ ︸
n×m

(y − y0) + r(x , y) = c

• If r small enough,

f (x0, y0) + Dx f(x0,y0)(x − x0) + Dy f(x0,y0)(y − y0) ≈ c

Dx f(x0,y0)(x − x0) ≈
(
c − f (x0, y0)− Dy f(x0,y0)(y − y0)

)
a system of linear equations
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Theorem (Implicit function)

Let f : Rn+m→Rn be continuously differentiable on some open
set E and suppose f (x0, y0) = c for some (x0, y0) ∈ E , where
x0 ∈ Rn and y0 ∈ Rm. If Dx f(x0,y0) is invertible, then there

exists open sets U ⊂ Rn and W ⊂ Rn−k with (x0, y0) ∈ U and
y0 ∈W such that

1 For each y ∈W there is a unique x such that (x , y) ∈ U
and f (x , y) = c.

2 Define this x as g(y). Then g is continuously
differentiable on W , g(y0) = x0, f (g(y), y) = c for all

y ∈W , and Dgy0 = −
(
Dx f(x0,y0)

)−1
Dy f(x0,y0)
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Section 4

Applications



Implicit and
inverse

function
theorems

Paul Schrimpf

Inverse
functions

Contraction
mappings

Implicit
functions

Applications

Roy’s Identity

Comparative
statics

Application: Roy’s identity

• V (m, p) an indirect utility function

V (m, p) = max
c

U(c) s.t. pc ≤ m. (2)

• expenditure function, E (u, p)

E (u, p) = min
c

pc s.t. U(c) ≥ u. (3)

• Observe that V (E (u, p), p) = u (if U continuous and
p 6= 0)
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Application: Roy’s identity

• Differentiate

∂V

∂m
(E (u, p), p)

∂E

∂pi
(u, p) +

∂V

∂pi
(E (u, p), p) =0

∂E

∂pi
(u, p) =−

∂V
∂m (E (u, p), p)
∂V
∂pi

(E (u, p), p)

• Shephard’s lemma is

c∗i (u, p) =
∂E

∂pi
(u, p),

• Roy’s identity is

c∗i (m, p) = −
∂V
∂m (m, p)
∂V
∂pi

(m, p)
.
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Comparative statics

• Finite horizon macro model.

• Production
yt = Atk

α
t

• Budget
ct + kt+1 = (1− δ)kt + Atk

α
t .

• Social planner’s problem

max
{ct ,kt}Tt=0

T∑
t=0

βt
c1−γ
t

1− γ
s.t. ct + kt+1 = (1− δ)kt + Atk

α
t .
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• Lagrangian

max
{ct ,kt ,λt}Tt=0

T∑
t=0

βt
c1−γ
t

1− γ
+ λt(ct + kt+1− (1− δ)kt −Atk

α
t )

• First order conditions

[ct ] : βtc−γt =λt

[kt ] : λt−1 =λt
(
(1− δ) + Atαkα−1

t

)
[λt ] : ct + kt+1 =(1− δ)kt + Atk

α
t
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• Suppose At changes unexpectedly at time T − 1

• Want to find the change in cT−1, cT , and kT

• Relevant first order conditions

0 =F (cT , cT−1, kT ,AT ,AT−1, cT−2, kT−1)

=

cT−1 + kT − (1− δ)kT−1 − AT−1kαT−1

cT − (1− δ)kT − ATkαT
c−γT−1 − c−γT β

(
(1− δ) + ATαkα−1

T

)
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• The implicit function theorem says that
∂cT−1

∂AT−1
∂cT
∂AT−1
∂kT
∂AT−1

 =−


∂F1
∂cT−1

∂F1
∂cT

∂F1
∂kT

∂F2
∂cT−1

∂F2
∂cT

∂F2
∂kT

∂F3
∂cT−1

∂F3
∂cT

∂F3
∂kT


−1

∂F1
∂AT−1
∂F2

∂AT−1
∂F3

∂AT−1



=−

 1 0 1

0 1 −(1− δ)− ATαkα−1
T

−γc−γ−1
T−1 γc−γ−1

T β
(
(1− δ) + ATαkα−1

T

)
−c−γT βATα(α− 1)kα−2

T

−1−kαT−1

0
0
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• Gaussian elimination: 1 0 1 kαT−1

0 1 −(1− δ)− ATαkα−1
T 0

−γc−γ−1
T−1 γc−γ−1

T β
(
(1− δ) + ATαkα−1

T

)
−c−γT βATα(α− 1)kα−2

T 0

 '
'

1 0 1 kαT−1

0 1 −(1− δ)− ATαkα−1
T 0

0 γc−γ−1
T β

(
(1− δ) + ATαkα−1

T

)
−c−γT βATα(α− 1)kα−2

T + γc−γ−1
T−1 γc−γ−1

t−1 kαT−1


'

1 0 1 kαT−1

0 1 −(1− δ)− ATαkα−1
T 0

0 0 E γc−γ−1
t−1 kαT−1



where

E =
(
γc−γ−1

T β
(
(1− δ) + ATαkα−1

T

)) (
(1− δ) + ATαkα−1

T

)
+

− c−γT βATα(α− 1)kα−2
T + γc−γ−1

T−1 .
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• Assume α ≤ 1, so that E > 0. Then,

∂kT
∂AT−1

=
γc−γ−1

T−1 kαT−1

E
> 0

•
∂cT
∂AT−1

=
∂kT
∂AT−1

(
(1− δ) + ATαTkα−1

T

)
,

•

∂cT−1

∂AT−1
=kαT−1 −

∂kT
∂AT−1

=
kαT−1E − γc−γ−1

T−1 kαT−1

E

=
kαT−1

(
γc−γ−1

T β
(
(1− δ) + ATαkα−1

T

)) (
(1− δ) + ATαkα−1

T

)
− c−γT βATα(α− 1)kα−2

T

E

0 ≤ ∂cT−1

∂AT−1
< kαT−1
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