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Today’s lecture is about unconstrained optimization. If you’re following along in the
syllabus, you’ll notice that we’ve skipped the fourth topic, eigenvalues and definite ma-
trices. We will cover these things as part of our study of optimization.

1. NOTATION AND DEFINITIONS

An optimization problem refers to finding the maximum or minimum of a function,
perhaps subject to some constraints. In economics, the most common optimization prob-
lems are utility maximization and profit maximization. Because of this, we will state most
of our definitions and results for maximization problems. Of course, we could just as well
state each definition and result for a minimization problem by reversing the sign of most
inequalities.

In this lecture we will be interested in unconstrained optimization problems such as

max
x∈U

F(x)

where x ∈ U ⊆ Rn and F : U→R. If F∗ = maxx∈U F(x), we mean that F(x) ≤ F∗ for all
x ∈ U and F(x∗) = F∗ for some x∗ ∈ U.

Definition 1.1. F∗ = maxx∈U F(x) is the maximum of F on U if F(x) ≤ F∗ for all x ∈ U
and F(x∗) = F∗ for some x∗ ∈ U

There may be more than one such x∗. We denote the set of all x∗ such that F(x∗) = F∗

by arg maxx∈U F(x) and might write x∗ ∈ arg maxx∈U F(x), or, if we know there is only
one such, x∗, we sometimes write x∗ = arg maxx∈U F(x).

Definition 1.2. x∗ ∈ U is a maximizer of F on U if F(x∗) = maxx∈U F(x). The set of all
maximizers is denoted arg maxx∈U F(x).

Definition 1.3. x∗ ∈ U is a strict maximizer of F on U if F(x∗) > F(x) for all x ∈ U with
x ̸= x∗.

Recall the definition of a local maximum from lecture 8.

Definition 1.4. F has a local maximum at x if ∃δ > 0 such that F(y) ≤ F(x) for all
y ∈ Nδ(x) ∩ U. Each such x is called a local maximizer of F. If F(y) < F(x) for all y ̸= x,
y ∈ Nδ(x) ∩ U, then we say F has a strict local maximum at x.

When we want to be explicit about the distinction between local maximum and the
maximum in definition 1.1, we refer to the later as the global maximum.
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Example 1.1. Here are some examples of functions from R→R and their maxima and
minima.

(1) F(x) = x2 is minimized at x = 0 with minimum 0.
(2) F(x) = c has minimum and maximum c. Any x is a maximizer.
(3) F(x) = cos(x) has maximum 1 and minimum −1. 2πn for n ∈ Z is a maximizer.
(4) F(x) = cos(x) + x/2 has no global maximizer or minimizer, but has many local

ones.

2. FIRST ORDER CONDITIONS

In lecture 8, we proved that if F has a local maximum at x, then DFx = 0. We restate
that theorem and proof here.

Theorem 2.1. Let U ⊆ Rn, F : U→R, and suppose F has a local maximum or minimum at x, F
is differentiable at x, and x ∈ interior(U) . Then DFx = 0.

Proof. We will write the proof for when F has a local maximum at x. The exact same
reasoning works when F has a local minimum.

Since x is in the interior of U, we can choose δ > 0 such that Nδ(x) ⊂ U. Since x is a
local maximum we can also choose x such that F(x) ≥ F(y) for all y ∈ Nδ(x). Since F is
differentiable, we can write

F(x + h)− F(x)
∥h∥ =

DFxh + r(x, h)
∥h∥

where limh→0
|r(x,h)|
∥h∥ = 0. Let h = tv for some v ∈ Rn with ∥v∥ = 1 and t ∈ R. If

DFxv > 0, then for t > 0 small enough, we would have F(x+tv)−F(x)
|t| = DFxv + r(x,tv)

|t| >

DFxv/2 > 0 and F(x + tv) > F(x) in contradiction to x being a local maximum. Similarly,
if DFvv < 0 then for t < 0 and small, we would have F(x+tv)−F(x)

|t| = −DFxv + r(x,tv)
|t| >

−D fxv/2 > 0 and F(x + tv) > F(x). Thus, it must be that DFxv = 0 for all v, i.e.
DFx = 0. □

The first order condition is the fact that DFx = 0 is a necessary condition for x to be a
local maximizer or minimizer of F.

Definition 2.1. Any point such that DFx = 0 is call a critical point of F.

