
OPTIMAL CONTROL AND DYNAMIC PROGRAMMING
PAUL SCHRIMPF

NOVEMBER 14, 2013
UNIVERSITY OF BRITISH COLUMBIA

ECONOMICS 526

1. INTRODUCTION

In the past few lectures we have focused on optimization problems of the form

max
x∈U

f (x) s.t. h(x) = c

where U ⊆ Rn. The variable that we are optimizing over, x, is a finite dimensional
vector. There are interesting optimization problems in economics that involve an infinite
dimensional vector.

Example 1.1. [Consumption-savings] An infinite horizon consumption-savings problem,

max
{ct}∞

t=0,{st}∞
t=1

∞

∑
t=0

βtu(ct) s.t. st+1 = (1 + rt)(st − ct),

involves maximizing over a countably infinite sequence of ct and st. The interpretation of
this problem is that u(c) is the per-period utility from consumption. ct is consumption at
time t. st is the savings you have at time t. rt is the return to savings at time t in period
t + 1, and β is the discount factor.

Example 1.2. [Contracting with a continuum of types] On problem set 6, we studied a
problem where a price discriminating monopolist was selling a good to two types of con-
sumers. We could also imagine a similar situation where there is a continuous distribu-
tion of types. A consumer of type θ gets 0 utility from not buying the good, and θν(q)− T
from buying q units of the good at cost T. Let the types be indexed by θ ∈ [θl, θh] and
suppose the density of θ is fθ. The seller does not observe consumers’ types. However,
the seller can offer a menu of contracts (q(θ), T(θ)) such that type θ will choose contract
(q(θ), T(θ)). The seller chooses the contracts to maximize profits subject to the require-
ment that each type chooses its contract.

max
q(θ),T(θ)

∫ θh

θl

[T(θ)− cq(θ)] fθ(θ)dθ

s.t.

θν (q(θ))− T(θ) ≥ 0∀θ (1)

θν (q(θ))− T(θ) ≥ max
θ̃

θν
(
q(θ̃)

)
− T(θ̃)∀θ (2)

The first constraint (1) is referred to as the participation (or individual rationality) con-
straint. It says that each type θ must prefer buying the good to not. The second constraint

1

OPTIMAL CONTROL AND DYNAMIC PROGRAMMING

(2) is referred to as the incentive compatibility constraint. It says that type θ must prefer
buying the θ contract instead of pretending to be some other type θ̃. This approach to con-
tracting with asymmetric information—that you can setup contracts such that each type
chooses a contract designed for it—is called the revelation principle because the choice of
contract makes the consumers reveal their types. Note that this setup does not just apply
to price discriminating monopolists. There are many other applications. For example,
if you consider a government that needs to raise a certain amount of revenue by tax-
ing workers with heterogeneous productivity, then you end up with essentially the same
problem. θ would be worker productivity. q(θ) is the labor supplied by type θ, θν(q(θ)) is
the output of type θ, and T(θ) is the tax. The government maximizes total output subject
to a revenue constraint and the constraints above.

Anyway, in these sorts of problems, we need to take the maximum with respect to a
function instead of a finite dimensional vector.

Dynamic programming and optimal control are two approaches to solving problems
like the two examples above. In economics, dynamic programming is slightly more of-
ten applied to discrete time problems like example 1.1 where we are maximizing over a
sequence. Optimal control is more commonly applied to continuous time problems like
1.2 where we are maximizing over functions. However, dynamic programming can also
be applied to continuous time problems and optimal control can be applied to discrete
time problems. Optimal control and dynamic programming problems are often treated
quite differently than finite dimensional optimization problems. Indeed there are spe-
cialized techniques for solving optimal control and dynamic programming problems that
do not appear in finite dimensional optimization. However, the basic theory of infinite
dimensional and finite dimensional optimization are the same. For infinite dimensional
optimization problems, we can get the exact same first and second order conditions as we
did in the finite dimensional case. To do this, we need to define derivatives in abstract (in
particular infinite dimensional) vector spaces.

1.1. References. The last chapter of Chiang and Wainwright is a good practical introduc-
tion to optimal control and Pontryagin’s maximum principle. A classic reference for opti-
mization on vector spaces is Optimization by vector space methods by Luenberger (1969). Ap-
plied dynamic programming by Bellman and Dreyfus (1962) and Dynamic programming and
the calculus of variations by Dreyfus (1965) provide a good introduction to the main idea of
dynamic programming, and are especially useful for contrasting the dynamic program-
ming and optimal control approaches. Stokey and Lucas Recursive methods in economics
dynamics (1989) is the standard economics reference for dynamic programming. Bert-
sekas’s Dynamic programming and stochastic control is the standard reference for dynamic
programming with uncertainty. Acemoglu’s Introduction to Modern Economic Growth in-
cludes two very nice chapters on optimal control and dynamic programming.

2. DIFFERENTIATION IN VECTOR SPACES

We covered differentiation in vector spaces already. We briefly review the main ideas
here.

2

OPTIMAL CONTROL AND DYNAMIC PROGRAMMING

Recall from earlier that there are many sets of functions that are vector spaces. We
talked a little bit about Lp spaces of functions. The set of all continuous functions and the
sets of all k times continuously differentiable functions are also vector spaces. One of these
vector spaces of functions will be appropriate for finding the solution to optimal control
problems like example 1.2. Exactly which vector space is a slightly technical problem
dependent question, so we will not worry about that for now (and we may not worry
about it at all). Similarly, there are vector spaces of infinite sequences. Little ℓp is similar
to big Lp, but with sequences instead of functions

ℓp = {{xt}∞
t=1 :

(
∞

∑
t=1

|xt|p
)1/p

< ∞}

There are others as well. Again, the right choice of vector space depends on the problem
being considered, and we will not worry about it too much.

Recall our definition of the derivative for a function f : Rn→Rm was that D fx satisfies

lim
∥h∥→0

∥ f (x + h)− f (x)− D fxh∥
∥h∥ = 0

Rn and Rm are just two particular vector spaces. To write down this definition of the
derivative, we needed to have norms, so to define derivatives in an abstract vector space,
the space should have a norm. The definition of a derivative also involves taking limits.
Recall that a complete normed vector space is a normed vector space where all Cauchy
sequences converge. This ensures that limits are well behaved. We call complete normed
vector spaces Banach spaces. Finally, D fx is an m by n matrix. It is a linear transformation
from Rn→Rm.

