Paul Schrimpf

functions

Implicit

functions

Applicatio

Roy's Identity Comparative statics

Implicit and inverse function theorems

Paul Schrimpf

UBC Economics 526

October 17, 2011

Paul Schrimpf

Inverse functions

Contractio mappings

Implicit functions

Applications Roy's Identity Comparative 1 Inverse functions

2 Contraction mappings

3 Implicit functions

4 Applications Roy's Identity Comparative statics

Paul Schrimpf

Inverse functions

Implicit

Implicit functions

Applicatio

Roy's Identity Comparative statics

Section 1

Inverse functions

Paul Schrimpf

Inverse functions

Contraction mappings

Implicit functions

functions

Roy's Identity Comparative statics

Inverse functions

- $f: \mathbb{R}^n \rightarrow \mathbb{R}^m$
- When can we solve f(x) = y for x?
- Use derivative and what we know about linear equations to get a local answer

Inverse functions

Contraction mappings

Implicit functions

Applications Roy's Identity Comparative

Inverse functions

• If f(a) = b, expand f around a.

$$f(x) = f(a) = Df_a(x - a) + r_1(a, x - a) = y$$

• If r_1 is small, we almost have a system of linear equations

$$Df_a x = y - f(a) + Df_a a$$

- Know:
 - Solution exists if

$$\operatorname{rank} Df_a = \operatorname{rank} (Df_a \quad y - f(a) + Df_a a)$$

• Solution unique and if $rank Df_a = n$

Paul Schrimpf

Inverse functions

Implicit

Implicit functions

Roy's Identity Comparative statics

Theorem (Inverse function)

Let $f : \mathbb{R}^n \to \mathbb{R}^n$ be continuously differentiable on an open set E. Let $a \in E$, f(a) = b, and Df_a be invertible. Then

- **1** there exist open sets U and V such that $a \in U$, $b \in V$, f is one-to-one on U and f(U) = V, and
- 2 the inverse of f exists and is continuously differentiable on V with derivative $\left(Df_{f^{-1}(x)}\right)^{-1}$.

Paul Schrimpf

Inverse functions

Contractio mappings

Implicit functions

Roy's Identity Comparative statics

Proof.

Choose λ such that $\lambda \|Df_a^{-1}\| = 1/2$. Since Df_a is continuous, there is an open neighborhood U of a such that $\|Df_x - Df_a\| < \lambda$ for all $x \in U$. For any $y \in \mathbb{R}^n$, consider $\varphi^y(x) = x + Df_a^{-1}(y - f(x))$. Note that

$$D\varphi_{x}^{y} = I - Df_{a}^{-1}Df_{x}$$

$$= Df_{a}^{-1}(Df_{a} - Df_{x}) \le ||Df_{a}^{-1}|| \lambda = \frac{1}{2}$$
(1)

Then, by the mean value theorem for $x_1, x_2 \in U$,

$$\|\varphi^{y}(x_{1}) - \varphi^{y}(x_{2})\| = \|D\varphi_{\bar{x}}^{y}(x_{1} - x_{2})\| \le \frac{1}{2} \|x_{1} - x_{2}\|.$$

. φ^y is a contraction, so it has a unique fixed point. When $\varphi^y(x) = x$, it must be that y = f(x). Thus for each $y \in f(U)$, there is at most one x such that f(x) = y. That is, f is one-to-one on U. This proves the first part of the theorem and that f^{-1} exists.

Paul Schrimpf

Inverse functions

Contraction mappings

Implicit functions

Applicatio

Roy's Identity Comparative statics

Section 2

Contraction mappings

Paul Schrimpf

Inverse functions

Contraction mappings

Implicit function:

Applications

Roy's Identity Comparative statics

Definition

Let $f: \mathbb{R}^n \to \mathbb{R}^n$. f is a **contraction mapping** on $U \subseteq \mathbb{R}^n$ if for all $x, y \in U$,

$$||f(x) - f(y)|| \le c ||x - y||$$

for some $0 \ge c < 1$.

If f is a contraction mapping, then an x such that f(x) = x is called a **fixed point** of the contraction mapping.

Inverse functions

Contraction mappings

Implicit function

A == li == ±i =

Roy's Identity
Comparative

Lemma

Let $f: \mathbb{R}^n \to \mathbb{R}^n$ be a contraction mapping on $U \subseteq \mathbb{R}^n$. If $x_1 = f(x_1)$ and $x_2 = f(x_2)$ for some $x_1, x_2 \in U$, then $x_1 = x_2$.

Proof.