If F is differentiable, F cannot have local minima or maxima (=local extrema) at non-
critical points. F might have a local extrema its critical points, but it does not have to.
Consider F(x) = x3 F′(0) = 0, but 0 is not a local maximizer or minimizer of F. Similarly,
if F : R2→R, F(x) = x2

1 − x2
2, then DF0 = 0, but 0 is not a local minimum or maximum of

F.

3. SECOND ORDER CONDITIONS

To determine whether a given critical point is a local minimum or maximum or neither
we can look at the second derivative of the function. Let F : Rn→R and suppose x∗ is
a critical point. Then DFx∗ = 0. To see if x∗ is a local maximum, we need to look at
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F(x∗ + h) for small h. If F is twice continuously differentiable, we can take a second order
Taylor expansion of F around x∗.

F(x∗ + h) = F(x∗) + DFx∗h +
1
2

hTD2Fx∗h + r(x∗, h)

where D2Fx∗ is the matrix of F’s second derivatives. It is called the Hessian of F.

D2Fx∗ =


∂2F
∂x2

1
· · · ∂2F

∂x1∂xn
... . . . ...

∂2F
∂x1∂xn

· · · ∂2F
∂xn

2

 .

Since x∗ is a critical, point DFx∗ = 0, so

F(x∗ + h)− F(x∗) =
1
2

hTD2Fx∗h + r(x∗, h).

We can see that x∗ is a local maximum if
1
2

hTD2Fx∗h + r(x∗, h) ≤ 0

for all h ̸= 0, ∥h∥ < δ for some δ > 0. We know that r(x∗, h) is small so, we expect that
the above inequality will be true if hTD2Fx∗h ≤ 0 for all h ̸= 0. The Hessian, D2Fx∗ is just
some symmetric n by n matrix, and hTD2Fx∗h is a quadratic form in h. This motivates the
following definition.

Definition 3.1. Let A be a symmetric matrix, then A is

• Negative definite if xT Ax < 0 for all x ̸= 0
• Negative semi-definite if xT Ax ≤ 0 for all x ̸= 0
• Positive definite if xT Ax > 0 for all x ̸= 0
• Positive semi-definite if xT Ax ≥ 0 for all x ̸= 0
• Indefinite if ∃ x1 s.t. xT

1 Ax1 > 0 and some other x2 such that xT
2 Ax2 < 0.

In the next section we will derive some conditions on A that ensure it is negative (semi-
)definite. For now, just observe that if D2Fx∗ is negative semi-definite, then x∗ must be
a local maximum. If D2Fx∗ is negative definite, then x∗ is a strict local maximum. The
following theorem restates the results of this discussion.

Theorem 3.1. Let F : U→R be twice continuously differentiable on U and let x∗ be a critical
point in the interior of U. If

(1) The Hessian, D2Fx∗ is negative definite, then x∗ is a strict local maximizer.
(2) The Hessian, D2Fx∗ is positive definite, then x∗ is a strict local minimizer.
(3) The Hessian, D2Fx∗ is indefinite, x∗ is neither a local min nor a local max.
(4) The Hessian is positive or negative semi-definite, then x∗ could be a local maximum, min-

imum, or neither.

Proof. We will only prove the first case. The second and third cases can be proven simi-
larly. We will go over some examples of the fourth case.
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The main idea of the proof is contained in the discussion at the start of this section.
The only tricky part is carefully showing that r(x, h) is small enough to ignore. As in the
discussion preceding the theorem, x∗ is a local minimizer if

F(x∗ + h)− F(x∗) =
1
2

hTD2Fx∗h + r(x∗, h) ≤ 0.

We can rewrite this as

hTD2Fx∗h + r(x∗, h) =hTD2Fx∗h + hTh
r(x∗, h)

∥h∥2

Factoring, we have

hTD2Fx∗h + hTh
r(x∗, h)

∥h∥2 =hT

(
D2Fx∗ +

r(x∗, h)

∥h∥2

)
h.