Definition 2.1. Let V and W be Banach spaces and f : V→W. The Fréchet derivative of
f at x ∈ V is a continuous linear transformation from V to W, denoted D fx such that

lim
∥h∥→0

∥ f (x + h)− f (x)− D fxh∥
∥h∥ = 0.

Notice that this definition of the derivative is exactly the same as our definition of the
derivative for functions from Rn→Rm. It is called the Fréchet derivative because there
are other notions of the derivative on abstract vector spaces. The Gâteaux derivative is
a directional derivative. It is a weaker concept in that Fréchet differentiability implies
Gâteaux differentiability, but not vice versa. There is also an intermediate type of de-
rivative called the Hadamard derivative, which is sometimes useful in econometrics and
statistics. We will only use Fréchet derivatives in this class, so henceforth, whenever we
talk about the derivative of a function on Banach spaces, we mean the Fréchet derivative.

Given two Banach spaces, V and W, let BL(V, W) denote the set of all linear transfor-
mations from V to W. The derivative of f : V→W will be in BL(V, W). We can show that
BL(V, W) is a vector space, and we can define a norm on BL(V, W) by

∥D∥BL(V,W) = sup
∥v∥V=1

∥Dv∥W

3

OPTIMAL CONTROL AND DYNAMIC PROGRAMMING

where ∥·∥V is the norm on V and ∥·∥W is the norm on W. Moreover, we could show that
BL(V, W) is complete. Thus, BL(V, W) is also a Banach space. Viewed as function of x,
D fx is a function from V to BL(V, W). As we just said, there are both Banach spaces, so
can differentiate D fx with respect to x. In this way, we can define the second and higher
derivatives of f : V→W.

With this definition of the derivative, almost everything that we proved in lecture 8
for functions from Rn→Rm also holds functions on Banach spaces. In particular, Tay-
lor’s theorem, the implicit function theorem, and the inverse function theorem hold. The
proofs of these theorems on Banach spaces are essential the same as in lecture 8, so we
will not go over them. The mean value theorem is slightly more delicate. It still holds for
functions f : V→Rm, but not when the target space of f is infinite dimensional. If you
find this interesting, you may want to go through the proofs of all these claims, but it is
not necessary to do so.

3. OPTIMIZATION IN VECTOR SPACES

In the previous section we saw that differentiation for functions on Banach spaces is
the same as for functions on finite dimensional vector spaces. All of our proofs of first
and second order conditions only relied on Taylor expansions and some properties of
linear transformations. Taylor expansions and linear transformations are the same on
Banach spaces as on finite dimensional vector spaces, so our results for optimization will
still hold. Let’s just state for the first order condition for equality constraints. The other
results are similar, but stating them gets to be slightly cumbersome.

Theorem 3.1 (First order condition for maximization with equality constraints). Let f :
U→R and h : U→W be continuously differentiable on U ⊆ V, where V and W are Banach
spaces. Suppose x∗ ∈ interior(U) is a local maximizer of f on U subject to h(x) = 0. Suppose
that Dhx∗ : V→W is onto. . Then, there exists µ∗ ∈ BL(W, R) such that for

L(x, µ) = f (x)− µh(x).

we have

DxL(x∗, µ∗) =D fx∗ − µDhx∗ = 0BL(V,R)

DµL(x∗, µ∗) =h(x∗) = 0W

There are a few differences compared to the finite dimensional case that are worth com-
menting on. First, in the finite dimensional case, we had h : U→Rm, and the condition
that rankDhx∗ = m. This is the same as saying that the Dhx∗ : Rn→Rm is onto. Rank is
not well-defined in infinite dimension, so we now state this condition as Dhx∗ being onto
instead of being rank m.

Secondly, previously µ ∈ Rm, and the Lagrangian was

L(x, µ) = f (x)− µTh(x).

Viewed as a 1 by m matrix, µT is a linear transformation from Rm to R. Thus, in the
abstract case, we just say µ ∈ BL(W, R), which as when we defined transposes, is called
the dual space of W and is denoted W∗.

4

OPTIMAL CONTROL AND DYNAMIC PROGRAMMING

Finally, we have subscripted the zeroes in the first order condition with BL(V, R) and
W to emphasize that the first equation is for linear transformations from V to R, and the
second equation is in W. D fx∗ is a linear transformation from V to R. Dhx∗ goes from V
to W. µ goes from W to R, so µ composed with Dhx∗, which we just denoted by µDhx∗ is
a linear transformation from V to R.

4. OPTIMAL CONTROL

Optimal control is just one example of optimization in a vector space.

4.1. Continous time optimal control. The classic continuous time optimal control prob-
lem has the following form:

max
x(t),y(t)

∫ T

0
F(x(t), y(t), t)dt

s.t.

dy
dt

= g(x(t), y(t), t)∀t ∈ [0, T]

y(0) = y0

x is called a control variable, and y is called a state variable. The choice of x controls the
evolution of y through the first constraint.

In terms of our notation for optimization in vector spaces, the space being maximized
over, V is pairs of functions (x(t), y(t)) from [0, T] to R. The objective function is

f (x, y) =
∫ T

0
F(x(t), y(t), t)dt.

It is a mapping from V to R. The constraint, h(x, y) is a function from V to a space of
functions from [0, T] to R. As above, we will call that space W, so h : V→W is

h(x, y)(t) =
dy
dt

(t)− g(x(t), y(t), t).

Let’s apply theorem 3.1, and write out the first order condition. The multiplier, µ is a
linear transformation from W to R. There is also the constraint that y0 = y(0). Let µ0
be the multiplier on that constraint. The Lagrangian, L(x, y, µ, µ0) is a map from V ×
BL(W, R)× R to R given by

L(x, y, µ, µ0) =
∫ T

0
F(x(t), y(t), t)dt − µ

(
dy
dt

− g(x, y, ·)
)
− µ0(y(0)− y0).