Since f is a contraction mapping,

$$||f(x_1)-f(x_2)|| \le c ||x_1-x_2||.$$

$$f(x_i) = x_i$$
, so

$$||x_1-x_2|| \le c ||x_1-x_2||.$$

Since $0 \ge c < 1$, the previous inequality can only be true if $||x_1 - x_2|| = 0$. Thus, $x_1 = x_2$.

Inverse functions

Contraction mappings

Implicit functio

Applications
Roy's Identity
Comparative
statics

Lemma

Let $f: \mathbb{R}^n \to \mathbb{R}^n$ be a contraction mapping on $U \subseteq \mathbb{R}^n$, and suppose that $f(U) \subseteq U$. Then f has a unique fixed point.

Proof.

Pick $x_0 \in U$. As in the discussion before the lemma, construct the sequence defined by $x_n = f(x_{n-1})$. Each $x_n \in U$ because $x_n = f(x_{n-1}) \in f(U)$ and $f(U) \subseteq U$ by assumption. Since f is a contraction on U, $||x_{n+1} - x_n|| \le c^n ||x_1 - x_0||$, so $\lim_{n \to \infty} ||x_{n+1} - x_n|| = 0$, and $\{x_n\}$ is a Cauchy sequence. Let $x = \lim_{n \to \infty} x_n$. Then

$$||x - f(x)|| \le ||x - x_n|| + ||f(x) - f(x_n)||$$

 $\le ||x - x_n|| + c ||x - x_n||$

 $x_n \rightarrow x$, so for any $\epsilon > 0$ $\exists N$, such that if $n \geq N$, then $\|x - x_n\| < \frac{\epsilon}{1 + \epsilon}$. Then,

$$||x - f(x)|| < \epsilon$$

for any $\epsilon > 0$ Therefore x = f(x)

Paul Schrimpf

functions

Implicit

Implicit functions

Applicatio

Roy's Identity Comparative statics

Section 3

Implicit functions

Paul Schrimpf

Implicit functions

Roy's Identity

Implicit functions

- Cannot always write conditions of a model as f(x) = y
- Often only f(x, y) = c.
- Using same sort of idea, can get x as a function of y.

Paul Schrimpf

Inverse

Contract mapping

Implicit functions

Roy's Identity Comparative • $f: \mathbb{R}^{n+m} \to \mathbb{R}^n$, $x \in \mathbb{R}^n$, $y \in \mathbb{R}^m$

- Have a model that requires f(x, y) = c
- Know that $f(x_0, y_0) = c$
- Expand f around x_0 and y_0

$$f(x,y) = f(x_0,y_0) + \underbrace{D_x f_{(x_0,y_0)}}_{n \times n} (x-x_0) + \underbrace{D_y f_{(x_0,y_0)}}_{n \times m} (y-y_0) + I$$

If r small enough,

$$f(x_0, y_0) + D_x f_{(x_0, y_0)}(x - x_0) + D_y f_{(x_0, y_0)}(y - y_0) \approx c$$

 $D_x f_{(x_0, y_0)}(x - x_0) \approx (c - f(x_0))$

a system of linear equations

Paul Schrimpf

Inverse functions

Contraction mappings

Implicit functions

functions

Application

Roy's Identity Comparative statics

Theorem (Implicit function)

Let $f: \mathbb{R}^{n+m} \to \mathbb{R}^n$ be continuously differentiable on some open set E and suppose $f(x_0, y_0) = c$ for some $(x_0, y_0) \in E$, where $x_0 \in \mathbb{R}^n$ and $y_0 \in \mathbb{R}^m$. If $D_x f_{(x_0, y_0)}$ is invertible, then there exists open sets $U \subset \mathbb{R}^n$ and $W \subset \mathbb{R}^{n-k}$ with $(x_0, y_0) \in U$ and $y_0 \in W$ such that

- **1** For each $y \in W$ there is a unique x such that $(x, y) \in U$ and f(x, y) = c.
- 2 Define this x as g(y). Then g is continuously differentiable on W, $g(y_0) = x_0$, f(g(y), y) = c for all $y \in W$, and $Dg_{y_0} = -(D_x f_{(x_0, y_0)})^{-1} D_y f_{(x_0, y_0)}$

Paul Schrimpf

functions

mappings

Implicit functions

Applications

Roy's Identity Comparative statics

Section 4

Applications

Inverse functions

Contractio mappings

Implicit functions

Applicatio

Roy's Identity Comparative

Application: Roy's identity

• V(m,p) an indirect utility function

$$V(m,p) = \max_{c} U(c) \text{ s.t. } pc \le m.$$
 (2)