From our theorem on Taylor series, we know limh→0
r(x∗,h)
∥h∥2 = 0. Then for any ϵ > 0 ∃

δ > 0 such that if ∥h∥ < δ, then |r(x∗,h)|
∥h∥2 < ϵ. So,

hT

(
D2Fx∗ +

r(x∗, h)

∥h∥2

)
h ≤hT

(
D2Fx∗ + ϵ

)
h

≤hTD2Fx∗h + ϵ ∥h∥2

Let t = ∥h∥ and q = h
∥h∥ , so h = tq. Then we have

hT

(
D2Fx∗ +

r(x∗, h)

∥h∥2

)
h ≤t2(qTD2Fx∗q) + ϵt2

We can pick ϵ < inf∥q∥=1 |qTD2Fx∗q|. The set {q : ∥q∥ = 1} is compact so there is some
q that achieves this minimum, and qTD2Fx∗q < 0, so ϵ > 0.1 Then for all |t| < δ and
∥q∥ = 1,

t2(qTD2Fx∗q) + ϵt2 < t2(qTD2Fx∗q) + |(qTD2Fx∗q)|t2 < 0

where the last inequality follows from qTD2Fx∗q < 0. Thus,

F(x∗ + h)− F(x∗) < 0

for all ∥h∥ < δ. □

When the Hessian is not positive definite, negative definite, or indefinite, the result of
this theorem is ambiguous. Let’s go over some examples of this case.

Example 3.1. F : R→R, F(x) = x4. The first order condition is 4x3 = 0, so x∗ = 0 is the
only critical point. The Hessian is F′′(x) = 12x2 = 0 at x∗. However, x4 has a strict local
minimum at 0.

1If we didn’t have compactness, we might have ended up with ϵ = 0, which is not allowed.
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Example 3.2. F : R2→R, F(x1, x2) = −x2
1. The first order condition is DFx = (−2x1, 0) =

0, so the x∗1 = 0, x∗2 ∈ R are all critical points. The Hessian is

D2Fx =

(
−2 0
0 0

)
This is negative semi-definite because hTD2Fxh = −2h2

1 ≤ 0. Also, graphing the function
would make it clear that x∗1 = 0, x∗2 ∈ R are all (non-strict) local maxima.

Example 3.3. F : R2→R, F(x1, x2) = −x2
1 + x4

2. The first order condition is DFx =
(−2x1, 4x3

2) = 0, so the x∗ = (0, 0) is a critical point. The Hessian is

D2Fx =

(
−2 0
0 12x2

2

)
This is negative semi-definite at 0 because hTD2F0h = −2h2

1 ≤ 0. However, 0 is not a
local maximum because F(0, x2) > F(0, 0) for any x2 ̸= 0. 0 is also not a local minimum
because F(x1, 0) < F(0, 0) for all x1 ̸= 0.

In each of these examples, the second order condition is inconclusive because hTD2Fx∗h =
0 for some h. In these cases we could determine whether x∗ is a local maximum, local min-
imum, or neither by either looking at higher derivatives of F at x∗, or look at D2Fx for all
x in a neighborhood of x∗. We will not often encounter cases where the second order
condition is inconclusive, so we will not study these possibilities in detail.

The converse of theorem 3.1 is nearly true. If x∗ is a local maximizer, then D2Fx∗ must
be negative semi-definite.

Theorem 3.2. Let F : U→R be twice continuously differentiable on U and let x∗ in the interior
of U be a local maximizer (or minimizer) of F. Then DFx∗ = 0 and D2Fx∗ is negative (or positive)
semi-definite.

Proof. Using the same notation and setup as in the proof of theorem 3.1,

0 > F(x∗ + tq)− F(x∗) =t2 1
2

qTD2Fx∗q + r(x, tq)

0 >t2
(

1
2

qTD2Fx∗q +
r(x, tq)

t2

)
Because limt→0

r(x,tq)
t2 = 0, for any ϵ > 0 ∃δ > 0 such that if |t| < δ, then

0 >t2
(

1
2

qTD2Fx∗q +
r(x, tq)

t2

)
≥ t2

(
1
2

qTD2Fx∗q − ϵ

)
t2ϵ >

1
2

t2qTD2Fx∗q

This is only possible for all ϵ > 0 if qTD2Fx∗q ≤ 0. □
I do not expect you to remember the proofs of the last two theorems. However, it

is important to remember the second order condition, and know how to check it. To
check the second order condition, we need some practical way to tell whether a matrix is
positive or negative (semi-)definite.
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4. DEFINITE MATRICES