I wrote dy
dt − g(x, y, ·) to emphasize that this is some element of W, a function of t. µ takes

this function of t and returns a real number. Many such transformations can be written
as integrals. Let’s assume that

µ(w) =
∫ T

0
w(t)λ(t)dt

5

OPTIMAL CONTROL AND DYNAMIC PROGRAMMING

for some function λ. We can guarantee that this is true by appropriately defining V and
W.1 It may help to compare this to the finite dimensional case where if have constraints
h : Rn→Rm we write µTh(x) = ∑m

j=1 µjhj(x). In this problem we have infinite constraints,
so instead of a sum, we use an integral.

The first order conditions are

[x] : Dx fx∗,y∗ − µDxhx∗,y∗ =0 (3)

[y] : Dy fx∗,y∗ − µDyhx∗,y∗ − µ0 =0 (4)

[µ] : h(x∗, y∗) =0 (5)

Let’s work out exactly what each of these derivatives are. Dx f is a linear map from V→R.
Elements of V are pairs of functions from [0, T] to R. If we consider a single function from
[0, T] to R, v, and look at

d
da

(f (x + av, y)) |a=0

, we get the directional derivative of f in direction v at x, y. By analogy with the finite
dimensional case, when f is differentiable, all its directional derivatives exist, are equal,
and

d
da

(f (x + av, y)) |a=0 = Dx f v.

So to describe Dx f it is enough to look at the directional derivatives of f .

d
da

f (x + av, y) =
d
da

∫ T

0
F(x(t) + av(t), y(t), t)dt

=
∫ T

0

∂F
∂x

(x(t), y(t), t)v(t)dt

where we need F to be continuously differentiable for all t ∈ [0, 1] in a neighborhood of
(x(t), y(t), t) so that interchanging the derivative and integral is allowed. Thus,

Dx fx,yv =
∫ T

0

∂F
∂x

(x(t), y(t), t)v(t)dt.

Notice that this expression is linear in v. Similarly,

d
da

f (x, y + av) =
d
da

∫ T

0
F(x(t), y(t) + av(t), t)dt

=
∫ T

0

∂F
∂y

(x(t), y(t), t)v(t)dt

so

Dy fx,yv =
∫ T

0

∂F
∂y

(x(t), y(t), t)v(t)dt.

1One sufficient condition is to make W a Sobolev space that includes generalized functions. Sobolev
spaces that include generalized functions are Hilbert spaces, so it follows from the Riesz representation
theorem that µ(w) = ⟨w, λ⟩. However, we only briefly mentioned Hilbert spaces, and we haven’t talked
at all about Sobolev spaces, generalized functions, or the Riesz representation theorem, so this footnote is
likely very confusing and should be ignored.

6

OPTIMAL CONTROL AND DYNAMIC PROGRAMMING

Now we calculate the derivative of h. h : V→W, so its derivative is a linear map from
V to W. Here, W is a function from [0, T] to R, so Dxh takes functions from [0, T]→R and
maps them to functions from [0, T]→R. Using the same reasoning as above,

d
da

h(x + av, y)(t) =
d
da

[
dy
dt

(t)− g(x(t) + av(t), y(t), t)
]

=− ∂g
∂x

(x(t), y(t), t)v(t)

so

Dxh(v)(t) = −∂g
∂x

(x(t), y(t), t)v(t).

Next,

d
da

h(x, y + av)(t) =
d
da

[
d(y + av)

dt
(t)− g(x(t), y(t) + av(t), t)

]
=

dv
dt

(t)− ∂g
∂y

(x(t), y(t), t)v(t)

so

Dyh(v)(t) =
dv
dt

(t)− ∂g
∂y

(x(t), y(t), t)v(t).

Finally, as we assumed above, it can be shown that µ(w) =
∫ T

0 w(t)λ(t)dt for some func-
tion λ.

Combining all these facts, we can write the first order conditions for x and y as

[x] : 0 =
∫ T

0

∂F
∂x

(x(t), y(t), t)v(t)dt −
∫ T

0
−∂g

∂x
(x(t), y(t), t)v(t)λ(t)dt

=
∫ T

0
v(t)

(
∂F
∂x

(x(t), y(t), t) +
∂g
∂x

(x(t), y(t), t)λ(t)
)

dt

[y] : 0 =
∫ T

0

∂F
∂y

(x(t), y(t), t)v(t)dt −
∫ T

0

(
∂v
∂t

(t)− ∂g
∂y

(x(t), y(t), t)v(t)
)

λ(t)dt − µ0v(0)

=
∫ T

0
v(t)

(
∂F
∂y

(x(t), y(t), t) +
∂g
∂y

(x(t), y(t), t)λ(t)
)

dt −
∫ T

0

dv
dt

(t)λ(t)dt − µ0v(0)

=
∫ T

0
v(t)

(
∂F
∂y

(x(t), y(t), t) +
∂g
∂y

(x(t), y(t), t)λ(t)
)

dt +
∫ T

0

dλ

dt
(t)v(t)dt−

− λ(T)v(T) + λ(0)v(0)− µ0v(0).

The last line comes from integration by parts. These equations must be zero for all v ∈ V.
This can be true for all v only if the integrands are zero everywhere. That is if

[x] : 0 =
∂F
∂x

(x(t), y(t), t) +
∂g
∂x

(x(t), y(t), t)λ(t)

[y] : −dλ

dt
(t) =

∂F
∂y

(x(t), y(t), t) +
∂g
∂y

(x(t), y(t), t)v(t)λ(t)

[µ] :
dy
dt

=g(x(t), y(t), t)

7

OPTIMAL CONTROL AND DYNAMIC PROGRAMMING

and λ(T) = 0 and µ0 = λ(0). These are the usual conditions that you get from using
the Hamiltonian, which you may have seen before. The function λ(t) is called the costate
variable. The following theorem summarizes this result.

Theorem 4.1 (Pontryagin’s maximum principle). Consider

max
x,y∈U⊆X×Y

∫ T

0
F(x(t), y(t), t)dt

s.t. (6)

dy
dt

= g(x(t), y(t), t)∀t ∈ [0, T] (7)

y(0) = y0.

where X and Y are some Banach spaces of differentiable functions from [0, T] to R, and F, g :
R2 × [0, T]→R are continuously differentiable. Define the Hamiltonian as

H(x, y, λ, t) = F(x(t), y(t), t) + λ(t)g(x(t), y(t), t).