• expenditure function, E(u, p)

$$E(u,p) = \min_{c} pc \text{ s.t. } U(c) \ge u. \tag{3}$$

• Observe that V(E(u, p), p) = u (if U continuous and $p \neq 0$)

Inverse functions

mapping

Implicit functions

Application

Roy's Identity Comparative

Application: Roy's identity

Differentiate

$$\frac{\partial V}{\partial m}(E(u,p),p)\frac{\partial E}{\partial p_i}(u,p) + \frac{\partial V}{\partial p_i}(E(u,p),p) = 0$$

$$\frac{\partial E}{\partial p_i}(u,p) = -\frac{\frac{\partial V}{\partial m}(E(u,p),p)}{\frac{\partial V}{\partial m}(E(u,p),p)}$$

Shephard's lemma is

$$c_i^*(u,p) = \frac{\partial E}{\partial p_i}(u,p),$$

• Roy's identity is

$$c_i^*(m,p) = -\frac{\frac{\partial V}{\partial m}(m,p)}{\frac{\partial V}{\partial p_i}(m,p)}.$$

functions

Contraction mappings

Implicit functions

Roy's Identity Comparative statics

Comparative statics

- Finite horizon macro model.
- Production

$$y_t = A_t k_t^{\alpha}$$

Budget

$$c_t + k_{t+1} = (1 - \delta)k_t + A_t k_t^{\alpha}.$$

Social planner's problem

$$\max_{\{c_t, k_t\}_{t=0}^T} \sum_{t=0}^T \beta^t \frac{c_t^{1-\gamma}}{1-\gamma} \text{ s.t. } c_t + k_{t+1} = (1-\delta)k_t + A_t k_t^{\alpha}.$$

Inverse functions

mappings

Implicit functions

Roy's Identity
Comparative
statics

Lagrangian

$$\max_{\{c_t, k_t, \lambda_t\}_{t=0}^T} \sum_{t=0}^I \beta^t \frac{c_t^{1-\gamma}}{1-\gamma} + \lambda_t (c_t + k_{t+1} - (1-\delta)k_t - A_t k_t^{\alpha})$$

First order conditions

$$[c_t]: \qquad \beta^t c_t^{-\gamma} = \lambda_t$$

$$[k_t]: \qquad \lambda_{t-1} = \lambda_t \left((1 - \delta) + A_t \alpha k_t^{\alpha - 1} \right)$$

$$[\lambda_t]: \qquad c_t + k_{t+1} = (1 - \delta)k_t + A_t k_t^{\alpha}$$

Paul Schrimpf

functions

mappings

Implicit functions

Applications
Roy's Identity
Comparative
statics

- Suppose A_t changes unexpectedly at time T-1
- Want to find the change in c_{T-1} , c_T , and k_T
- Relevant first order conditions

$$0 = F(c_{T}, c_{T-1}, k_{T}, A_{T}, A_{T-1}, c_{T-2}, k_{T-1})$$

$$= \begin{pmatrix} c_{T-1} + k_{T} - (1 - \delta)k_{T-1} - A_{T-1}k_{T-1}^{\alpha} \\ c_{T} - (1 - \delta)k_{T} - A_{T}k_{T}^{\alpha} \\ c_{T-1}^{-\gamma} - c_{T}^{-\gamma}\beta\left((1 - \delta) + A_{T}\alpha k_{T}^{\alpha-1}\right) \end{pmatrix}$$

Inverse functions

Contraction mappings

Implicit function

Applications

Roy's Identity Comparative statics The implicit function theorem says that

$$\begin{pmatrix}
\frac{\partial c_{T-1}}{\partial A_{T-1}} \\
\frac{\partial c_{T}}{\partial A_{T-1}} \\
\frac{\partial k_{T}}{\partial A_{T-1}}
\end{pmatrix} = -\begin{pmatrix}
\frac{\partial F_{1}}{\partial c_{T-1}} & \frac{\partial F_{1}}{\partial c_{T}} & \frac{\partial F_{1}}{\partial k_{T}} \\
\frac{\partial F_{2}}{\partial c_{T-1}} & \frac{\partial F_{2}}{\partial c_{T}} & \frac{\partial F_{2}}{\partial k_{T}} \\
\frac{\partial F_{3}}{\partial c_{T-1}} & \frac{\partial F_{3}}{\partial c_{T}} & \frac{\partial F_{3}}{\partial k_{T}}
\end{pmatrix}^{-1} \begin{pmatrix}
\frac{\partial F_{1}}{\partial A_{T-1}} \\
\frac{\partial F_{2}}{\partial A_{T-1}} \\
\frac{\partial F_{3}}{\partial A_{T-1}}
\end{pmatrix}$$

