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These notes are about linear algebra. References from the primary texts are chapters 10,
11, and 27 of Simon and Blume (1994), chapter 3 of De la Fuente (2000), and section 1.4
and portions of chapter 3 of Carter (2001). There are many mathematics texts on linear
algebra. Axler (1997) is good. Many people like Gilbert Strang’s video lectures (and his
textbook). These notes were originally based on the material in Simon and Blume (1994),
but they are now closer to the approach of Axler (1997) for finite dimensional spaces, and
some mix of Luenberger (1969) and Clarke (2013) for infinite dimensional spaces.

We will study linear algebra with two goals in mind. First, we will finally carefully
prove that the Lagrangian works. Recall that for a constrained optimization problem,

max
x

f (x) s.t. h(x) � c ,

we argued that x∗ is a local max if for all v,

Dhx∗v � 0 �⇒ D fx∗v � 0.

We then made a heuristic argument that this is equivalent to the existence of Lagrange
multipliers such that

D fx∗ + λT Dhx∗ � 0.
This result will be a consequence of the separating hyperplane theorem (or the geometric
form of the Hahn-Banach theorem for infinite dimensional spaces).

The second main result that we will build toward are the first and second welfare
theorems. The first welfare theorem states that a competitive equilibrium is Pareto efficient.
The second welfare theorems states that every Pareto efficient allocation can be achieved
by some competitive equilibrium. The second welfare theorem is also a consequence of
the separating hyperplane theorem. The welfare theorems involve preferences (the subject
of the notes on sets), vector spaces (the topic of these notes), and some continuity (the
subject of the previous set of notes).

1. Vector spaces

A vector space is a set whose elements can be added and scaled. Vector spaces appear
quite often in economics because many economic quantities can be added and scaled.
For example, if firm A produces quantities yA

1 and yA
2 of goods 1 and 2, while firm B
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produces (yB
1 , yB

2 ), then total production is (yA
1 + yB

1 , yA
2 + yB

2 ). If firm A becomes 10%
more productive, then it will produce (1.1yA

1 , 1.1yA
2 ).

We have been working with Rn , which is the most common vector space. There are
three ways of approaching vector spaces. The first is geometrically — introduce vectors as
directed arrows. This works well in R2 and R3 but is difficult in higher dimensions. The
second is analytically — by treating vectors as n-tuples of numbers (x1, ..., xn). The third
approach is axiomatically — vectors are elements of a set that has some special properties.
You likely already have some familiarity with the first two approaches. Here, we are going
to take the third approach. This approach is more abstract, but this abstraction will allow
us to generalize what we might know about Rn to other more exotic vector spaces. Also,
some theorems and proofs become shorter and more elegant.

Definition 1.1. A vector space is a set V with two operations, addition +, which takes
two elements of V and produces another element in V , and scalar multiplication ·, which
takes an element in V and an element in R and produces an element in V , such that

(1) (V,+) is a commutative group, i.e.
(a) Closure: ∀v1 ∈ V and v2 ∈ V we have v1 + v2 ∈ V .
(b) Associativity: ∀v1, v2, v3 ∈ V we have v1 + (v2 + v3) � (v1 + v2) + v3.
(c) Identity exists: ∃0 ∈ V such that ∀v ∈ V , we have v + 0 � v
(d) Invertibility: ∀v ∈ V ∃ − v ∈ V such that v + (−v) � 0
(e) Commutativity: ∀v1, v2 ∈ V we have v1 + v2 � v2 + v1

(2) Scalar multiplication has the following properties:
(a) Closure: ∀v ∈ V and α ∈ Rwe have αv ∈ V
(b) Distributivity: ∀v1, v2 ∈ V and α1, α2 ∈ R

α1(v1 + v2) � α1v1 + α1v2

and

(α1 + α2)v1 � α1v1 + α2v1

(c) Consistent with field multiplication: ∀v ∈ V and α1, α2 ∈ V we have

1v � v

and

(α1α2)v � α1(α2v)

A vector space is also called a linear space. Like Carter (2001) says, “This long list of
requirements does not mean that a linear space is complicated. On the contrary, linear
spaces are beautifully simple and possess one of the most complete and satisfying theories
in mathematics. Linear spaces are also immensely useful providing one of the principal
foundations of mathematical economics. The most important examples of linear spaces are
R and Rn . Indeed, the abstract notion of linear space generalizes the algebraic behavior of
R andRn .” One way of looking at vector spaces is that they are a way of trying to generalize
the things that we know about two and three dimensional space to other contexts.
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1.0.1. Examples. We now give some examples of vector spaces.

Example 1.1. Rn is a vector space. You are likely already familiar with this space.
Vector addition and multiplication are defined in the usual way. If x1 � (x11, ..., xn1)
and x2 � (x12, ..., xn2), then vector addition is defined as

x1 + x2 � (x11 + x12, ..., xn1 + xn2).
The fact that (Rn ,+) is a commutative group follows from the fact that (R,+) is a
commutative group. Scalar multiplication is defined as

ax � (ax1, ..., axn)
for a ∈ R and x ∈ Rn . You should verify that the three properties in the definition
of vector space hold. The vector space (Rn ,R,+, ·) is so common that it is called
Euclidean spacea We will often just refer to this space as Rn , and it will be clear from
context that we mean the vector space (Rn ,R,+, ·). In fact, we will often just write V
instead of (V,R,+, ·) when referring to a vector space.
aTo be more accurate, Euclidean space refers to Rn as an inner product space, which is a special kind of
vector space that will be defined below.

Example 1.2. The set of all solutions to a homogenous system of linear equation with
the right hand size equal to 0, i.e., (x1, ..., xn) ∈ Rn such that

a11x1 + a12x2 + ... + a1nxn �0
a21x1 + a22x2 + ... + a2nxn �0

...
...

am1x1 + am2x2 + ... + amn xn �0,

Most of the time, the two operations on a vector space are the usual addition and multi-
plication. However, they can appear different, as the following example illustrates.

Example 1.3. Take V � R+. Define “addition” as x ⊕ y � x y and define “scalar
multiplication” as α ⊙ x � xα. Then (R+,R, ⊕, ⊙) is a vector space with identity
element 1.
The previous few examples are each finite dimensional vector spaces. There are also

infinite dimensional vector spaces.

Example 1.4. Let V � { all sequences of real numbers }. For two sequences x �

{x1, x2, ...} and y � {y1, y2, ...}, define x + y � {x1 + y1, x2 + y2, ...} and defie scalar
multiplication as αx � {αx1, αx2, ...}. Then this is a vector space.

We encounter vector spaces of sequences in economics when we study infinite horizon
discrete time optimization problems.

Spaces of functions are often vector spaces. In economic theory, we might want to work
with a set of functions because we want to prove something for all functions in the set.
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That is, we prove something for all utility functions or for all production functions. In non-
parametric econometrics, we try to estimate an unknown function instead of an unknown
finite dimensional parameter. For example, instead of linear regression y � xβ + ϵ where
want to estimate the unknown vector β, we might say y � f (x)+ ϵ and try to estimate the
unknown function f .

Here are some examples of vector spaces of functions. It would be a good exercise to
verify that these examples have all the properties listed in the definition of a vector space.

Example 1.5. Let V � all functions from [0, 1] to R. For f , g ∈ V , define f + g by
( f + g)(x) � f (x) + g(x). Define scalar multiplication as (α f )(x) � α f (x). Then this is
a vector space.

Sets of functions with certain properties also form vector spaces.

Example 1.6. The set of all continuous functions with addition and scalar multiplica-
tion defined as in 1.5.

Example 1.7. The set of all k times continuously differentiable functions with addition
and scalar multiplication defined as in 1.5.

Example 1.8. The set of all polynomials with addition and scalar multiplication de-
fined as in 1.5.

Example 1.9. The set of all polynomials of degree at most d with addition and scalar
multiplication defined as in 1.5.
Generally, the vector space with which we are most interested is Euclidean space, Rn .

In fact, a good way to think about other vector spaces is that they are just variations of
Rn . The whole reason for defining and studying abstract vector spaces is to take our
intuitive understanding of two and three dimensional Euclidean space and apply it to
other contexts. If you find the discussion of abstract vector spaces and their variations
to be confusing, you can often ignore it and think of two or three dimensional Euclidean
space instead.

Vector spaces often contain other vector spaces. For example, either axis (or more
generally any line passing through the origin) in R2 is itself a vector space.

Definition 1.2. A set S ⊆ V is called a linear subspace if it is closed under (i) scalar
multiplication and (ii) addition in other words, if

(i) for every x ∈ S and α ∈ R, we have αx ∈ S, and
(ii) for every x ∈ S and y ∈ S, we have x + y ∈ S

This two requirements are sometimes written more succintly as ∀x, y ∈ S and α ∈ R,
αx + y ∈ S. When the “linear” is clear from context, linear subspaces are often simply
called subspaces.

Exercise 1.1. Show that if S is a linear subspace, then 0 ∈ S.
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Example 1.10. For any vector space V , the set of containing only the 0 element, {0}, is
a linear subspace.

Example 1.11. In R2, any line passing through the origin is a linear subspace. In R3,
any line passing through the origin, and any plane passing through the origin is a
linear subspace.

Example 1.12. The set of all continuous functions from R→R such that f (294) � 0 is
a linear subspace of the vector space of continuous functions.

Example 1.13. The set of all polynomials of degree at most d is a linear subspace of
the space of all polynomials.
The intersection of two linear subspaces is also a linear subspace.

Example 1.14. If S and W are linear subspaces of V , then so is S ∩ W .
However, the union of two linear subspaces is not necessarily a subspace. For example
in R2, the two axes are each subspaces, but their union is not because, (1, 0) and (0, 1) are
both in the union, but (1, 0) + (0, 1) � (1, 1) is not.