If x∗ and y∗ are a local constrained maximum of (7) in the interior of U, then there exists λ∗(t)
such that

[x] : 0 =
∂H
∂x

(x∗, y∗, λ∗, t)

[y] : −dλ

dt
(t) =

∂H
∂y

(x∗, y∗, λ∗, t)

[λ] :
dy
dt

(t) =
∂H
∂λ

(x∗, y∗, λ∗, t)

2

4.2. Application: optimal contracting with a continuum of types. Let’s solve example
1.2.

max
q(θ),T(θ)

∫ θh

θl

[T(θ)− cq(θ)] fθ(θ)dθ

s.t.

θν (q(θ))− T(θ) ≥ 0∀θ (8)

θν (q(θ))− T(θ) ≥ max
θ̃

θν
(
q(θ̃)

)
− T(θ̃)∀θ (9)

First, notice that if the participation constraint (8) holds for type θl, and (9) holds for θ,
then the participation constraint must also hold for θ.

2The condition for x is often stated somewhat more generally as

H(x∗, y∗, λ∗, t) = max
x

H(x, y∗, λ∗, t).

8

OPTIMAL CONTROL AND DYNAMIC PROGRAMMING

We can show that the incentive compatibility constraint (9) is equivalent to the follow-
ing local incentive compatibility constraint and monotonicity constraint.

θν′(q(θ))q′(θ)− T′(θ) =0 (10)

dq(θ)
dθ

≥0 (11)

Consider the incentive compatibility constraint (9). The first order condition for the max-
imization is

θν′(q(θ̃))q′(θ̃) = T′(θ̃).

This is the same as the local incentive compatibility constraint with θ = θ̃.
The second order condition for (9) is

θν′′(q(θ̃))q′(θ̃)2 + θ̃ν′(q(θ̃))q′′(θ̃)− T′′(θ̃) ≤ 0

On the other hand if we differentiate the local incentive compatibility constraint we get

ν′(q(θ))q′(θ) + θν′′(q(θ))q′(θ)2 + θν′(q(θ))q′′(θ)− T′′(θ) =0

θν′′(q(θ))q′(θ)2 + θν′(q(θ))q′′(θ)− T′′(θ) =− ν′(q(θ))q′(θ)

We assume that ν′ > 0, and the monotonicity constraint says that q′ ≥ 0. Hence, this
equation implies the second order condition. Therefore, we have shown that the local
incentive compatibility constraint and monotonicity constraint are equivalent incentive
compatibility constraint.

Now, we can write the seller’s problem as

max
q(θ),T(θ)

∫ θh

θl

[T(θ)− cq(θ)] fθ(θ)dθ

s.t.

θlν (q(θl))− T(θl) ≥ 0 (12)

θν′(q(θ))q′(θ)− T′(θ) = 0 (13)

dq(θ)
dθ

≥ 0 (14)

The first order condition for T is for any x : [θl, θh]→R,

0 =
∫ θh

θl

x(θ) fθ(θ)dθ −
∫ θh

θl

µ(θ)
dx
dθ

(θ)dθ + µ0x(θl)

0 =
∫ θh

θl

x(θ)
(

fθ(θ) +
dµ

dθ
(θ)

)
− µ(θh)x(θh) + µ(θl)x(θl) + µ0x(θl).

9

OPTIMAL CONTROL AND DYNAMIC PROGRAMMING

From this we see that µ′(θ) = − fθ(θ), µ(θl) = −µ0, and µ(θh) = 0. Given µ′ and µ(θh), it
must be that

µ(θ) =
∫ θ

θh

− fθ(θ̂)dθ̂

=1 −
∫ θ

θl

fθ(θ̂)dθ̂

=1 − Fθ(θ)

where Fθ is the cdf of fθ. The first order condition for q is

0 =
∫ θh

θl

cx(θ) fθ(θ)dθ −
∫ θh

θl

µ(θ)
(
θν′′(q(θ))q′(θ)x(θ) + θν′(q(θ))x′(θ)

)
dθ−

− µ0θlν
′(q(θl))x′(θl)−

∫ θh

θl

λ(θ)x′(θ)dθ

0 =
∫ θh

θl

x(θ)
(
c fθ(θ)− µ(θ)

(
θν′′(q(θ))q′(θ)x(θ)− ν′(q(θ))− θν′′(q(θ))q′(θ)

))
dθ+

+
∫ θh

θl

µ′(θ)θν′(θ)dθ − µ(θh)θhν′(q(θh))x(θh) + µ(θl)θlν
′(q(θl))x(θl)−

− µ0θlν
′(q(θl))x′(θl)−

∫ θh

θl

λ(θ)x′(θ)dθ

0 =
∫ θh

θl

x(θ)
(
c fθ(θ) + µ(θ)ν′(q(θ)) + µ′(θ)θν′(θ)

)
dθ−

− µ(θh)θhν′(q(θh))x(θh) + µ(θl)θlν
′(q(θl))x(θl)−

− µ0θlν
′(q(θl))x′(θl)−

∫ θh

θl

λ(θ)x′(θ)dθ

If we assume that the monotonicy constraint does not bind, so λ(θ) = 0, we see that

0 =c fθ(θ) + µ(θ)ν′(q(θ)) + µ′(θ)θν′(q(θ))

0 =c fθ(θ) + (1 − Fθ(θ))ν
′(q(θ))− fθ(θ)θν′(q(θ))

θν′(q(θ)) =c +
1 − Fθ(θ)

fθ(θ)
ν′(q(θ))(

θ − 1 − Fθ(θ)

fθ(θ)

)
ν′(q(θ)) =c

You may recall from problem set 6 that with symmetric information, θν′(q(θ)) = c. Since
ν′ is decreasing in q, this implies that q(θ) is less than what it would be in the first best
symmetric information case for all θ < θh. The highest type, θh gets the optimal level of
consumption since Fθ(θh) = 1.