The second order condition says that a critical point is a local maximum if the Hessian
is negative definite. In this section we will develop some conditions for whether a matrix
is negative definite. Let’s start with the simplest case where A is a one by one matrix.
Then xT Ax = x2a is negative definite if and only if a < 0. A is negative semi-definite if
a ≤ 0. What if A is a two by two symmetric matrix? Then,

xT Ax =

(
x1
x2

)T (a b
b c

)(
x1
x2

)
=ax2

1 + 2bx1x2 + cx2
2

Completing the square we get

xT Ax =a
(

x1 +
2b
a

x1x2 +
b2

a2 x2
2

)
− b2

a
x2

2 + cx2
2

=a
(

x1 +
b
a

x2

)2

+
ac − b2

a
x2

2

Thus xT Ax < 0 for all x ̸= 0 if a < 0 and ac−b2

a < 0, i.e. ac − b2 > 0. Notice that
ac − b2 = detA. So A is negative definite if a < 0 and detA > 0. If we wanted A to
be positive definite, we would need a > 0 and detA > 0. For semi-definite we get the
same thing with weak instead of strict inequalities. It turns out that in general this sort
of pattern continues. We can determine whether A is negative definite by looking at the
determinants of certain submatrices of A.

Definition 4.1. Let A by an n by n matrix. The k by k submatrix

Ak =

a11 · · · a1k
...

...
ak1 · · · akk


is the kth leading principal submatrix of A. The determinant of Ak is the kth order lead-
ing principal minor of A.

Theorem 4.1. Let A be an n by n symmetric matrix. Then
(1) A is positive definite if and only if all n of its leading principal minors are strictly positive.
(2) A is positive semi-definite if and only if all n of its leading principal minors are weakly

positive.
(3) A is negative definite if and only if all n of its leading principal minors alternate in sign as

follows: detA1 < 0, detA2 > 0, detA3 < 0, etc.
(4) A is negative semi-definite if and only if all n of its leading principal minors weakly alter-

nate in sign as follows: detA1 ≤ 0, detA2 ≥ 0, detA3 ≤ 0, etc
(5) A is indefinite if and only if none of the five above cases hold, and detAk ̸= 0 for at least

one k.

The proof of this theorem is a bit tedious, so we will skip it. There is a proof in chapter
16.4 of Simon and Blume. Figure 1 shows each of the five types of definiteness.
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FIGURE 1. Definite quadratic forms
Positive definite x2 + y2 Negative definite −x2 − y2
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4.1. Eigenvectors and eigenvalues. Another way to check whether a matrix is negative
definite is by looking at the matrix’s eigenvalues. Eigenvalues are of interest in their own
right as well because eigenvalues have many other uses, such as determining the stability
of systems of difference and differential equations.
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Definition 4.2. If A is an n by n matrix, λ is a scalar, v ∈ Rn with ∥v∥ = 1, and

Av = λv

then λ is a eigenvalue of A and v is an eigenvector.

If v is an eigenvector of A with eigenvalue λ, then

A(tv) = λ(tv)

for any t ̸= 0. Thus, the requirement that ∥v∥ = 1 is just a normalization to pin down v.
There are a few equivalent ways of defining eigenvalues, some of which are given by the
following lemma.

Lemma 4.1. Let A be an n by n matrix and λ a scalar. Each of the following are equivalent.

(1) λ is a eigenvalue of A.
(2) A − λI is singular.
(3) det(A − λI) = 0.

Proof. We know that (2) and (3) from our results on systems of linear equations and ma-
trices. Also, if A − λI is singular, then the null space of A − λI contains non-zero vectors.
Choose v ∈ N (A − λI) such that v ̸= 0. Then (A − λI)v = 0, so A(v/ ∥v∥) = λ(v/ ∥v∥)
as in the definition of eigenvalues. □

The function χA : R→R defined by χA(x) = det(A − xI) is called the characteristic
polynomial of A. It will be a polynomial of order n. You may know from some other
math course that polynomials of degree n have n roots, some of which might be not be
real and some of which might not be distinct.

Suppose that A has m ≤ n distinct real eigenvalues, λ1, ..., λm. Associated with each
eigenvalue is a linear subspace of eigenvalues, {v ∈ Rn : Av = λiv} = N (A − λi I). By
definition of eigenvalues each of these subspaces has dimension at least 1. Some of them
may be of larger dimension, but they can be of dimension at most n. For each N (A − λi I)
there ∃ an orthonormal basis of eigenvectors, i.e. v1

i , ..., vki
i such that Avj

i = λiv
j
i ,
∥∥∥vj

i

∥∥∥ = 1

and (vj
i)

Tvl
i = 0 for j ̸= l.