Definition 1.3. Let S1, ..., Sk be linear subspaces of V . The sum of them is

S1 + · · · + Sk � {x1 + · · · + xk : x j ∈ S j}
S1 + · · · + Sk is another linear subspace of V .

1.1. Linear combinations.

Definition 1.4. Let V be a vector space and x1, ..., xk ∈ V . A linear combination of x1, ..., xk
is any vector

c1x1 + ... + ckxk

where c1, ..., ck ∈ R.

Note that by the definition of a vector space (in particular the requirement that vector
spaces are closed under addition and multiplication), it must be that c1x1 + ... + ckxk ∈ V .

If we take all possible linear combinations of, {c1x1 + c2x2 : c1 ∈ R, c2 ∈ R}, then the set
will contain 0, and it will be a linear subspace. This motivates the following definition.

Definition 1.5. Let V be a vector space and W ⊆ V . The span of W is the set of all finite
linear combinations of elements of W

When W is finite, say W � {x1, ..., xk}, the span of W is the set

{c1x1 + ... + ckxk : c1, ..., ck ∈ R}.
When W is infinite, the span of W is the set of all finite weighted sums of elements of W .

Lemma 1.1. The span of any W ⊆ V is a linear subspace.

Proof. Left as an exercise. □
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Example 1.15. Let V be the vector space of all functions from [0, 1] to R as in example
1.5. The span of {1, x , ..., xn} is the set of all polynomials of degree less than or equal
n.

1.2. Dimension, linear independence, and basis. You are probably familiar with the
idea that Rn is n-dimensional. Roughly speaking if a vector space is n dimensional, then
we should be able to describe any vector in it by listing n scalars or coordinates. In this
section we formally define dimension.

Definition 1.6. A set of vectors W ⊆ V , is linearly independent if the only solution to
k∑

j�1
c jx j � 0

is c1 � c2 � ... � ck � 0 for any k and x1, ..., xk ∈ W . If W is not linearly independent, then
it is linearly dependent,

Example 1.16. In R2, {(1, 0), (0, 1)} is linearly independent. {(0, 0)} is linearly depen-
dent. Any set of three or more vectors in linearly dependent.

Definition 1.7. The dimension of a vector space, V , is the cardinality of the largest set of
linearly independent elements in V .

How large can the largest set of linearly independent elements be? The following theorem
is a starting point. It tells us that a linearly independent set is smaller than any set that
spans.

Comment 1.1. The above definitions for linear independence and dimension work
for any dimension, finite or infinite. However, some of the theorems that follow
are awkward to prove for infinite dimension, so some of them will assume finite
dimension. Exercise 1.3, sketches how to prove the existence of a basis for infinite
dimensional spaces.

Theorem 1.1. Suppose v1, ...., vn span V , and u1, ..., um are linearly independent, then n ≥ m.

Proof. Since v1, ...., vn span V , it must be that u1, v1, ..., vn are linearly dependent. There-
fore, ∃α j ∈ R and not all 0 such that

α1u1 +

n∑
j�1

α j+1v j � 0

Since the u’s are linearly independent, u1 , 0. Therefore, for some j ≥ 2, α j , 0. Let ℓ be
the largest such j. We can then rearrange to write

vℓ � −α1
αℓ

u1 −
ℓ−1∑
j�1

α j+1

αℓ
v j � 0.
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It follows that we can remove vℓ and the remaining v’s along with u1 will still span V .
We can then repeat the above argument. Since u1, ..., ui−1, v1, ...., vn−i+1 span V , it must

be that u1, ..., ui , v1, ...., vn−i+1 are linearly dependent. Therefore, ∃α j ∈ R and not all 0
such that

i∑
k�1

αiui +

n∑
j�1

α j+1v j � 0

Since the u’s are linearly independent, for some j ≥ i + 1, α j , 0. Let ℓ be the largest such
j. We can then rearrange to write

vℓ � −
i∑

k�1

αi

αℓ
ui −

ℓ−1∑
j�1

α j+i+1

αℓ
v j � 0.

It follows that we can remove vℓ and the remaining v’s along with u1, ..., ui will still span
V .

If there are fewer v’s than u’s, then the above induction contradicts the assumption that
the u’s are linearly independent. □

Comment 1.2. A more general version of theorem 1.1 is that if W ⊆ V spans V and
U ⊆ V is linearly independent, then |W | ≥ |U |.

The argument we used to prove theorem 1.1 does not suffice when U is infinite
because the iterative replacement of elements of W with elements of U would never
terminate. Exercise 1.4 sketches how to prove this theorem with infinite U.

This theorem implies that if B is linearly independent and spans V , then any other linearly
independent set must have smaller cardinality. Hence, the dimension of V must equal
the cardinality of B. Sets that are linearly independent and span a vector space are very
useful, so they have a name.

Definition 1.8. A basis of a vector space V is any set of linearly independent vectors B
such that the span of B is V .

If V has a basis with k elements, then the dimension of V must be at least k. In fact, the
previous theorem implies that dimension of V must be exactly k. Another consequence
is that any two bases must have the same cardinality.

Corollary 1.1. Any two bases for a vector space have the same cardinality.

Proof. Let B1 and B2 be bases for a vector space V . Since B1 spans and B2 is linearly
independent, by theorem 1.1, |B1 | ≥ |B2 |. Conversely, since B2 spans and B1 is linearly
independent, |B2 | ≥ |B1 |. Hence |B1 | � |B2 |. □

Example 1.17. A basis for Rn is e1 � (1, 0, ..., 0), e2 � (0, 1, 0, ..., 0), ..., en � (0, ..., 0, 1).
This basis is called the standard basis of Rn .

The standard basis is not the only basis for Rn . In fact, there are infinite different
bases. Can you give some examples?
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Exercise 1.2. What is the dimension of each of the examples of vector spaces above?
Can you find a basis for them?

Note that an important requirement for a basis is that every x ∈ V can be written
as a finite sum of basis elements. Therefore, for example, in ℓ∞ � {(x1, x2, ...) : xi ∈
R, sup1≤i≤∞ |xi | < ∞}, consider the set E � {ei}∞i�1, where ei is an element of all 0’s,
except for a 1 in the ith position. E is linearly independent, but E does not span ℓ∞
because e.g. you cannot write (1, 1, 1, 1, ...) as a finite sum of the elements of E.

Given a set that spans a vector space, it is always possible to remove elements until the
set is also linearly independent, and hence a basis. Doing this will be useful in various
proofs, so we state it is a lemma.

Lemma 1.2. Suppose v1, ..., vn span V . Then there is a subset of the v’s that is a basis for V .

Proof. We proceed by induction. If v1 � 0, then remove it. Otherwise, keep it. For
j � 2, ..., n, if v j ∈ span(v1, ..., v j−1), then delete it, otherwise keep it. At every step, the
remaining v still span V . Furthermore, each step ensures that the non-deleted v1, ..., v j
are linearly independent. □

Conversely, every linearly independent set can be expanded to a basis.

Lemma 1.3. Suppose V is finite dimensional and v1, ..., vn are linearly independent. Then ∃
vn+1, ..., vm such that v1, ..., vm is a basis for V .

Proof. By assumption V is finite dimensional, so it has a basis, say u1, ..., um . Following
the same argument as in the proof of theorem 1.1, the u’s can be replaced by the v’s to get
another basis consisting of all the v’s and m − n of the u’s. □

This lemma implies that if V is finite dimensional, then a basis for V exists. Even if
V is infinite dimensional, then a basis exists. The argument is outlined in the following
exercise.

Exercise 1.3. This exercise sketches how to prove the existence of a basis for infinite
dimensional vector spaces.

A partial order is a relation that is reflexive, transitive, and antisymmetric. A set
with a partial order is called a partially ordered set. Not all elements of a partially
ordered set are comparable (a partial order need not be complete). A chain is any
subset of a partially order set where all elements are comparable to one another. If Y
is a partially ordered set with partial order ⪰, and A ⊆ Y, then an upper bound for A
is a y ∈ Y such that y ⪰ z for all z ∈ A. y ∈ Y is a maximal element if there does not
exist any z ∈ Y such that z ≻ y.

Zorn’s lemmaa says that if every chain in a partially ordered set has an upper bound,
then the partially ordered set has a maximal element.

(1) Let X be a set P(X) be a the power set of X. Show that ⊆ is a partial order on
P(X).
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(2) Let V be a vector space (possibly of infinite dimension) and let L ⊆ V be linearly
independent. Define

P � {S ⊆ V : L ⊆ S and S linearly independent}
Show that (P , ⊆) is a partially order set (this is short).

(3) Let C ⊆ P be a chain. Show that ∪C∈CC is an upper bound for C. [Hint: you
need to show ∪C∈CC ∈ P.]

(4) Argue that P has a maximal element, B. [Hint: use Zorn’s lemma.]
(5) Show that span(B) � V . [Hint: if x < span(B), then {x} ∪ B ∈ P.]
(6) Conclude B is a basis for V .

aZorn’s lemma is equivalent to the axiom of choice, which is a basic assumption of set theory. The
axiom of choice says that given a collection of non-empty sets, {Si}i∈I , we can choose an element from
each set {xi}i∈I .

Exercise 1.4. This exercise shows that any two bases for a vector space must have the
same cardinality. Let V be a vector space and B and A be bases for V .

(1) Argue that for each b ∈ B, ∃ finite Ab ⊆ A such that b �
∑

a∈Ab
xa a for some

xa ∈ R.
(2) Argue that A � ∪b∈BAb
(3) Show that for any sets U and any infinite set I, if U � ∪i∈IFi with each Fi finite,

then |U | ≤ |I | (i.e. there exists a one-to-one (but not neccessarily onto) function
from U to I).

(4) Conclude |A| ≤ |B |, and reversing the roles of A and B gives |B | ≤ |A|, so
|A| � |B |.

The elements of a vector space can always be written uniquely in terms of a basis.