10

OPTIMAL CONTROL AND DYNAMIC PROGRAMMING

4.3. Discrete time optimal control. We can also consider discrete time optimal control
problems of the form

max
xt,yy

∞

∑
t=0

F(xt, yt, t)

s.t.

yt+1 − yt = g(xt, yt, t)

with y0 given. For simplicity, we will assume xt ∈ R and yt ∈ R, but xt and yt could be
elements of any normed vector spaces. Example 1.1 has this form with xt = ct, yt = st,
F(xt, yt, t) = βtu(ct), and g(xt, yt, t) = rtst − (1 + rt)ct. We can apply theorem 3.1 to
this problem. Here we are maximizing over a pair of infinite sequences, {xt, yt}∞

t=0 ∈ V,
where V is a Banach space of such sequences.3 The constraint can be written as

h(x, y)t = yt+1 − yt − g(xt, yt, t).

h takes the pair of infinite sequences, x, y ∈ V and returns another infinite sequence,
which is in some Banach space W. The multiplier, µ is a map from W to R. If W were
finite dimension, we would have µ(w) = µTw = ∑m

i= µmwm. It turns out that for infinite
sequences, µ, we could show that µ must have the same form, so µ(w) = ∑∞

t=1 µtwt. Thus,
we can write the Lagrangian as

L(x, y, µ) =
∞

∑
t=1

(F(xt, yt, t)− µt(yt+1 − yt − g(xt, yt, t)) .

Note that the derivative of L with respect to x is a linear transformation from V to R. If
we consider v ∈ V and look at the directional derivative in direction v, like we did in the
continuous case, we see that

DxL(v) =
∞

∑
t=1

(
∂F
∂x

(xt, yt, t)vt + µt
∂g
∂x

(xt, yt, t)vt

)
= 0

This must hold for all vt, so the summand must be zero for each t. Applying similar
reasoning to the first order conditions for y and µ, we obtain:

[x] :
∂F
∂x

(xt, yt, t) + µt
∂g
∂x

(xt, yt, t) =0

[y] : µt−1 − µt =
∂F
∂y

(xt, yt, t) + µt
∂g
∂y

(xt, yt, t) =0

[mu] : yt+1 − yt =g(xt, yt, t)

and y0 = 0 Notice the similarity to theorem 4.1. The only difference is that these equations
involve µt − µt−1 instead of dλ

dt and yt+1 − yt instead of dy
dt .

3As in the continuous time case, we will be somewhat vague about this space because its details de-
pends on the problem at hand. For example, it would often be appropriate to use the space of all bounded
sequences, ℓ∞ = {xt, yt : xt ≤ M, yt ≤ M∀t for some M < ∞}. Other times it would be appropriate to use
some other space. For example, in 1.1 it might make sense to consider any sequence such that ∑∞

t=0 βtu(ct)

is finite, or if rt = r is fixed, it might make sense to look at any sequence such that ∑∞
t=0

ct
(1+r)t is finite. We

will not worry about these details.
11

OPTIMAL CONTROL AND DYNAMIC PROGRAMMING

5. DYNAMIC PROGRAMMING

For problems like examples 1.1 and 1.2, optimal control focuses on characterizing x∗

through the first order conditions (given x∗, y∗ is easily determined through the con-
straint). That is, optimal control focus on characterizing the maximizer. An alternative
approach is to focus on the value of the maximized function. This value will depend
on the entire problem, but in particular it depends on the initial condition y0. Thus, we
can think of the value as function of the initial state. Dynamic programming focuses on
characterizing the value function.

The basic idea of dynamic programming can be illustrated in a familiar finite dimen-
sional optimization problem. Consider a finite horizon discrete time consumption savings
choice.

max
ct,st

T

∑
t=0

βtu(ct) s.t. st+1 = (1 + rt)(st − ct)

with s0 given, and the constraint that sT+1 = 0. We could just write down the first order
conditions and try to solve them for ct. However, if T is large, this might be very difficult.
It can be especially difficult to calculate a solution numerically. The easiest maximization
problems to solve numerically are ones where the objective function is linear or quadratic.
In either of these cases, the amount work needed is proportional to the number of vari-
ables cubed. If T is large, T3 can be so large that computing a solution takes prohibitively
large.

We can divide this T dimensional problem to a series of smaller ones by first thinking
about what happens at time T. At time T we have some savings sT and want to choose cT
to solve

max
cT

u(cT) s.t. sT+1 = (1 + rT)(sT − cT) = 0

As long as u is increasing, it must be that c∗T(sT) = sT. If we define the value of savings at
time T as

VT(s) = u(s),
then at time T − 1 given sT−1, we can choose cT−1 to solve

max
cT−1,s′

u(cT−1) + βVT(s′) s.t.s′ = (1 + rT−1)(cT−1 − sT−1).

This is relatively simple maximization problem with just two variables, so we can solve it
without too much difficulty. Repeating in this way, for each t we can define the value of
savings at time t as

Vt(s) = max
ct,s′

u(ct) + βVt+1(s′) s.t.s′ = (1 + rt)(ct − s). (15)

This approach to sequential optimization was first proposed by Richard Bellman, so (15)
is called a Bellman equation. Notice that if (c∗t (st), s∗t+1(st) is a maximizer of (15) for
each t, then the sequence of c∗0(s0), s∗1(s0), c∗1(s1), ..., c∗T must be a maximizer of the original
problem. Bellman called this observation the principle of optimality. He described it as,
“An optimal policy has the property that whatever the initial state and initial decision
are, the remaining decisions must constitute an optimal policy with regard to the state
resulting from the first decision.” (Bellman and Dreyfus 1962).

12

OPTIMAL CONTROL AND DYNAMIC PROGRAMMING

In finite horizon problems, it easy to see that the Bellman equations will exist. However,
if we have an infinite horizon problem,

max
ct,st

∞

∑
t=0

βtu(ct) s.t. st+1 = (1 + rt)(st − ct)

then we cannot start from the last period to define the value function. However, if the
problem is stationary, that is if the problem at time t and at time t + 1 are the same, then
it seems reasonable to think that the value function would not depend on t and we could
just write

V(s) = max
c,s′

u(c) + βV(s′) s.t. s′ = (1 + r)(s − c).

Stokey and Lucas (1989) provide a fairly comprehensive analysis of various conditions
when this is possible. We will just look at one case.