Lemma 4.2. Let A be an n by n matrix with m distinct real eigenvalues, and let v1
i , ..., vk

i be an
orthonormal basis for N (A − λi I). Then {v1

1, ..., vk1
1 , ..., v1

m, ..., vkm
m } are linearly independent.

Proof. Suppose the eigenvectors are not linearly independent. Then we could write2

v1
1 = c2

1v2
1 + ... + ck

mvk
m.

2Possibly we cannot do this for v1, but we can for some vi. Without loss of generality, assume that we
can for v1.
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with at least one cj
i ̸= 0. By the definition of eigenvalues and eigenvectors, we have

Av1 =λ1v1

A(c2
1v2

1 + ... + ck
mvk

m) =λ1

(
c2

1v2
1 + ... + ck

mvk
m)
)

c2
1λ1v2

1 + ... + ck
mλmvk

m =λ1

(
c2

1v2 + ... + ck
mvk

m

)
c1

2(λ2 − λ1)v1
2 + ... + ck

m(λm − λ1)vm =0

If c1
2 = · · · = ck

m, then the original equation becomes

v1
1 = c2

1v2
1 + · · ·+ ck1

1 vk1
1

with one of these c’s non-zero. That would contradict the way v1
1, ...vk1

1 were constructed
to be linearly independent. Hence, cj

i ̸= 0 for at least one i > 1. Since the λi are distinct,
λk − λ1 ̸= 0 for any k, so this says that v1

2, ..., vkm
m are linearly dependent as well. We

can repeat this argument to show that v1
3, ..., vkm

m are linearly dependent, and then repeat
it again and again and eventually show that vm−1 and vm are linearly dependent. Then
vm−1 = bvm for some b ̸= 0, and

Avm−1 = λm−1vm−1 = λm−1(bvm)

and
Avm−1 = Abvm = bλmvm.

This implies that λm = λm−1, contrary to the eigenvalues being distinct. Therefore, the
collection of eigenvectors must be linearly independent. □

Since the eigenvectors are linearly independent, in Rn there can be at most n of them.
However, there are some matrices that have strictly fewer eigenvectors.

To say much more about eigenvalues we must impose the extra condition that A is
symmetric. Fortunately, Hessian matrices are symmetric, so for the current purposes,
imposing symmetry is not a problem. Since A is symmetric, A = AT. Also, by the
definition of transpose, ⟨Ax, y⟩ =

⟨
x, ATy

⟩
, or specializing to Rn, (Ax)Ty = xATy =

xAy, where the last equality comes from symmetry of A. By the fundamental theorem of
algebra (which says that polynomials have (possibly complex) roots ), ∃ at least one λ1
and v1 such that

Av1 = λ1v1.

A short argument using complex numbers (which we have not covered) and the symme-
try of A shows that λ1 must be real. If we then consider A as a symmetric linear operator
on the n − 1 dimensional space span{v1}⊥, we can repeat this argument to show that
there is a second (not necessarily distinct) eigenvalue λ2 and associated eigenvector v2
with v2 ⊥ v1. If we repeat this n times, we will construct n eigenvalues (some of which
may be the same) and n orthogonal eigenvectors. Moreover, we can rescale the eigenvec-
tors so that ∥vi∥ = 1 for each i. These n eigenvectors form an orthonormal basis for Rn.
You can imagine them as some rotation of the usual axes.
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Next, we can write A in terms of its eigenvectors and eigenvalues. If we make Λ a
diagonal matrix consisting of the eigenvalues of A and V a matrix whose columns are the
eigenvectors of A, then

AV = VΛ.

Moreover, V is an orthogonal matrix, so V−1 = VT. This relationship is called the eigen-
decomposition of A.

Theorem 4.2 (Eigendecomposition). Let A be an n by n symmetric matrix, then A has n (not
necessarily distinct) eigenvalues and

A = VΛVT

where Λ is the diagonal matrix consisting of the eigenvalues of A and the columns of V are the
associated eigenvectors of A, and V is an orthonormal matrix.

Comment 4.1. There are non-symmetric matrices that can not be decomposed into eigen-

values and eigenvectors, for example
(

1 1
0 1

)
.

There are other non-symmetric matrices that can be eigendecomposed, for example1 1 0
0 1 1
1 0 1

 can be eigendecomposed. Any square matrix with AT A = AAT can be eigen-

decomposed.

Using the eigendecomposition, we can relate eigenvalues to the definiteness of a matrix.