Lemma 1.4. Let B be a basis for a vector space V . Then ∀x ∈ V there exists a unique x1, ..., xk ∈ R
and b1, ..., bk ∈ B such that x �

∑k
i�1 xibi

Proof. By the definition of a basis, B spans V , so such (x1, ..., xk) must exist. Now suppose
there exists another such (x′

1, ..., x
′
j) and associated b′i . The {b1, ..., bk} and {b′1, ..., b

′
j}might

not be the same collection of elements of B. Let {b̃1, ..., b̃n} � {b1, ..., bk} ∪ {b′1, ..., b
′
j}.

Define x̃i � x j if b̃i � b j , else 0. Similarly define x̃′
i . With this new notation we have

v �

n∑
i�1

x̃i b̃i �
∑
i�1

x̃′
i b̃i

n∑
i�1

(x̃i − x̃′
i)b̃i �0

However, if B is a basis, its elements must be linearly independent so x̃i � x̃′
i for all i, so

the original x1, ..., xk must be unique. □
9
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1.3. Rn as the only finite dimensional vector spaces. Rn is the only n-dimesion vector
space in the sense that any other finite dimensional vector space can be viewed as a simple
change of basis.

Suppose V is an n-dimension vector space. By the definition of dimension, there must
be a set of n linearly independent elements that span V . These elements form a basis. Call
them b1, ..., bn . For each x ∈ V , there are unique x1, ..., xn ∈ R such that

x �

n∑
i�1

xi bi .

Thus we can construct a function, say I : V→Rn defined by

I(x) � (x1, ..., xn).

By lemma 1.4, I must be one-to-one. I must also be onto since by definition of a vector
space, for any (x1, ..., xn) ∈ Rn , the linear combination,

∑n
i�1 xibi is in V . Moreover, I

preserves addition in that for any x1, x2 ∈ V ,

I(x1
+ x2) �(x1

1 + x2
1 , ..., x

1
n + x2

n)
�(x1

1 , ..., x
1
n) + (x2

1 + ... + x2
n)

�I(x1) + I(x2).

Similarly, I preserves scalar multiplication in that for all x ∈ V , α ∈ R

I(αx) � αI(x).

Thus, V and Rn are essentially the same in that there is a one-to-one and onto mapping
between them that preserves all the properties that make them vector spaces.

Definition 1.9. Let V and W be vector spaces over the field F. V and W are isomorphic if
there exists a one-to-one and onto function, I : V→W such that

I(x1
+ x2) � I(x1) + I(x2)

for all x1, x2 ∈ V , and

I(αx) � αI(x)

for all x ∈ V , α ∈ F. Such an I is called an isomorphism.

The discussion preceeding this definition showed that all n-dimensional real1 vector
spaces are isomorphic to Rn .

1Here “real” refers to the fact that the scalars for the vector space are real numbers. In this course, all
vector spaces will be real. However, you can define vector spaces with scalars from other fields, such as the
complex numbers.
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2. Normed vector spaces

One property of two and three dimensional Euclidean space is that vectors have lengths.
Our definition of vector spaces does not guarantee that we have a way of measuring length,
so let’s define a special type of vector space where we can measure length.

Definition 2.1. A normed vector space, (V,+, ·, ∥·∥), is a vector space with a function,
called the norm, from V to R and denoted by ∥v∥ with the following properties:

(1) (Positive definite) ∥v∥ ≥ 0 and ∥v∥ � 0 iff v � 0,
(2) (Homogenous) ∥αv∥ � |α | ∥v∥ for all α ∈ R,
(3) The triangle inequality holds:

∥v1 + v2∥ ≤ ∥v1∥ + ∥v2∥
for all v1, v2 ∈ V .

As above, when the addition, multiplication, and norm are clear from context, we will
just write V instead of (V,+, ·, ∥·∥) to denote a normed vector space. Like length, a norm
is always non-negative and only zero for the zero vector. Also, similar to length, if we
multiply a vector by a scalar, the norm also gets multiplied by the scalar. The triangular
inequality means that norm obeys the idea that the shortest distance between two points
is a straight line. If you go directly from x to y you “travel”



x − y


. If you stop at point z

in between, you travel ∥x − z∥ +


z − y



. The triangle inequality guarantees that

x − y


 ≤ ∥x − z∥ +



z − y


 .

Any normed vector space is also a metric space with d(x , y) �


x − y



.
2.1. Examples.

Example 2.1. R3 is a normed vector space with norm

∥x∥ �
√

x2
1 + x2

2 + x2
3 .

This norm is exactly how we usually measure distance. For this reason, it is called the
Euclidean norm.

More generally, for any n, Rn , is a normed vector space with norm

∥x∥ �

√√ n∑
i�1

x2
i .

The Euclidean norm is the most natural way of measuring distance in Rn , but it is not
the only one. A vector space can often be given more than one norm, as the following
example shows.

Example 2.2. Rn with the norm

∥x∥p �

(
n∑

i�1
|xi |p

)1/p
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for p ∈ [1,∞]a is a normed vector space. This norm is called the p-norm.
aWhere ∥x∥∞ � max1≤i≤n |xi |

For nearly all practical purposes, Rn with any p-norm is essentially the same as Rn with
any other p-norm. Rn is the same collection of elements regardless of the choice of p-norm,
and the choice of p-norm does not affect the topology (i.e. which sets are open and closed)
of Rn or the definition of derivatives. However, there are normed vector spaces where the
choice of norm makes a difference.

Example 2.3. Let ℓp � infinite sequences such that

∥x∥p �

( ∞∑
i�1

|xi |p
)1/p

is finite. Then ℓp with ∥·∥p is a normed vector space.

Example 2.4. Define 

 f




p �

(∫ 1

0
| f (x)|pdx

)1/p

.

Let Fp � { f : (0, 1)→R such that


 f




p < ∞}. Define an equivalence relation between

functions as
f ∼p f̃ ⇐⇒



 f − f̃




p � 0
The space Lp(0, 1) � {equivalence classes of Fp} with norm ∥·∥p is a normed vector
space. The space is defined as the set of equivalences classes because if f and f̃ differ
at only a finite collection of pointsa, then

 f − f̃




p �

(∫ 1

0
| f (x) − f̃ (x)|p dx

)1/p

� 0.

If such f and f̃ were considered different vectors, then the norm would not be positive
definite.

Moreover, Lp(0, 1) is a different space for different p. For example, 1
x1/p < Lp(0, 1),

but 1
x1/p ∈ Lq(0, 1) for q < p.

aOr, more generally, a set of measure zero.

Having a norm allows us to consider limits, continuity, and derivatives. When working
with limits we will typically need to be sure that Cauchy sequences converge. In other
words, we will want to work in complete normed vector spaces. Complete normed vector
spaces are called Banach spaces.

3. Linear transformations

An isomorphism is a one-to-one and onto (bĳective) functions that preserves addition
and scalar multiplication. Can a function between vector spaces preserve addition and
multiplication without being bĳective? Let’s try to construct an example. We know from

12
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above that all finite dimensional vector spaces are isomorphic to Rn , so we might as well
work with Rn . To keep everything as simple as possible, let’s just work with R1. Consider
f : R→R defined by f (x) � 0 for all x ∈ R. Clearly, f is not bĳective. f preserves addition
since

f (x) + f (y) � 0 + 0 � 0 � f (x + y).
f also preserves multiplication because

α f (x) � α0 � 0 � f (αx).

Thus, we know there are functions that preserve addition and scalar multiplication but
are not necessarily isomorphisms. Let’s give such functions a name.

Definition 3.1. A linear transformation (aka linear function) is a function, A, from a
vector space (V,R,+, ·) to a vector space (W,R,+, ·) such that ∀v1, v2 ∈ V ,

A(v1 + v2) � Av1 + Av2

and

A(αv1) � αAv1

for all scalars α ∈ R.
A linear transformation from V to V is called a linear operator on V . A linear transfor-

mation from V to R is called a linear functional on V .

Any isomorphism between vector spaces is a linear transformation.

Example 3.1. Define f : R2→R by f ((x1, x2)) � x1, that is f (x) is the first coordinate
of x. Then,

f (αx + y) � αx1 + y1 � α f (x) + f (y)
so f is a linear transformation.
In general we can construct linear transformations between finite dimensional vector

spaces as follows. Let

A �
©­­«

a11 · · · a1n
...

. . .
...

am1 · · · amn

ª®®¬
be a matrix. As usual let

Ax �
©­­«
∑n

j�1 a1 j x j
...∑n

j�1 am j x j

ª®®¬ ,
for x � (x1, ..., xn) ∈ Rn . Then A is a linear transformation from Rn to Rm . You may want
to verify that A(αx1 + x2) � αAx1 + Ax2 for scalars α ∈ R and vectors x1, x2 ∈ Rn .

Conversely let A be a linear transformation from V to W (if it is helpful, you can let
V � Rn and W � Rm), and let b1, b2, ..., bn be a basis for V . By the definition of a basis,

13
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any v ∈ V can be written v �
∑n

j�1 v jb j for some v j ∈ R. By the definition of a linear
transformation, we have

Av �

n∑
j�1

v jAb j .

Thus, a linear transformation is completely determined by its action on a basis. Also, if
d1, ..., dm is a basis for W then for each Ab j we must be able to write Ab j as a sum of the
basis elements d1, ..., dm , i.e.

Ab j �

m∑
i�1

ai j di .

Substituting this equation into the previous one, we can write Av as

Av �

n∑
j�1

v jAb j

�

n∑
j�1

v j

m∑
i�1

ai j di

�

m∑
i�1

di
©­«

n∑
j�1

ai j v j
ª®¬

Thus, associated with a linear transformation there is an array of ai j ∈ R determined by
the linear transformation (and choice of basis for V and W). In the previous paragraph, we
saw that conversely, if we have an array of ai j ∈ Rwe can construct a linear transformation.
This leads us to the following result.