Consider a problem that is slightly more general than the consumption savings choice
problem with fixed interest rate.

max
ct,st

∞

∑
t=0

βtu(ct, st)

st+1 = g(ct, st),

where c ∈ R, s ∈ R, 0 < β < 1, and u, g : R2→R. We want to show that the value
function exists. Suppose we start with some guess at the value function v0 : R→R. Then
we refine that guess by setting

v1(s) = max
c,s′

u(c, s) + βv0(s′) s.t. s′ = g(c, s)

We could do this repeatedly. That is, if we let T be the operator defined by this equation,

T(v)(s) = max
c,s′

u(c, s) + βv0(s′) s.t. s′ = g(c, s),

we can construct a sequence with vi+1 = T(vi). Recall from lecture 9 that T is a contraction
mapping if ∥∥T(v)− T(v′)

∥∥ ≤ c
∥∥v − v′

∥∥
for some c < 1 and all v, v′. We proved that contraction mappings have unique fixed
points. Thus, if we can show that T is a contraction mapping, then vi→V, where V is the
value function that satisfies the Bellman equation, like we want.

Suppose u is bounded, u(c, s) ≤ M for all c and s. Then
∞

∑
t=0

βtu(ct, st) ≤
M

1 − β
.

Therefore, we should only look at possible value functions with v(s) ≤ M
1−β for all s. To

show that T is a contraction, we must define the space that v lies in and its norm. Given
the boundedness of v, it is natural to look at L∞(R), the space of all bounded real-valued
function with norm ∥v∥ = supx∈R |v(x)|. Consider

T(v0)(s)− T(v1)(s) =
(
u(c0, s) + βv0(s′0)

)
−
(
u(c1, s) + βv1(s′1)

)
13

OPTIMAL CONTROL AND DYNAMIC PROGRAMMING

where ci, s′i is the maximizer to

max
ci,s′i

u(ci, s) + βvi(s′i) s.t. s′i = g(ci, s).

We should assume something that ensures c and s′ exist. Assuming c′, s lie in a compact
set would be sufficient. Notice that

Tv0(s) = u(c0, s) + βv0(s′0) ≥ u(c1, s) + βv0(s′1).

Therefore,

T(v0)(s)− T(v1)(s) ≥ β(v0(s′1)− v1(s′1).

Similarly,

T(v0)(s)− T(v1)(s) ≤ β(v0(s′0)− v1(s′0).

It follows that

∥T(v0)− T(v1)∥ = sup
s

|T(v0)(s)− T(v1)(s)|

≤ sup
s

|β(v0(s)− v1(s))| = β ∥v0 − v1∥ .

Hence, T is a contraction and has a unique fixed point V.
Advantages of dynamic program. Dynamic programming and optimal control can both
be used to solve the same sort of problems. Optimal control has the advantage that it
uses very directly what we know about optimization in Rn and applies it to infinite di-
mensional spaces. Dynamic programming has the advantage that it lets us focus on one
period at a time, which can often be easier to think about than the whole sequence. Be-
cause it only requires maximizing over a few variables at a time, dynamic programming
can be a much more efficient way to calculate solutions. The computational advantage of
dynamic programming is especially pronounced when some of the variables being max-
imized over are discrete. We will see some examples of this below.

5.1. Solving dynamic programs. There are three ways to solve a dynamic program. They
are:

(1) Guess and verify the form of the value function
(2) Iterate the Bellman equation analytically
(3) Iterate the Bellman equation numerically

If you guess correctly, the first method is fairly straightforward. However, guessing cor-
rectly is difficult and often is not possible at all. The second method will always work,
but may not lead to a closed form expression, and can be tedious. The third method is the
main way dynamic programs are solved in practice, but we will not go into the details.

Example 5.1 (Optimal growth by guessing and verifying). Consider an economy with a
single infinitely lived representative consumer with per-period log utility from consump-
tion and a discount factor of δ. The economy’s production function is Cobb-Douglas with

14

OPTIMAL CONTROL AND DYNAMIC PROGRAMMING

capital as the only input. Anything not consumed at time t becomes capital at time t + 1.
The optimal growth problem is

max
{ct}∞

t=0

∞

∑
t=0

δt log(ct)

s.t. ct + kt+1 = kα
t .

If we use the constraint to solve for ct and substitute into the objective, then we have

max
{kt}∞

t=1

∞

∑
t=0

δt log(kα
t − kt+1)

s.t.0 ≤ kt+1 ≤ kα
t

The Bellman equation for this problem is

v(k) = max
k′∈[0,kα]

log(kα − k′) + δv(k′)

Now, we guess the functional form of v. Since the per-period utility function is loga-
rithmic and production is Cobb-Douglas, it is sensible to guess that v(k) = c0 + c1 log(ka)
where c0, c1, and a are each constant for which we solve. Now, since c1 log(ka) = c1a log(k),
a and c1 are redundant, so we can get rid of a, and just guess that v(k) = c0 + c1 log(k).

We now use the Bellman equation to solve for c0 and c1. First we solve for the optimal
k′ for a given c0 and c1. The Bellman equation is:

c0 + c1 log k = max
k′∈[0,kα]

log(kα − k′) + δ
(
c0 + c1 log k′

)
.

We could write the Lagrangean with the constraints that k′ ≥ 0 and k′ ≤ kα. If we were
not sure whether these constraints would bind we would include them in the Lagrangean
and check the complementary slackness conditions. However, it is slightly easier to just
notice that these constraints cannot bind because utility approaches −∞ as k approaches
kα and the next period’s value approaches −∞ as k′ approaches 0, so neither constraint
will bind. Without the constraints, the first order condition is:

− 1
kα − k′

+ δc1
1
k′

=0

−k′ + δc1(kα − k′) = 0

k′ =
δc1

1 + δc1
kα

15

OPTIMAL CONTROL AND DYNAMIC PROGRAMMING

Now, we plug this back into the Bellman equation and solve for c0 and c1 by varying k.

c0 + c1 log k = max
k′∈[0,kα]

log(kα − k′) + δ
(
c0 + c1 log k′

)
= log

(
kα − δc1

1 + δc1
kα

)
+ δ

(
c0 + c1 log

(
δc1

1 + δc1
kα

))
= log

(
1

1 + δc1

)
+ α log k + δ

(
c0 + c1 log

(
δc1

1 + δc1

)
+ α log k

)
= log

(
1

1 + δc1

)
+ δc1 log

(
δc1

1 + δc1

)
︸ ︷︷ ︸

=c0

+ (α + δc1α)︸ ︷︷ ︸
=c1

log k

Both the left and right sides of this equation are affince function of log k. They can only
be equal for all k if the coefficients are equal. Thus,

c1 =α + δc1α

c1 =
α

1 − δα

and

c0 = log
(

1
1 + δc1

)
+ δc1 log

(
δc1

1 + δc1

)
=−

(
1 + δ

α

1 − δα

)
log
(

1 + δ
α

1 − δα

)
+ δ

α

1 − δα
log
(

δ
α

1 − δα

)
= log(1 − δα) +

δα

1 − δα
log(δα).