$$= -\begin{pmatrix}
1 & 0 \\
0 & 1 \\
-\gamma c_{T-1}^{-\gamma-1} & \gamma c_{T}^{-\gamma-1} \beta \left((1-\delta) + A_{T} \alpha k_{T}^{\alpha-1} \right)
\end{pmatrix}^{-1} \begin{pmatrix}
\frac{\partial F_{1}}{\partial A_{T-1}} \\
\frac{\partial F_{2}}{\partial A_{T-1}} \\
\frac{\partial F_{3}}{\partial A_{T-1}}
\end{pmatrix}^{-1} \begin{pmatrix}
\frac{\partial F_{1}}{\partial A_{T-1}} \\
\frac{\partial F_{2}}{\partial A_{T-1}} \\
\frac{\partial F_{3}}{\partial A_{T-1}}
\end{pmatrix}^{-1} \begin{pmatrix}
\frac{\partial F_{1}}{\partial A_{T-1}} \\
\frac{\partial F_{2}}{\partial A_{T-1}} \\
\frac{\partial F_{3}}{\partial A_{T-1}}
\end{pmatrix}^{-1} \begin{pmatrix}
\frac{\partial F_{1}}{\partial A_{T-1}} \\
\frac{\partial F_{2}}{\partial A_{T-1}} \\
\frac{\partial F_{3}}{\partial A_{T-1}}
\end{pmatrix}^{-1} \begin{pmatrix}
\frac{\partial F_{1}}{\partial A_{T-1}} \\
\frac{\partial F_{2}}{\partial A_{T-1}} \\
\frac{\partial F_{3}}{\partial A_{T-1}}
\end{pmatrix}^{-1} \begin{pmatrix}
\frac{\partial F_{1}}{\partial A_{T-1}} \\
\frac{\partial F_{2}}{\partial A_{T-1}} \\
\frac{\partial F_{3}}{\partial A_{T-1}}
\end{pmatrix}^{-1} \begin{pmatrix}
\frac{\partial F_{1}}{\partial A_{T-1}} \\
\frac{\partial F_{3}}{\partial A_{T-1}} \\
\frac{\partial F_{3}}{\partial A_{T-1}}
\end{pmatrix}^{-1} \begin{pmatrix}
\frac{\partial F_{1}}{\partial A_{T-1}} \\
\frac{\partial F_{3}}{\partial A_{T-1}}
\end{pmatrix}^{-1} \begin{pmatrix}
\frac{\partial F_{1}}{\partial A_{T-1}} \\
\frac{\partial F_{3}}{\partial A_{T-1}}
\end{pmatrix}^{-1} \begin{pmatrix}
\frac{\partial F_{1}}{\partial A_{T-1}} \\
\frac{\partial F_{3}}{\partial A_{T-1}}
\end{pmatrix}^{-1} \begin{pmatrix}
\frac{\partial F_{1}}{\partial A_{T-1}} \\
\frac{\partial F_{3}}{\partial A_{T-1}}
\end{pmatrix}^{-1} \begin{pmatrix}
\frac{\partial F_{1}}{\partial A_{T-1}} \\
\frac{\partial F_{3}}{\partial A_{T-1}}
\end{pmatrix}^{-1} \begin{pmatrix}
\frac{\partial F_{1}}{\partial A_{T-1}} \\
\frac{\partial F_{3}}{\partial A_{T-1}}
\end{pmatrix}^{-1} \begin{pmatrix}
\frac{\partial F_{1}}{\partial A_{T-1}} \\
\frac{\partial F_{3}}{\partial A_{T-1}}
\end{pmatrix}^{-1} \begin{pmatrix}
\frac{\partial F_{1}}{\partial A_{T-1}} \\
\frac{\partial F_{3}}{\partial A_{T-1}}
\end{pmatrix}^{-1} \begin{pmatrix}
\frac{\partial F_{1}}{\partial A_{T-1}} \\
\frac{\partial F_{3}}{\partial A_{T-1}}
\end{pmatrix}^{-1} \begin{pmatrix}
\frac{\partial F_{1}}{\partial A_{T-1}} \\
\frac{\partial F_{3}}{\partial A_{T-1}}
\end{pmatrix}^{-1} \begin{pmatrix}
\frac{\partial F_{1}}{\partial A_{T-1}} \\
\frac{\partial F_{3}}{\partial A_{T-1}}
\end{pmatrix}^{-1} \begin{pmatrix}
\frac{\partial F_{1}}{\partial A_{T-1}} \\
\frac{\partial F_{3}}{\partial A_{T-1}}
\end{pmatrix}^{-1} \begin{pmatrix}
\frac{\partial F_{1}}{\partial A_{T-1}} \\
\frac{\partial F_{3}}{\partial A_{T-1}}
\end{pmatrix}^{-1} \begin{pmatrix}
\frac{\partial F_{1}}{\partial A_{T-1}} \\
\frac{\partial F_{3}}{\partial A_{T-1}}
\end{pmatrix}^{-1} \begin{pmatrix}
\frac{\partial F_{1}}{\partial A_{T-1}} \\
\frac{\partial F_{3}}{\partial A_{T-1}}
\end{pmatrix}^{-1} \begin{pmatrix}
\frac{\partial F_{1}}{\partial A_{T-1}} \\
\frac{\partial F_{3}}{\partial A_{T-1}}
\end{pmatrix}^{-1} \begin{pmatrix}
\frac{\partial F_{1}}{\partial A_{T-1}} \\
\frac{\partial F_{3}}{\partial A_{T-1}}
\end{pmatrix}^{-1} \begin{pmatrix}
\frac{\partial F_{1}}{\partial A_{T-1}} \\
\frac{\partial F_{3}}{\partial A_{T-1}}
\end{pmatrix}^{-1} \begin{pmatrix}
\frac{\partial F_{1}}{\partial A_{T-1}} \\
\frac{\partial F_{$$