Theorem 3.1. For any linear transformation, A, from Rn to Rm there is an associated m by n
matrix, ©­­«

a11 · · · a1n
...

. . .
...

am1 · · · amn

ª®®¬
where ai j is defined by Ae j �

∑m
i�1 ai j ei . Conversely, for any m by n matrix, there is an associated

linear transformation from Rn to Rm defined by Ae j �
∑n

i�1 ai j ei .

Thus, we see that matrices and linear transformations fromRm toRn are the same thing.
This fact will help us make sense of many of the properties of matrices that we will go
through in the next section. Also, it will turn out that most of the properties of matrices
are properties of linear transformations. There are linear transformations that cannot be
represented by matrices, yet many of the results and definitions that are typically stated
for matrices will apply to these sorts of linear transformations as well.

Two examples of linear transformations that cannot be represented by matrices are
integral and differential operators,

14
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Example 3.2 (Integral operator). Let k(x , y) be a function from (0, 1) to (0, 1) such that∫ 1
0

∫ 1
0 k(x , y)2dxdy is finite. Define K : L2(0, 1) → L2(0, 1) by

(K f )(x) �
∫ 1

0
k(x , y) f (y)dy

Then K is a linear transformation because

(K(α f + g))(x) �
∫ 1

0
k(x , y)(α f (y) + g(y))dy

�α

∫ 1

0
k(x , y) f (y)dy +

∫ 1

0
k(x , y)g(y)dy

�α(K f )(x) + (K g)(x)

Example 3.3 (Conditional expectation). One special type of an integral operator that
appears often in economics is the conditional expectation operator. Suppose X and Y
are real valued random variables with joint pdf fx y(x , y) and marginal pdfs fx(x) �∫
R

f (x , y)dy and fy(y) �
∫
R

f (x , y)dx. Consider the vector spaces

V � L2(R, fy) � {g : R→R such that
∫
R

fy(y)g(y)2dy < ∞}

and
W � L2(R, fx) � {g : R→R such that

∫
R

fx(x)g(x)2dx < ∞}

V is the space of all functions of Y such that the variance of g(Y) is finite. Similarly, W
is the space of all functions of X such that the variance of g(X) is finite. The conditional
expectation operator is E : V→W defined by

(Eg)(x) � E[g(Y)|X � x] �
∫
R

fx y(x , y)
fx(x) fy(y)

g(y) fy(y)dy.

The conditional expectation operator is an integral operator, so it is a linear transfor-
mation.

Example 3.4 (Differential operator). Let C∞(0, 1)be the set of all infinitely differentiable
functions from (0, 1) to R. C∞(0, 1) is a vector space. Let D : C∞(0, 1) → C∞(0, 1) be
defined by

(D f )(x) � d f
dx

(x)
Then D is a linear transformation.

Integral and differential operators are very important when studying differential equa-
tions. They are also useful in many areas of econometrics and in dynamic programming.
We already encountered some linear transformations on infinite dimensional spaces when
studying optimal control.
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4. Matrix operations and properties

Let A and B be linear transformations from Rm to Rn and let
©­­«

a11 · · · a1n
...

. . .
...

am1 · · · amn

ª®®¬ and

©­­«
b11 · · · b1n
...

. . .
...

bm1 · · · bmn

ª®®¬ be the associated matrices. Since the linear transformation A and the

matrix
©­­«

a11 · · · a1n
...

. . .
...

am1 · · · amn

ª®®¬ represent the same object, we will use A to denote both. From the

previous section, we know that A and B are characterized by their action on the standard
basis vectors in Rn . In particular, Ae j �

∑m
i�1 ai j ei and Be j �

∑m
i�1 bi j ei .

4.1. Addition. To define matrix addition, it makes sense to require (A + B)x � Ax + Bx.
Then,

(A + B)e j �Aei + Be j

�

m∑
j�1

ai j ei +

m∑
j�1

bi j ei

�

m∑
j�1

(ai j + bi j)ei ,

so the only way sensible way to define matrix addition is

A + B �
©­­«

a11 + b11 · · · a1n + b1n
...

. . .
...

am1 + bm1 · · · amn + bmn

ª®®¬
As an exercise, you might want to verify that matrix addition has the following properties:

(1) Associative: A + (B + C) � (A + B) + C,
(2) Commutative: A + B � B + A ,
(3) Identity: A + 0 � A, where 0 is an m by n matrix of zeros, and

(4) Invertible A + (−A) � 0 where −A �
©­­«
−a11 · · · −a1n
...

. . .
...

−am1 · · · −amn

ª®®¬.

4.2. Scalar multiplication. The definition of linear transformations requires that Aαx �

αAx where α ∈ R and x ∈ V . To be consistent with this, for matrices we must define

αA �
©­­«
αa11 · · · αa1n
...

. . .
...

αam1 · · · αamn

ª®®¬
16
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We have now defined addition and scalar multiplication for matrices. It should be no
surprise that the set of all m by n matrices along with these two operations and the field
R forms a vector space.

Example 4.1. The set of all m by n matrices is a vector space.
In fact, the above is not only true of the set of all m by n matrices, but of any set of all
linear transformations between two vector spaces.

Example 4.2. Let L(V,W) be the set of all linear transformations from V to W . Define
addition and scalar multiplication as above. Then L(V,W) is a vector space.

L(Rn ,Rm) is the set of all linear transformations from Rn→Rm , i.e. all m by n matrices.

4.3. Matrix multiplication. Matrix multiplication is really the composition of two linear
transformations. Let A be a linear transformation from Rn to Rm and B be a linear
transformation from Rp to Rn . Now, we defined matrices by looking at how a linear
tranformation acts on a basis vectors, so to define multiplication, we should look at
A(Bgk). In these calculations, ei are standard basis vectors in Rm , f j will be standard basis
vectors in Rn , and gk will be basis vectors in Rp .

A(Bgk) �A(
n∑

j�1
b jkf j) definition of Bgk

�

n∑
j�1

b jkAf j Definition of linear transformtion

�

n∑
j�1

b jk

(
m∑

i�1
ai jei

)
definition of Af j

�

m∑
i�1

©­«
n∑

j�1
ai j b jk

ª®¬ ei

�
©­­«
∑n

j�1 a1 jb j1 · · · ∑n
j�1 a1 j b jp

...
. . .

...∑n
j�1 am jb j1 · · · ∑n

j�1 am j b jp

ª®®¬gk

�(AB)gk .

The indexing in the above equations is unpleasant and could be confusing. The important
thing to remember is that matrix multiplication is the composition of linear transforma-
tions. It then makes sense that if A is m by n (a transformation from Rn to Rm)and B is
k by l (a transformation from Rl to Rk), we can only multiply A times B if k � m. Matrix
multiplication has the following properties:

(1) Associative: A(BC) � (AB)C
(2) Distributive: A(B + C) � AB + AC and (A + B)C � AC + BC.
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(3) Identity: AIn � A where A is m by n and In is the linear transformation from Rn to
Rn such that In x � x∀x ∈ Rn .

Matrix multiplication is not commutative.

5. Null Spaces and Ranges

We are often interested in solving linear equations of the form Ax � b, where x ∈ V ,
b ∈ W , and A ∈ L(V,W). For example, V could be Rn , and W could be Rm and then
A would be an m × n matrix. The null space and range of a linear transformation are
two subspaces that can describe when the solution to Ax � b is unique and when it the
solution exists.

Definition 5.1. Let A ∈ L(V,W). The set of solutions to the homogeneous equation Ax � 0
is the null space (or kernel) of A, denoted by N(A) (or nullA),

N(A) � {x ∈ V : Ax � 0}

As its name suggests, the null space of a linear transformation is a subspace.

Exercise 5.1. Show that N(A) is a linear subspace.
Null spaces are important for studying linear equations because if z ∈ N(A), then A(x+z) �
Ax + Az � Ax. In other words, if Ax � b for some x, then A(x + z) � b for all z ∈ N(A).
Note that 0 ∈ N(A) always. From this discussion, we see that if Ax � b has at least one
solution, then it will have multiple solutions if N(A) , {0}.

Definition 5.2. Let A ∈ L(V,W). A is one-to-one (or injective) if Ax � Av �⇒ x � v.

Note that A is injective if and only if N(A) � 0. Thus, we can also say that if Ax � b has
one solution, then it will have multiple solutions if A is not injective.

Definition 5.3. Let A ∈ L(V,W). The range of A is the subset of W consisting of Ax for
some x ∈ V , i.e.

rangeA � {Ax : x ∈ V} ⊆ W

When A is a matrix, its range is called its column space.

Exercise 5.2. Show that the range of a linear transformation is a linear subspace.
In terms of linear equations, Ax � b has a solution if and only if b ∈ rangeA.

Definition 5.4. Let A ∈ L(V,W), A is onto (or surjective) if rangeA � W .

The dimensions of the range and null spaces of a linear transformation are related.

Theorem 5.1 (Rank-Nullity theorem ). If V is finite dimensional and A ∈ L(V,W), then

dim(V) � dim(nullA) + dim(rangeA).

Proof. Since V is finite dimensional and nullA ⊆ V , nullA is also finite dimensional. Let
u1, ..., un be a basis for nullA. By lemma 1.3 we can expand this to a basis for V . Let,
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u1, ..., un , e1, ..., em be a basis for V , so dim(V) � n + m. Let v ∈ V , then ∃α’s and β’s ∈ R
such that

v �

n∑
i�1

αiui +

m∑
i�1

βi ei .

Since A is linear,

Av �

n∑
i�1

αiAui +

m∑
i�1

βiAei .

Since ui ∈ nullA,

Av �

m∑
i�1

βiAei .