Finally, we should make sure that this solution doesn’t violate the constraint. We have

k′ =
δc1

1 + δc1
kα = δαkα,

so the constraints are satisfied as long as δα ∈ (0, 1).

If we cannot guess the form of the value function, we can try to find it by repeatedly
applying the Bellman operator. The Bellman operator is the T operator we defined above,

T(v)(s) = max
c,s′

u(c, s) + βv0(s′) s.t. s′ = g(c, s).

We already showed that T is a contraction (provided u is bounded and |β| < 1). Among
other things, this means that if we start with an arbitrary guess of the value function, v0,
and then construct a sequence by repeatedly applying T, i.e.,

vi = T(vi−1),

then the sequence vi will converge to a unique fixed point, v, that satisfies the Bellman
equation.

Example 5.2 (Optimal growth by iterating). The same optimal growth problem as in the
previous example can also be solved by iterating the Bellman operator. We start with any

16

OPTIMAL CONTROL AND DYNAMIC PROGRAMMING

guess of the value function for v0. A common choice is the zero function, v0(k) = 0 for all
k. Then we find v1 by solving

v1(k) = max
k′∈[0,kα]

log(kα − k′) + δv0(k)

= max
k′∈[0,kα]

log(kα − k′)

=α log k.

Then, we repeat to find v2.

v2(k) = max
k′∈[0,kα]

log(kα − k′) + δv1(k)

= max
k′∈[0,kα]

log(kα − k′) + δα log(k′)

=c2 + (α + δα2) log k,

where c2 is some constant that involves δ, α, and their logs. The third equality comes from
writing the first order condition, solving for k′, and subsituting back into the objective. We
can explicitly solve for c2, but it doesn’t matter for the first order condition for v3, so we
don’t need to know it exactly. We repeat again to get v3

v3(k) = max
k′∈[0,kα]

log(kα − k′) + δv1(k)

= max
k′∈[0,kα]

log(kα − k′) + δα log(k′)

=c3 + (α + δα2 + δ2α3) log k.

We could repeat again to get

v4(k) =c4 + (α + δα2 + δ2α3 + δ3α4) log k

v5(k) =c5 + (α + δα2 + δ2α3 + δ3α4 + δ4α5) log k
...

etc. Eventually, we hopefully notice a pattern. The more obvious pattern is that each vi
and will always be of the form vi(k) = ci + mi log(k). Thus, we know that v(k) will have
that same form and we can go back to the guess and verify method. Better yet, we could
notice that

vi(k) = ci + α
i

∑
j=0

(αδ)j log(k),

so

v(k) = C +
α

1 − αδ
log k.

If we care about C, we could find it by either explicitly writing ci in terms of δ and α and
taking the limit; or using the guess verify method just for C.

Solving for the value function, whether by guessing and verifying or iterating can be a
bit tedious. Even worse, for most specifications of the per-period payoff u and constraints
g, there will be no closed form solution for v. That makes it impossible to guess the form,

17

OPTIMAL CONTROL AND DYNAMIC PROGRAMMING

and iterating the Bellman equation will not lead to a discernible pattern (although it will
still give a convergent series). Using a computer to solve for the value function avoids
both these problems. A computer does not care that Bellman operator iteration is tedious,
and it can numerically compute v(k) even if it has no closed form.

Another situation where dynamic programs can be solved analytically is when the con-
trol variable is discrete. For example, a person could be choosing to work or not each pe-
riod, or a firm could be choosing to enter or exit a market. The section below and the last
problem on problem set 6 are examples of dynamic programming with discrete control
variables.

5.2. Application: Diamond-Mortensen-Pissarides search model. The standard neo-classical
and neo-Keynesian macroeconomic models do not have any involuntary unemployment.
If we include a labor-leisure choice, these models may not have everyone working (or at
least not working full-time), but everyone who does not work does so voluntarily. We
need to add something to the model if we want there to be involuntary unemployment.
The standard way of modeling involuntary unemployment is through a search model.
We will go through a simple version of a search model. It is often called a Diamond-
Mortensen-Pissarides search model because those three people were the first to propose
it.

There is a continuum of identical workers with total measure one. There is also a contin-
uum of identical firms. Time is discrete. Workers can be either unemployed or employed.
Firms can either employ one worker, post a vacancy, or do nothing. There is free entry.
Posting a vacancy costs k. When a firm has a worker, they produce output y. Matches
are dissolved with exogenous probability s. Unemployed workers produce a benefit of b
each period. Workers’ utility is just the discounted sum of their consumption.

Let ut be the mass of unemployed workers at time t, and let vt be the mass of vacancies.
That is,

ut =
∫

all workers
1{worker i unemployed}di

vt =
∫

all firms
1{firm j unemployed}dj.

There is some matching technology m(ut, vt) such that the probability that any given
unemployment worker finds a vacancy at time t is m(ut,vt)

ut
. Similarly, the probability that

any given vacant firm finds a worker is m(ut,vt)
vt

. We will assume that m has constant
returns to scale, so in particular,

m(ut, vt) = utm(1, vt/ut) = vtm(ut/vt, 1)

We define labor market tightness as θt =
vt
ut

. Then we can write the unemployed worker’s
and vacant firm’s matching probabilities as

m(ut, vt)

ut
= m(1, vt/ut) = m(1, θt) ≡ µ(θt)

and
m(ut, vt)

vt
=

m(1, vt/ut)ut

vt
=

µ(θt)

θt
.