Theorem 4.3. If A is an n by n symmetric non-singular matrix with eigenvalues λ1, ..., λn, then
(1) λi > 0 for all i, iff A is positive definite,
(2) λi ≥ 0 for all i, iff A is positive semi-definite,
(3) λi < 0 for all i, iff A is negative definite,
(4) λi ≤ 0 for all i, iff A is negative semi-definite,
(5) if some λi > 0 and some λj < 0, then A is indefinite.

Proof. Let A = VΛVT be the eigendecomposition of A. Let x ̸= 0 ∈ Rn. Then xTV =
zT ̸= 0 because V is nonsingular. Also,

xT Ax = xTVΛVTx = zTΛz.

Since Λ is diagonal we have

zTΛz = z2
1λ1 + ... + z2

nλn

Thus, xT Ax = zTΛz > 0 for all x iff λi > 0 for each i. The other parts of the theorem
follow similarly. □

4.2. Other facts about eigendecomposition. The results in this subsection are not essen-
tial for the rest of this lecture, but they are occasionally useful.

If a matrix is singular, then ∃ x ̸= 0 such that Ax = 0. By definition, then x/ ∥x∥ is an
eigenvector and 0 is an eigenvalue of A. Conversely, if 0 is an eigenvalue of A, then ∃x
with ∥x∥ = 1 such that Ax = 0. Then A is singular.
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Lemma 4.3 (Eigenvalues and invertibility). A is singular iff 0 is an eigenvalue of A.

Recall that we defined the norm of a linear transformation as

∥A∥BL = sup
x:∥x∥=1

∥Ax∥ .

When A is symmetric (so that its eigenvalues exist), this norm is equal to the largest
eigenvalue of A.

Lemma 4.4 (Eigenvalues and operator norm). Suppose the n × n matrix A has n eigenvalues,
λ1, ..., λn, then ∥A∥BL = max1≤i≤n λi.

We saw that definiteness is related to both determinant and eigenvalues. It should come
as no suprise that determinants and eigenvalues are directly related. The determinant of
a matrix is equal to the product of its eigenvalues.

Lemma 4.5 (Eigenvalues and determinants). If A has eigenvalues λ1, ..., λn, such that

det(A − tI) =
n

∏
i=1

(t − λi)

then det(A) = ∏n
i=1 λi.

5. GLOBAL MAXIMUM AND MINIMUM

The second order condition (3.1) along with the first order condition gives a nice way
of finding local maxima of a function, but what about the global maximum? In general,
you could use the first and second order conditions to find each of the local maxima of
F in the interior of U. You then must compare each of these local maxima with each
other and the value of F on the boundary of U to find the global maximum of F on U.
If there are many local maxima or the boundary of U is complicated, this procedure can
be quite complicated. It would be nice if there was some simpler necessary and sufficient
for a global maximum. Unfortunately, there is no such general necessary and sufficient
condition. There is, however, a sufficient condition that is sometimes useful.

Definition 5.1. Let f : U→R. f is convex if for all x, y ∈ U with ℓ(x, y) ⊆ U we have
f (tx + (1 − t)y) ≤ t f (x) + (1 − t) f (y) for all t ∈ [0, 1].

Equivalently, F is convex if the set {(y, x) : x ∈ U, y ≥ f (x)} ⊆ U × R is convex. This
set is called the epigraph of f . If you draw the graph of the function, the epigraph is the
set of points above the function.

Definition 5.2. Let f : U→R. f is concave if for all x, y ∈ U with ℓ(x, y) ⊆ U we have
f (tx + (1 − t)y) ≥ t f (x) + (1 − t) f (y) for all t ∈ [0, 1].

Equivalently, F is concave if the set {(y, x) : x ∈ U, y ≤ f (x)} is convex.

Theorem 5.1. Let F : U→R be twice continuously differentiable and U ⊆ Rn be convex. Then,
(1) For maximization:

(a) The following three conditions are equivalent:
11
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(i) F is a concave function on U
(ii) F(y)− F(x) ≤ DFx(y − x) for all x, y ∈ U,

(iii) D2Fx is negative semi-definite for all x, y ∈ U
(b) If F is a concave function on U and DFx∗ = 0 for some x∗ ∈ U, then x∗ is the global

maximizer of F on U.
(2) For minimization:

(a) The following three conditions are equivalent:
(i) F is a convex function on U

(ii) F(y)− F(x) ≥ DFx(y − x) for all x, y ∈ U,
(iii) D2Fx is positive semi-definite for all x, y ∈ U

(b) If F is a convex function on U and DFx∗ = 0 for some x∗ ∈ U, then x∗ is the global
minimizer of F on U.