Therefore, Ae1, ...,Aem span rangeA.
We now show that Ae1, ...,Aem must also be linearly independent. Suppose

m∑
i�1

ciAei � 0

then

A

(
m∑

i�1
ci ei

)
� 0

so
(∑m

i�1 ciei
)
∈ nullA. However, the u’s span nullA, so ∃d’s ∈ R such that

n∑
i�1

diui �

m∑
i�1

ciei .

Finally, since u1, ..., un , e1, ..., em are linearly independent, the previous equation can only
hold if the c’s and d’s are all 0. □

This theorem has some important implications for when a linear transformation can be
one-to-one and onto.

Corollary 5.1. If V is finite dimensional and dim(V) > dim(W), then no linear transformation
from V to W is one-to-one.

Proof. Let A ∈ L(V,W). A is one-to-one iff nullA � {0}, i.e. iff dim(null A) � 0. From the
theorem, this is impossible since

dim(nullA) � dim(V) − dim(rangeA) ≥ dim(V) − dim(W) > 0

□

Corollary 5.2. If W is finite dimensional and dim(V) < dim(W), then no linear transformation
from V to W is onto.

Proof. Left as an exercise. □
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5.1. Norm for L(V,W). If V and W are normed vector spaces, then the space of linear
transformations can also be given a norm.

Definition 5.5. A linear transformation A : V→W is bounded if there exists M ∈ R such
that ∥Ax∥W ≤ M ∥x∥V for all x ∈ V .

Lemma 5.1. A linear transformation is bounded if and only if it is continuous.

Proof. On problem set 4. □

Lemma 5.2. If V and W are finite dimensional, and A ∈ L(V,W), then A is bounded.

Proof. On problem set 4. □

In infinite dimensional spaces, there are discontinuous linear transformations. Let
B(V,W) denote the set of all bounded linear transformations from V to W .

Exercise 5.3. Show B(V,W) is a linear subspace of L(V,W).
B(V,W) can be given norm:

∥A∥B(V,W) � sup
x,0,x∈V

∥Ax∥W

∥x∥V
.

6. Transpose and dual spaces

Even more can be said about linear equations after we have defined the transpose of a
linear transformation. Defining the transpose requires first introducing dual spaces.

Definition 6.1. Let V be a vector space. The dual space of V , denote V∗ is the set of all
(continuous)2 linear functionals, v∗ : V→R.

Example 6.1. The dual space of Rn is the set of 1 × n matrices. In fact, for any finite
dimensional vector space, the dual space is the set of row vectors from that space.

In fact, since any n dimensional vector space is isomorphic to Rn , the dual space of any n
dimensional space is the space itself. Dual spaces are especially important in economics
because prices are in dual spaces.

Example 6.2 (Prices as elements of a dual space). Suppose we have an economy with
bundles of represented by vectors in some vector space, V . There could be n goods,
and V could be Rn . We could also think of the bundles of good as something like
consumption at every instance of time and every state of the world. In that case, V
would be a vector space of sequences (if time and states of the world are discrete) or
functions (if time and states of the world are continuous). The dual space of V , V∗ is

2All linear functionals on finite dimensional spaces are continuous. Some linear functionals on infinite
dimensional spaces are not continuous. Depending on the text, the definition of dual space does not always
require continuity. Sometimes the dual space is defined as the set of all linear functionals, and the topological
dual space is the set of all continuous linear functionals.
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the set of linear transformations from V to R. If p ∈ V∗, then pv is the total cost of
purchasing v. p is the price vector.

Dual spaces are also important in optimization because Lagrange multipliers are elements
of a dual space.

Finite dimensional spaces are self-dual in the sense of example 6.1, i.e. V and V∗

are isomorphic. Infinite dimensional spaces are often not self-dual, as in the following
example.

Example 6.3. The space ℓp for 1 ≤ p ≤ ∞ is the set of sequences of real numbers
x � (x1, x2, ...) such that

∑∞
i�1 |xi |p < ∞. (When p � ∞, ℓ∞ � {(x1, x2, ...) : maxi∈N |xi | <

∞}). Such spaces appear in economics in discrete time, infinite horizon optimization
problems.

Let’s consider the dual space of ℓ∞. In macro models, we rule out everlasting
bubbles and ponzi schemes by requiring consumption divided by productivity to be
in ℓ∞. Every sequence, p � (p1, p2, ...) ∈ ℓ1 gives rise to a linear functional on ℓ∞
defined by

p∗x �

∞∑
i�1

pixi ≤
( ∞∑

i�1
|pi |

) (
max
i∈N

|xi | < ∞
)
.

We can conclude that ℓ1 ⊆ ℓ∗∞.
As a (difficult) exercise, you could try to show whether or not ℓ1 � ℓ∗∞. Exercise 3.46

of Carter is very related.
It is always however always the case that V ⊆ (V∗)∗.

Example 6.4. What is the dual space of V � L2(R, fx) � {g : R→R such that
∫
R

fx(x)g(x)2dx <
∞}? Let h ∈ L2(R, fx). Define

h∗(g) �
∫
R

fx(x)g(x)h(x)dx.

Assuming h∗(g) exists, h∗ is an integral operator from V to R, so it is linear. To show
that h∗ ∈ V∗ all we need to do is establish that h∗(g) exists (is finite) for all g ∈ V .
Hölder’s inequalitya , which we have not studied but is good to be aware of, says that∫

R
fx(x)|g(x)h(x)|dx ≤

√∫
fx(x)g(x)2dx

√∫
fx(x)h(x)2dx.

Since h and g ∈ V , the right hand side must be finite, so h∗(g) is finite as well. Thus
all such h∗ is a subset of V∗. In fact, all such h∗ is equal to V∗.b

We were actually working with V∗ and similar dual spaces when we studied optimal
control.
aSee e.g. Wikipedia for a proof and more information.
bThis is a consequence of the Riesz representation theorem.

Definition 6.2. If A : V→W is a linear transformation, then the transpose (or adjoint) of
A is AT : W ∗→V∗ defined by (AT w∗)v � w∗(Av).
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To parse this definition, note that AT w∗ is an element of V∗, so it is a linear transformation
from V to R. Thus, (AT w∗)v ∈ R. Similarly, Av ∈ W , and w∗ : W→R, so w∗(Av) ∈ R.

Example 6.5. Let A ∈ L(Rn ,Rm), so that A can be represented by an m × n matrix,©­­«
a11 · · · a1n
...

. . .
...

am1 · · · amn

ª®®¬. Also, AT ∈ L(Rm ,Rn) can be represented by an n × m matrix,

©­­«
ã11 · · · ã1n
...

. . .
...

ãm1 · · · ãmn

ª®®¬. Let v � ek be the kth standard basis vector, and w∗ � e∗j . Then the

definition of the transpose says that

(AT e∗j)ek �e∗j Aek

©­­«
©­­«

ã11 · · · ã1m
...

...
ãn1 · · · ãnm

ª®®¬ e j
ª®®¬

T

ek �eT
j

©­­«
a11 · · · a1n
...

. . .
...

am1 · · · amn

ª®®¬ ek

(
ã1 j · · · ãn j

)
ek �eT

j

©­­«
a1k
...

amk

ª®®¬
ãk j �a jk

In other words, the definition is to simply swap rows and columns.

Exercise 6.1. What is the transpose of the conditional expectation operator from ex-
ample 3.3?

Since the dual space of V is defined at V∗ � B(V,R), a norm on V∗ can be defined in the
same way,

∥v∗∥V∗ � sup
v,0,v∈V

|v∗v |
∥v∥V

.

7. Separating hyperplane theorem

A line in R2 splits R2 into two pieces. A plane in R3 splits it into two pieces. More
generally, an n − 1 dimensional affine space splits Rn into two pieces.

Definition 7.1. A hyperplane in Rn is an n − 1 dimensional affine subspace. Equivalently,
a hyperplane is the set of solutions to a single equation with n variables.

Any hyperplane can be written in the form:

Hξ,c � {x : ξT x � c}

where c ∈ R and ξ ∈ (Rn)∗ � Rn . Based on this, we define a hyperplane in an arbitrary
vector space as follows:
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Definition 7.2. A hyperplane in V is any set that can be written as

Hξ,c � {x ∈ V : ξx � c}

for some c ∈ R and ξ ∈ V∗, ξ , 0

Hyperplanes play an important role in optimization. There is one theorem that is
especially useful. We will use this theorem to prove the existence of Lagrange multipliers
and the second welfare theorem. First, a definition.

Definition 7.3. A set S ⊆ V is convex if ∀x1, x2 ∈ S and λ ∈ (0, 1), we have x1λ+x2(1−λ) ∈
S.

If a set is convex, when we draw a line segment between any two points in the set, the
line segment remains entirely within the set. In R2, convex sets include things shaped
like triangles, squares, pentagons, circles, ellipses, etc. Some non-convex shapes are stars,
horseshoes, rings, etc.

Theorem 7.1 (Separating hyperplane theorem). If S1 and S2 ⊆ V are convex and S1 ∩ S2 � ∅
and either V is finite dimensional or the (algebraic) interior of S1 or S2 is not empty. Then there
exists a hyperplane, Hξc � {x : ξx � c} such that

ξs1 ≤ c ≤ ξs2

for all s1 ∈ S1 and s2 ∈ S2. We say that Hξ,c separates S1 and S2.

Visually, this theorem says that we can draw a hyperplane, H, between S1 and S2. H is
orthogonal to the line passing through ξ and 0. The projection of S1 on ξ is disjoint from
the projection of S2 on ξ. See figure 1 for an illustration in R2.

Exercises 3.182-3.186 of Carter (2001) guide you through a proof of the separating
hyperplane theorem in Rn . A proof of the general version can be found in appendix A, or
any text on functional analysis such as Luenberger (1969), Clarke (2013), or Holmes (1975).