Paul Schrimpf

Roy's Identity

Comparative

statics

 $\begin{pmatrix} 1 & 0 & 1 & -(1-\delta) - 1 \\ 0 & 1 & -(1-\delta) - 1 \\ -\gamma c_{T-1}^{-\gamma-1} & \gamma c_{T}^{-\gamma-1} \beta \left((1-\delta) + A_{T} \alpha k_{T}^{\alpha-1} \right) & -c_{T}^{-\gamma} \beta A_{T} \alpha \right) \\ \simeq \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & -(1-\delta) - A \\ 0 & \gamma c_{T}^{-\gamma-1} \beta \left((1-\delta) + A_{T} \alpha k_{T}^{\alpha-1} \right) & -c_{T}^{-\gamma} \beta A_{T} \alpha (\alpha - 1) \right) \\ \end{pmatrix}$

where

 $\simeq \begin{pmatrix} 1 & 0 & 1 & k_{T-1}^{\alpha} \\ 0 & 1 & -(1-\delta) - A_{T} \alpha k_{T}^{\alpha-1} & 0 \\ 0 & 0 & F & \gamma c_{+}^{-\gamma-1} k_{T-1}^{\alpha} \end{pmatrix}$

 $-c_{\tau}^{-\gamma}\beta A_{\tau}\alpha(\alpha-1)k_{\tau}^{\alpha-2}+\gamma c_{\tau-1}^{-\gamma-1}.$

 $E = \left(\gamma c_T^{-\gamma - 1} \beta \left((1 - \delta) + A_T \alpha k_T^{\alpha - 1} \right) \right) \left((1 - \delta) + A_T \alpha k_T^{\alpha - 1} \right)$

Gaussian elimination:

Implicit and inverse function theorems Paul Schrimpf

Roy's Identity Comparative statics

• Assume $\alpha < 1$, so that E > 0. Then,

$$\frac{\partial k_T}{\partial A_{T-1}} = \frac{\gamma c_{T-1}^{-\gamma-1} k_{T-1}^{\alpha}}{E} > 0$$

 $\frac{\partial c_T}{\partial \Delta_{T-1}} = \frac{\partial k_T}{\partial \Delta_{T-1}} \left((1 - \delta) + A_T \alpha_T k_T^{\alpha - 1} \right),$

$$\begin{split} \frac{\partial c_{T-1}}{\partial A_{T-1}} &= k_{T-1}^{\alpha} - \frac{\partial k_{T}}{\partial A_{T-1}} \\ &= \frac{k_{T-1}^{\alpha} E - \gamma c_{T-1}^{-\gamma - 1} k_{T-1}^{\alpha}}{E} \\ &= \frac{k_{T-1}^{\alpha} \left(\gamma c_{T}^{-\gamma - 1} \beta \left((1 - \delta) + A_{T} \alpha k_{T}^{\alpha - 1} \right) \right) \left((1 - \delta) + A_{T} \alpha k_{T}^{\alpha - 1} \right)}{E} \\ &= \frac{\partial c_{T-1}}{\partial A_{T-1}} < k_{T-1}^{\alpha} \end{split}$$