18

OPTIMAL CONTROL AND DYNAMIC PROGRAMMING

To ensure that these are valid probabilities assume that 0 ≤ µ(θ) ≤ min{1, θ}. Also, we
will assume that µ is twice continuously differentiable with µ′ > 0 and µ′′ < 0.

5.2.1. Social planner. Suppose a social planner wants to maximize utility subject to the
matching and production technologies.

max
ct,vt,ut

∞

∑
t=0

βt ((1 − ut)ce
t + utcu

t)

s.t.

ce
t + cu

t = utb + (1 − ut)y − kvt

ut+1 = (1 − µ(vt/ut))ut + s(1 − ut)

Note that all that matters is total consumption, not ce
t and cu

t separately. Therefore we can
eliminate the first constraint, leaving

max
vt,ut

∞

∑
t=0

βt (utb + (1 − ut)y − kvt)

ut+1 = (1 − µ(vt/ut))ut + s(1 − ut).

Also, it is common to work with θt instead of vt. Since vt = utθt, we can write the problem
as

max
θt,ut

∞

∑
t=0

βt (utb + (1 − ut)y − kθtut)

ut+1 = (1 − µ(θt))ut + s(1 − ut).

The Bellman equation for this problem is

V(u) = max
θ,u′

ub + (1 − u)y − kθu + βV(u′)

s.t. u′ = (1 − µ(θ))u + s(1 − u)

A common method for solving dynamic programming problems is to guess the form of
the solution and then verify. It is often the case that V(u) has the same form as the per-
period payoff. Here, the per-period payoff is linear in u, so a good guess is that

V(u) = α0 + α1u.

We plug this guess in for V, then use the first order condition for the Bellman equation
to find out what α0 and α1 must be. If there are no α0 and α1 that make the first order
condition hold, then our guess was incorrect. If our guess was correct, we will be able to
uniquely solve for α0 and α1. Substituting the guess we have

α0 + α1u = max
θ,u′

ub + (1 − u)y − kθu + β
(
α0 + α1u′)

s.t. u′ = (1 − µ(θ))u + s(1 − u)

The first order conditions are

0 =− ku − λµ′(θ)u

0 =βα1 − λ

19

OPTIMAL CONTROL AND DYNAMIC PROGRAMMING

To solve for α1 note that by the envelope theorem,

α1 =b − y − kθ + βα1 (1 − µ(θ)− s)

α1 =
b − y − kθ

β (1 − µ(θ)− s)

From the first order condition,

µ′(θ∗) =
−k
βα1

µ′(θ∗) =
−k (1 − µ(θ∗)− s)

(b − y − kθ∗)
(16)

In particular, θ∗ does not depend on u. Therefore, u∗′ only depends on u through the
constraint. Since the constraint is linear in u, u∗′ will also be linear in u. Finally, the
guess V(u) = α0 + α1u is linear in u, so V(u∗′) will also be linear in u. Therefore, our
guess is verified. By itself, solving the social planner problem is not very insightful. The
one useful thing is that we know that the efficient level of labor market tightness satisfies
(16). We can use this equation as a benchmark to compare what happens under other
conditions.

5.2.2. Competitive equilibrium. Due to the matching friction, wages cannot be determined
by supply and demand in the usual way. A worker cannot just go and find another job
at the prevailing wage. Likewise for a firm. Together, a matched worker and firm are
strictly better off than an unmatched worker and firm. Matched workers and firms earn a
surplus, and we need some way of deciding how to divide this surplus. The typical way
is through Nash bargaining. If the total output of a match is y, the bargaining power of
the worker is η, the outside option of the worker is ow and the outside option of the firm
is o f , then the Nash bargained wage solve

max
w

(w − ow)
η(y − w − o f)

1−η.

The first order condition is

0 = η(w − ow)
η−1(y − w − o f)

1−η − (1 − η)(w − ow)
η(y − w − o f)

−η.

Rearranging,
η

1 − η
=

w − ow

y − w − o f
.

The wage is such that benefit to the worker relative to the benefit to the firm is equal to
the ratio of their bargaining powers.

To apply this result to our model, we must find the outside options of the worker and
firm. That is, we must find the value of being unemployed and of being a vacant firm.
Since there is free entry, the value of being a vacant firm must be zero. For simplicity, let’s
focus on the steady state when θt = θ for all t. For workers, let v(w) denote the value of
value of being employed given wage w and u(w) be the value of being unemployed. The

20

OPTIMAL CONTROL AND DYNAMIC PROGRAMMING

Bellman equations for these are

v(w) =w + β ((1 − s)v(w) + su(w))

u(w) =b + β (µ(θ)v(w) + (1 − µ(θ))u(w))

Similarly, if j(w) is the value of a firm having a worker, and i(w) is the value of posting a
vacancy, then must satisfy

j(w) =y − w + β(1 − s)j(w)

i(w) =0 = −k + β
µ(θ)

θ
j(w)

i(w) is zero because of free entry, but we still wrote down its Bellman equation since it
will be useful later.

Now, we are ready to find the equilibrium wage. The benefit to a worker of getting
wage w is not just w, it is v(w). Similarly, the firm gets not y − w, but j(w). The outside
option of the firm is i(w) = 0. The outside option is u(we), where we is the wage at other
firms (the equilibrium wage). The bargaining problem is then

max
w

(v(w)− u(we))η j(w)1−η

As above, the wage solution satisfies

η

1 − η
=

v(w)− u(w)

j(w)

Combining this equation and the Bellman equations, we can solve for the wage and µ(θ).
The Bellman equation for j(w) gives

j(w) =
y − w

1 − β(1 − s)

Combining with the Bellman equation of i(w) we get

k =β
µ(θ)

θ

y − w
1 − β(1 − s)

w =y − k
1 − β(1 − s)

βµ(θ)
...
Eventually we get the Hosios-Mortensen condition, that the competitive equilibrium is
efficient only if

1 − η =
θµ′(θ)

µ(θ)
.

21

	1. Introduction
	1.1. References

	2. Differentiation in vector spaces
	3. Optimization in vector spaces
	4. Optimal control
	4.1. Continous time optimal control
	4.2. Application: optimal contracting with a continuum of types
	4.3. Discrete time optimal control

	5. Dynamic programming
	5.1. Solving dynamic programs
	5.2. Application: Diamond-Mortensen-Pissarides search model