Comment 7.1. It is often useful to refine the separating hyperplane to obtain either:
• strict separation — one or both weak inequalities become strict, or
• supporting hyperplane — the separating hyperplane theorem holds as stated,

and ∃ s∗1 ∈ S1 such that ξs∗1 � c
Strict separation holds for all s1 ∈ aint(S1) and s2 ∈ aint(S2), ξs1 < c < ξs2. Thus, if
you need strict separation of some S1 and S2, one technique is to show that there are
disjoint convex sets A1 and A2 such that S1 ⊆ int(A1) and S2 ⊆ int(A2).

There exists a supporting hyperplane at s∗1 if s∗1 is in the (algebraic) boundary of S1
and S1 has a non-empty interior.

As a challenging exercise, you could try to prove the preceding statements.

7.1. Existence of Lagrange multipliers. In studying constrained maximization problems,
we showed that if x∗ is a local maximizer for

max f (x) s.t. h(x) � c
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Figure 1. Separating hyperplane

S1

S2
H

then it must be that for all v such that Dhx∗v � 0 we also have D fx∗v � 0. We then made
some heuristic arguments that this is equivalent to D fx � µT Dhx for some Lagrange
multipliers µ. The separating hyperplane theorem let’s us prove this fact. Notice that
D fx∗ is a 1 × n matrix, i.e. a linear transformation from Rn→R, and Dhx∗ is an m × n
matrix, i.e. a linear transformation from Rn→Rm .

Theorem 7.2. Let V and W be normed vector spaces, A ∈ B(V,R) and C ∈ B(V,W). Assume
that rangeC is closed. Then nullA ⊇ nullC if and only if A � µC for some µ ∈ W ∗.

Proof. Assume nullA ⊇ nullC. Consider D : V→R × W defined by Dv � (Av ,−Cv). D is
linear and bounded since A and C are. Therefore rangeD is a subspace of R × W . Also
(1, 0W ) < rangeD because Cv � 0w only if v ∈ nullC, but if v ∈ nullC, then v ∈ nullA
by assumption, and Av � 0 , 1. Since rangeC is closed and rangeA is finite dimensional
and therefore closed, rangeD is closed. Therefore, there exists an open neighborhood of
(1, 0W ) that does not intersect rangeD. Call it N . This neighborhood is convex, and so is
rangeD. Therefore, by the separating hyperplane theorem, there exists ξ ∈ (R × W)∗ and
c ∈ R such that

ξx ≤ c < ξy
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for all x ∈ rangeD and y ∈ N . It must be that ξx � 0 for all x ∈ rangeD. If not, say
ξx � d , 0, then since rangeD is a subspace, (2c/d)x ∈ rangeD, and since ξ is linear,
ξ((2c/d)x) � 2c > c. Let ξ � (ξ1,−µ̃), where ξ1 ∈ R∗ � R and µ ∈ W ∗. Since (1, 0w) ∈ N ,
it must be that ξ1 > 0. Therefore, for all v ∈ V ,

0 �ξDv

0 �ξ1Av − µ̃Cv

µCv �Av

i.e. µC � A.
Conversely, suppose µC � A. Let v ∈ nullC. Then, 0 � Cv, so Av � µCv � µ0 � 0.

Therefore v ∈ nullA. □

If we take A � D fx and C � Dhx , then this theorem shows that existence of Lagrange
multipliers such that D fx � µT Dhx is equivalent to Dhx∗v � 0 implying that D fx∗v � 0.

8. Welfare theorems

A second major use of the separating hyperplane theorem (and vector spaces more
generally) is in the proof of the first and second welfare theorems. The first welfare
theorem says that every competitive equilibrium is Pareto efficient. The second welfare
theorem says that every Pareto efficient allocation can be achieved by some competitive
equilibrium.

We have some set of commodities, S, which we will assume is a normed vector space.
For example, in a world with n goods, S could be Rn and for each s � (s1, ..., sn) ∈ S, s j
represents the quantity of the jth good. These goods include everything that is bought or
sold, including things like food or clothing that we usually think of as goods, and things
like labor and land. There are I consumers, indexed by i. Each consumer chooses goods
from a feasible set Xi ⊆ S. These Xi are feasible consumption sets, not budget sets. It
is supposed to represent the physical constraints of the world. For example if there are
three goods: food, clothing, and labor measured in days of labor per day, then Xi might be
[0,∞)×[0,∞)×[0, 1]. Each consumer has preferences over Xi represented by a preference
relation, ⪰i that as in the previous lecture the following properties:

(1) (complete) ∀x , z ∈ Xi , either x ⪰i z or z ⪰i x or both,
(2) (transitive) ∀x , w , z ∈ Xi , if x ⪰i w and w ⪰i z then x ⪰i z,
(3) (reflexive) ∀x ∈ Xi , x ⪰i x.

In words, x ⪰i z means person i likes the bundle of goods x as much as or more than the
bundle of goods z. If you wish, you can think of the preference relation coming from a
utility function, ui(x) : Xi → R and x ⪰i z means ui(x) ≥ ui(z). If x ⪰i z but z ̸⪰i x, then
we say that x is strictly preferred to z and write x ≻i z. If x ⪰i z and z ⪰i x we say that
person i is indifferent between x and z and write x ≃i z.

There are also J firms indexed by j. Each firm j chooses production y j from production
possibility set Yj ⊆ S. The firm will produce positive quantities of its outputs and negative
quantities of its inputs. Continuing with the example of three goods, if the firm produces
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F f (l) units of food from l units of labor and Fc(l) units of clothing, then production
possibility set could be written:

Yj � {( f , c , l) ∈ S : l ≤ 0 ∧ f ≤ F f (α |l |) ∧ c ≤ Fc((1 − α)|l |) for some α ∈ [0, 1]}.

Firms produce goods and consumers consume goods. For the market to clear we must
have sum of production equal to the sum of consumption, i.e.

I∑
i�1

xi �

J∑
j�1

y j

We call the I + J-tuple of all xi and y j ,
(
(x1, ..., xI), (y1, ..., yJ)

)
(which we will sometimes

shorted by just writing ((xi), (y j))) an allocation. An allocation is feasible if xi ∈ Xi∀i,
y j ∈ Yj∀ j, and

∑I
i�1 xi �

∑J
j�1 y j .

Definition 8.1. An allocation, ((x0
i ), (y

0
j )), is Pareto efficient (or Pareto optimal) if it is a

feasible and there is no other feasible allocation, ((xi), (y j)), such that xi ⪰i x0
i for all i and

xi ≻i x0
i for some i.

This definition is just a mathematical way of stating the usual verbal definition of Pareto
efficient. An allocation is Pareto efficient if there is no other allocation that makes at least
one person better off and no one worse off.

We are going to be comparing competitive equilibria to Pareto efficient allocations. To
do that we must first define a competitive equilibrium. A price system is a continuous
linear transformation, p : S → R, i.e. p ∈ S∗. In the case where S � Rn , a price system is
just a 1 × n matrix. The entries in this price matrix are the prices of each of the n goods.
px for x ∈ S represents the total expenditure needed to purchase the bundle of goods x.

Definition 8.2. An allocation, ((x0
i ), (y

0
j )), along with a price system, p, is a competitive

equilibrium if
(C1) The allocation is feasible
(C2) For each i and x ∈ Xi if px ≤ px0

i then x0
i ⪰i x,

(C3) For each j if y ∈ Yj then p y ≤ p y0
j

Condition C2 says that each consumer must be choosing the most preferred bundle of
goods that he or she can afford. If the preference relation comes from a utility function,
C2 says that consumers maximize their utility given prices. Similarly, condition C3 says
that producers maximize profits.

The first welfare theorem requires one additional condition on preferences.

Definition 8.3. Preference relation ≻i has the local non-satiation condition if for each
x ∈ Xi and ϵ > 0 ∃x′ ∈ Xi such that ∥x − x′∥ ≤ ϵ and x′ ≻i x.

This condition says that given any bundle of goods you can find another bundle very
close by that is preferred. If the preference relation comes from utility function, the
utility function having a non-zero derivative everywhere implies local non-satiation. The
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intuition for why the first welfare theorem requires local non-satiation is that local non-
satiation rules out the following scenario. Suppose person i does not care about clothing
at all. Then you take clothes away from person i, making person i no worse off, and give
them to someone else, making that person better off. However, there is nothing in the
definition of a competitive equilibrium that prevents person i from having clothes.

8.1. First welfare theorem.

Theorem 8.1 (First welfare theorem). If ((x0
i ), (y

0
j )) and p is a competitive equilibrium and all

consumers’ preferences have the local non-satiation condition, then ((x0
i ), (y

0
i )) is Pareto efficient.

Proof. We will prove it by contradiction. Suppose that a competitive equilibrium is not
Pareto efficient. Then there exists another feasible allocation3, ((xi), (y j)), such that there is
at least one xi∗ ≻i∗ x0

i∗ . The contrapositive of condition C2 in the definition of competitive
equilibrium implies that then pxi∗ > px0

i∗ . For all other i , i∗ it must be that xi ⪰i x0
i .

When xi ≻i x0
i , by the same argument as above, pxi > px0

i . When xi ≃i x0
i , then we will

show that local non-satiation implies pxi ≥ px0
i . If not and pxi < px0

i , then by continuity
of p there exists some δ > 0 such that for all x′ with ∥xi − x′∥ < δ, we have

|pxi − px′| < |pxi − px0
i |

and in particular,
px′ < px0

i .

Additionally since preferences are locally non-satiated, there exists some x̃ with ∥xi − x̃∥ <
δ and x̃ ≻i xi ≃i x0

i . However, then we also have x̃ ≻i x0
i and px̃ < px0

i , which contradicts
x0

i and p being part of a competitive equilibrium. Thus, we can conclude that pxi ≥ px0
i .