This theorem is often summarized by saying that convex minimization problems (i.e.
the set U and function F are both convex) have unique solutions. We will not prove this
theorem until after covering convexity in more detail, which we may or may not have
time for. An important fact about convex optimization problems is that their solutions
can be efficiently computed. A general optimization problem is what is known as NP-
hard, which in practice means that you can write down what looks like a reasonable not
too large optimization problem whose solution takes prohibitively long to compute. In
contrast convex optimization problems can be solved in polynomial time. In particu-
lar, if f is convex, x is n dimensional, the steps needed to compute f (x) is M, and you
want to find x̂ such that | f (x̂)− f (x∗)| < ϵ, then there are algorithms that can find x̂
in O

(
n(n3 + M) log(1/ϵ)

)
steps. In fact, there are algorithms for special types of convex

problems that can solve them nearly as fast as a least squares problem or a linear program.
In practice, this means that most convex problems can be solved quickly with up to about
a one thousand variables, and some convex problems can be solved very quickly even
with tens or hundreds of thousands of variables. The discovery that convex optimization
problems can be solved efficiently was fairly recent. The main theoretical breakthroughs
began in the late eighties and early nineties, and it remains an active area of research.

6. APPLICATIONS

6.1. Profit maximization.

6.1.1. Competitive multi-product firm. Suppose a firm has produces k goods using n inputs
with production function f : Rn→Rk. The prices of the goods are p, and the prices of the
inputs are w, so that the firm’s profits are

Π(x) = pT f (x)− wTx.

The firm chooses x to maximize profits.

max
x

pT f (x)− wTx

The first order condition is
pTD fx∗ − w = 0.

12
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or without using matrices,
k

∑
j=1

pj
∂ f j

∂xi
(x∗) = wi

for i = 1, ..., n. The second order condition is that

D[pTD f ]x∗ =


∑k

j=1 pj
∂2 f j

∂x2
1
(x∗) · · · ∑k

j=1 pj
∂2 f j

∂x1∂xn
(x∗)

...
...

∑k
j=1 pj

∂2 f j
∂x1∂xn

(x∗) · · · ∑k
j=1 pj

∂2 f j

∂x2
n
(x∗)


must be negative semidefinite.

6.1.2. Multi-product monopolist. Consider the same setup as before, but now with a mo-
nopolist who recognizes that prices depend on output. Let the inverse demand function
be P(q) where P : Rk→Rk. Now the firm’s problem is

max
x

P( f (x))T f (x)− wTx

The first order condition is

D f T
x∗DPT

f (x∗) f (x∗) + P( f (x∗))D fx∗ − w = 0

or without matrices,
k

∑
j=1

(
k

∑
l=1

∂Pj

∂ql
( f (x∗))

∂ fl
∂xi

(x∗) fl(x∗) + Pj( f (x∗))
∂ f j

∂xi
(x∗)

)
= wi

We can get something a bit more interpretable by writing this in terms of elasticities.
Recall that the elasticity of demand for good l with respect to the price of good j is

(ϵl
j)
−1 =

∂Pj
∂ql

ql
Pl

. Then,

k

∑
j=1

Pj( f (x∗))

(
k

∑
l=1

(ϵl
j)
−1 ∂ fl

∂xi
(x∗) +

∂ f j

∂xi
(x∗)

)
=wi

k

∑
j=1

Pj( f (x∗))

[
∂ f j

∂xi
(x∗)

(
1 + (ϵ

j
j)
−1
)
+ ∑

l ̸=j
(ϵl

j)
−1 ∂ fl

∂xi
(x∗)

]
=wi

There is a way to compare the price and quantity produced by the monopolist to the
competitive firm. There are also things that can be said about the comparison between a
single product monopolist (k = 1) vs a multi-product monopolist. It might be interesting
to derive some of these results. To begin with let k = 1 and compare the monopolist to
the competitive firm. Under some reasonable assumptions on f and P, you can show that
xm < xc where xm is x∗ for the monopolist and xc is x∗ for the competitive firm. You can
also show that pm > pc and that |ϵ1

1| < 1 for the monopolist. (Although I left it out of the
notation above, ϵ depends on x).
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