At this point we have shown that if ((x0
i ), (y

0
j )) is a competitive equilibrium that is not

Pareto efficient, then there is some other allocation ((xi), (y j)) that is feasible and has
xi ⪰i x0

i , which implies that pxi ≥ px0
i . Each consumer spends (weakly) more in this

alternative, Pareto improving allocation. Now we will show that each consumer spending
at least as much contradicts profit maximization. The total expenditure of consumers in
the alternate allocation must be greater than in the competitive equilibrium because there
is one consumer who is spending strictly more. That is,

I∑
i�1

pxi >
I∑

i�1
px0

i (1)

The price system is a linear transformation, so

I∑
i�1

pxi � p

(
I∑

i�1
xI

)
3This sort of allocation is called a Pareto improvement.
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Both allocations are feasible, and, in particular, market clearing so

I∑
i�1

xi �

J∑
j�1

y j

Applying p to both sides,

p

(
I∑

i�1
xi

)
� p ©­«

J∑
j�1

y j
ª®¬

�

J∑
j�1

p y j .

Identical reasoning would show that

I∑
i�1

px0
i �

J∑
j�1

p y0
j .

Substituting into (1) we get

J∑
j�1

p y j >
J∑

j�1
p y0

j . (2)

But this contradicts profit maximization (C3) since y j ∈ Yj and we cannot have (2) if
p y j ≤ p y0

j . Therefore, we conclude that there can be no Pareto improvement from a
competitive equilibrium, i.e. any competitive equilibrium is Pareto efficient. □

8.2. Second welfare theorem. The second welfare theorem is the converse of the first
welfare theorem. The second welfare theorem says that any Pareto efficient allocation can
be achieved by some competitive equilibrium. The second welfare theorem does not hold
quite as generally as the first welfare theorem.

Definition 8.4. A preference relation, ⪰i , is convex if whenever x ⪰i z and y ⪰i z, then
λx + (1 − λ)y ⪰i z for all λ ∈ [0, 1].

Alternatively, a preference relation is convex if the set {x ∈ Xi : x ⪰i z} is convex for
each z. Whenever you have seen convex indifference curves, the associated preference
relation is convex. If the preference relation is generated by a concave (more generally
quasi-concave) utility function, then the preference relation is convex.

Definition 8.5. A preference relation, ⪰i , is continuous if for any x ≻i z there exists a
δ > 0 such that for all x′ with ∥x − x′∥ < δ we have x′ ≻i z.

A continuous preference relation can be generated by a continuous utility function.
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Theorem 8.2 (Second welfare theorem). Assume the preferences of each consumer are convex,
locally non-satiated, and continuous, and that Xi is convex and non-empty. Also assume that Yj
is convex and non-empty for each firm j.

Suppose ((xe
i ), (y

e
j )) is a Pareto efficient allocation such that for any price system, p, there is

always a cheaper bundle of goods, i.e. ∃xi ∈ Xi s.t. pxi < pxe
i for each i. Then there exists a price

system, pe such that ((xe
i ), (y

e
j )) and pe is a competitive equilibrium.

Proof. We are going to construct the price system by applying the separating hyperplane
theorem. Let Vi � {x ∈ Xi : x ≻i xe

i } be the set of x strictly preferred by person i. Let

V � {χ ∈ S : χ �

I∑
i�1

xi where xi ∈ Vi}

be the set of sums of elements from each Vi . The convexity of Xi and the preference
relation implies that Vi is convex for each i. That, in turn, implies that V is convex.4
Similarly, if

Y � {ψ ∈ S : ψ �

J∑
i� j

y j where y j ∈ Yj}

is the sum of each firms’ production possibility set, then Y is convex.
We have two convex sets. Now, we just need to show that they are disjoint, and then

we can apply the separating hyperplane theorem. Suppose χ ∈ Y ∩ V . Then ∃xi ∈ Vi

and y j ∈ Yj such that χ �
∑I

i�1 xi �
∑J

j�1. This is feasible allocation, and xi ≻i xe
i by

construction. This contradicts ((xe
i ), (y

e
i )) being Pareto efficient. Therefore, Y ∩ V � ∅. o

Now, by the separating hyperplane theorem, ∃p ∈ S∗ and c ∈ R such that5

pχ ≥ c ≥ pψ (3)

for all χ ∈ V and ψ ∈ Y. Now we need to verify that ((xe
i ), (y

e
j )) with p is a competitive

equilibrium. It is feasible because ((xe
i ), (y

e
j )) is Pareto efficient, and feasible by definition.

We now show that (3) holds with c � pχe � pψe , where χe �
∑I

i�1 xe
i and ψe �

∑J
j�1 ye

j .
On the one hand, χe � ψe ∈ Y, so we must have

c ≥ pχe

On the other hand, for any δ > 0, by local non-satiation, we can find xi such that xi ≻i xe
i

and


xi − xe

i



 < δ/I. It follows from the triangle inequality that


∑I

i�1 xi −
∑I

i�1 xe
i



 < δ. p
is continuous, so for any ϵ > 0 we can find a δ small enough that�����p

(
I∑

i�1
xe

i

)
− p

(
I∑

i�1
xi

)����� < ϵ,
4It might be a good exercise to prove these claims.
5In the notation of theorem 7.1, p is ξ.
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Then, for any ϵ > 0, there exists xi ∈ Vi such that

pχe
+ ϵ > p(

∑
xi) ≥ c

Since this is true for any ϵ, it must be that pχe ≥ c. Therefore, we have now shown that

pχ ≥ c � pχe
� pψe ≥ pψ (4)

for all χ ∈ V and ψ ∈ Y.
We now show that firms and consumers are maximizing given this price. Let yℓ ∈ Yℓ .

Then
∑

j,ℓ ye
j + yℓ ∈ Y, so

p ©­«
∑
j,ℓ

ye
j + yℓ

ª®¬ ≤pψe
� p ©­«

∑
j

ye
j
ª®¬

p yℓ ≤ p ye
ℓ

Thus, each firm is maximizing profits given p.
Now we show that consumers are maximizing. It must be then also be that pxi ≥ pxe

i
for each i and all xi ∈ Vi . If not, then there is an ϵ > 0 such that pxi + ϵ < pxe

i , and then
using local non-satiation we can choose xk for k , i such that xk ∈ Vk and�����∑

k,i

pxk −
∑
k,i

pxe
k

����� < ϵ/2

and then
I∑

k�1
pxk + ϵ/2 <

I∑
k�1

pxe
k .

Similarly, we must have p ye
j ≥ p y j for all y j ∈ Yj , which proves that profit maximization,

(C3), holds.
We have nearly shown that utility maximization, (C2), also holds. We have shown

that for each i if xi ≻i xe
i then pxi ≥ pxe

i . To strengthen it to the form in the definition,
we need to show that pxi > pxe

i . We will use the continuity of preferences and the
cheaper good condition. Suppose pxi � pxe

i and ∃x′
i ∈ Xi such that px′

i < pxe
i . Then

for any λ ∈ (0, 1), p(λx′
i + (1 − λ)x′

i) < pxe
i . Also, by the continuity of preferences, for λ

close enough to 0, λxi + (1 − λ)x′
i ≻i xe

i . However, then λxi + (1 − λ)x′
i ∈ Vi contradicting

p(λxi+(1−λ)x′
i) < pxe

i . Therefore, if the cheaper good exists, we must have pxi < pxe
i . □

30



LINEARITY

Appendix A. Proof of the separating hyperplane theorem

This section is based on Holmes (1975). The following lemma is a first step to proving
the theorem.

Lemma A.1 (Stone). Let V be a vector space and A and B be disjoint convex subsets of V , then
there exist convex sets C and D such that A ⊆ C, B ⊆ D, C ∩ D � ∅ and C ∪ D � V .

Proof. We employ a similar technique as used to show the existence of a basis. Let C be
the collection of all convex sets containing A and disjoint from B. C is non-empty because
A ∈ C. As in the exercise showing existence of a basis, (C , ⊆) is a partially ordered set.
Also, for any chain H ⊆ C, ∪E∈HE is an upper bound. Therefore, by Zorn’s lemma, C
has a maximal element. Let C be a maximal element. Define D � V \ C. By construction
C ∩ D � ∅, B ⊆ D, and C ∪ D � V .

To complete the proof, we just need to show that D is convex. Suppose D is not convex,
then there exists x , z ∈ D, λ ∈ (0, 1) such that y � λx + (1 − λ)z < D. Then y ∈ C.
Furthermore, observe that for any d ∈ D, there must be a c ∈ C and λ ∈ [0, 1] such that
b � λd + (1 − λ)c ∈ B. If there were not, then the set

C̃ � {λd + (1 − λ)c : λ ∈ [0, 1], c ∈ C}
would be a convex set containing A and disjoint from B, contradicting the fact that C is a
maximal such set. Then can find p , q ∈ C and u , v ∈ B such u is a convex combination of
p and x, and v is a convex combination of q and z, i.e. there are λu , λv ∈ (0, 1) such that:

u �λux + (1 − λu)p
v �λvz + (1 − λv)q

However, then there would be some convex combination of u and v that can also be
written as a convex combination of p, q, and y. Since B is convex and u , v ∈ B, this convex
combination would also be in B. Since C is convex and p , q , y ∈ C, the convex combination
would also be in C. In other words B∩C would not be empty, but this contradicts the way
C is defined. Therefore, it must be that D is convex. □

For any hyperplane, Hξ,c , the sets {v ∈ V : ξv ≥ c} and {v ∈ V : ξv < c} are disjoint
and convex. The next step is to show that disjoint convex sets from lemma A.1 take this
form. First, we need some definitions of the boundary and interior of subsets of a vector
space (without a norm). For convex sets in finite dimensional normed vector spaces, these
definitions are the same as the definitions using open and closed sets. In general, the
definitions differ, but they are capturing similar ideas.

Definition A.1. Let V be a vector space and A ⊆ V . The algebraic interior of A is set of
all a ∈ A such that for every v ∈ V there exists λ̄ ∈ (0, 1) such that

a(1 − λ) + λv ∈ A

for all λ ∈ [0, λ̄]. Denote the algebraic interior of A as intA(A).

At interior points, we can move slighty from a toward any other point v and remain
inside A. This algebraic interior is different than the topological interior we defined using
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open sets earlier. For example, in ℓ∞ let A � {(x1, x2, ...) : |xn | < 1/n}. A is equal to
its algebraic interior, but the topological interior of A is empty. As in this example, it is
always the case that the topological interior is contained in the algebraic interior.

Lemma A.2. Let V be a normed vector space, and A ⊆ V . Then the topotical interior of A is
(weak) subset of the algebraic interior of A.

Proof. Left as an exercise. □

In the statement of the separating hyperplane theorem, we said that “the interior of S1
or S2 is not empty.” In this section, we will prove the theorem with the assumption that
the algebraic interior of one the set is not empty. Since a non-empty topological interior
implies a non-empty algebraic interior, the theorem is also true (but slightly less general)
if we interpret “interior” as meaning topological interior instead.

Definition A.2. Let V be a vector space and A ⊆ V . The linear closure6 of A is set of all
v ∈ V such that ∃a ∈ A such that ∀λ ∈ [0, 1),

a(1 − λ) + λv ∈ A

Denote the linear closure of A as A
A

.

Finally, we need to define affine sets.

Definition A.3. A ⊆ V is affine if ∀x , y ∈ A and λ ∈ R, λx + (1 − λ)y ∈ A.

The difference between affine and convex is that affine sets allow λ < 0 and λ > 1.
Affine sets contain the line passing through any two vectors in the set. Convex sets only
contain the line segment between any two points. Affine sets are like linear subspaces in
that they are lines, planes, etc, except that affine sets need not contain 0. We also need the
following lemma about hyperplanes.

Lemma A.3. An affine set A is a hyperplane if and only if A is proper subset that is maximal with
respect to inclusion.

Proof. Left as an exercise. □

Lemma A.4. Let C and D be non-empty convex sets in a vector space V with C ∩ D � ∅ and
C ∪ D � V . Let M � C

A ∩ D
A

, then either M � V or M is a hyperplane in V .

Proof. Since C and D are convex, so are C
A

and D
A

. For any convex sets, their intersection
is also convex, so M is convex. Moreover, M is affine. To see this let x , y ∈ M and
z � λx + (1 − λ)y for λ ∈ R. If λ ∈ (0, 1), we known M is convex, so z ∈ M. If z < M, then
z ∈ intA(C) ∪ intA(D). To be concrete, suppose z ∈ intA(C) and λ < 1 (the other cases
are dealt with similarly). Then y � z/(1 − λ) − λ/(1 − λ)x is a convex combination of x

and z. Notice that x ∈ C
A

and z ∈ intA(C) implies y ∈ intA(C), but this contradicts the
assumption that y ∈ M. Therefore, it must be that z ∈ M.

6This is non-standard terminology, Holmes (1975) calls this lin(A). Holmes’s notation for my intA(A) is
cor(A).
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Suppose M , V . Pick any m ∈ M. Then ∃(m + p) ∈ V \ M � intA(C) ∪ intA(D).
Without loss of generality, assume (m + p) ∈ intA(C). If (m − p) ∈ intA(C), then 0.5(m +

p) + 0.5(m − p) � m ∈ intA(C) by convexity, but we know m < intA(C), so it must be
that (m − p) ∈ intA(D). To conclude, we show that the span of {p} ∪ M � V , so M is a
maximal affine set, i.e. a hyperplane. Let x ∈ C. By definition of C

A
and D

A
, there exists

λ ∈ (0, 1) such that λx + (1 − λ)(m − p) ∈ M, so x ∈ span(M ∪ {p}). Similarly if x ∈ D,
x ∈ span(M ∪ {p}). □

Finally, we can prove the separating hyperplane theorem.

Proof of theorem 7.1. By Stone’s separation lemma A.1, there exists convex sets C and D

such that S1 ⊆ C, S2 ⊆ D, C ∩ D � ∅, and C ∪ D � V . By lemma A.4, H � C
A ∩ D

A

is either V or the separating hyperplane that we want. H is not a hyperplane only if
C
A

� D
A

� V . If V is finite dimensional, and C and D are not empty, then this is
impossible. Proving this is left as an exercise. Regardless of the dimension of V , if C (or
D) has a non-empty interior, then lemma A.5 implies that C

A
(or D

A
) cannot be all of V ,

since we know that C , V . □

Lemma A.5. If C ⊆ V is convex, intA(C) is not empty, and C
A

� V , then C � V .

Proof. Let x ∈ V , and y ∈ intA(C). Without loss of generality assume y � 0. Since C
A

� V

so 2x ∈ C
A

, ∃z ∈ C such that
(1 − λ)z + λ2x ∈ C

for all λ ∈ [0, 1). Since y � 0 ∈ intA(C) there is δ > 0 such that −δz ∈ C. Since C in
convex, for any t ∈ [0, 1] and λ ∈ [0, 1),

[(1 − λ)z + λ2x]t − (1 − t)δz ∈ C

Setting λ �
1+δ
1+2δ and t � 1+2δ

2(1+δ) , we can conclude that x ∈ C, so C � V . □

Appendix B. Fundamental theorem of linear algebra

I’ve covered this in past years, but we will not get to it this year. For the purposes of
this course, the main point of the fundamental theorem of linear algebra was to show the
existence of Lagrange multipliers. The separating hyperplane theorem now fulfills that
role instead. The fundamental theorem of linear algebra is somewhat easier to prove than
the separating hyperplane theorem, but the fundamental theorem of linear algebra only
applies to finite dimensional spaces, so perhaps it is not so “fundamental” afterall.

Definition B.1. If S1 + · · · + Sk � V and ∀v ∈ V , there are unique x j ∈ S j such that

v � x1 + · · · + xk

then V is the direct sum of S1, ..., Sk , written

V � S1 ⊕ · · · ⊕ Sk

Representing a vector space as a direct sum will be important for some of the results
below. The following lemma will be useful.
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Lemma B.1. Suppose S1 and S2 are linear subspaces of V . Then V � S1 ⊕ S2 iff V � S1 + S2
and S1 ∩ S2 � {0}.

Proof. Suppose V � S1 ⊕ S2. Then by definition V � S1 + S2. Also, if x ∈ S1 ∩ S2, then
0 � x + (−x). The definition of direct sum requires this representation to be unique, so
x � 0 must be the only element of S1 ∩ S2.

Suppose V � S1 + S2 and S1 ∩ S2 � {0}. Let v ∈ V . Since V � S1 + S2, ∃x1 ∈ S1 and
x2 ∈ S2 such that v � x1+x2. Suppose that y1 ∈ S1 and y2 ∈ S2 and v � y1+y2. Subtracting,

0 � (x1 − y1)︸    ︷︷    ︸
∈S1

+ (x2 − y2)︸    ︷︷    ︸
∈S2

so (x1 − y1) � −(x2 − y2). By the definition of subspaces, S1 and S2 are closed under scalar
multiplication. Therefore, (xi − yi) ∈ S1 ∩ S2 for i � 1, 2. By assumption, this intersection
only contains 0, so we can conclude that xi � yi . The representation of v � x1 + x2 is
unique. □

The next three lemmas will be used later when proving theorem B.1. You may want to
skip ahead and only come back to these lemmas when they’re needed.

Lemma B.2. Suppose V is finite dimensional and S is a subspace of V . Then ∃ another subspace,
W , of V such that V � S ⊕ W , and dim(V) � dim(S) + dim(W).

Proof. Construct a basis for S as follows. Set the basis B � {}. If S � span(B), then stop.
Otherwise, choose b j ∈ S \ span(B) and add it to B. Since V is finite dimensional, this
process must stop after at most dim(V) steps. This gives a basis B for S.

We will now construct a basis for W . Set E � {}. If span(B∪E) � V , then stop. Otherwise
choose e j ∈ V \ span(B ∪ E) and add it to E. Again, this process must stop because V is
finite dimensional. Let W � span(E). By construction span(B ∪ E) � S + W � V . Also,
lemma 1.4 implies that each v ∈ V can be uniquely written as a linear combination of
elements of B ∪ E, each s ∈ S can be uniquely written as a linear combination of B, and
each w ∈ W can be uniquely written as a linear combination of E. It follows that for each
v ∈ V there are unique s ∈ S and w ∈ W such that v � s + w. □

Lemma B.3. Suppose V is finite dimensional and S and T are subspaces of V . If S ∩ T � 0 and
dim(S) + dim(T) � dim(V), then V � S ⊕ T.

Proof. Let b1, ..., bn be a basis for S and e1, ..., em be a basis for T. Suppose
n∑

i�1
αi bi +

m∑
j�1

β je j � 0

Then let

x �

n∑
i�1

αibi � −
m∑

j�1
β j e j

x ∈ S, and x ∈ T. We assume S ∩ T � 0, so then x � 0. Since b1, ..., bn are linearly
independent, we must have α1 � · · · � αn � 0. Similarly all β j � 0. Therefore, b1, ..., bn ,
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e1, ..., em are linearly independent. This is a linearly independent set of dim(S)+dim(T) �
dim(V) elements, so it is a basis for V . Hence, V � S + T. □

Lemma B.4. Let S and T be subspaces of a finite dimensional space V . Then

dim(S + T) � dim(S) + dim(T) − dim(S ∩ T).

Proof. We will be brief for this proof. You may want to add the details as an exercise.
Let B be basis for S ∩ T. Extend U to a basis for S, call it B ∪ BS. Similarly extend U to a

basis for T, B ∪ BT . Then span(B ∪ BS ∪ BT) � S + T. Also, you can show that B ∪ BS ∪ BT
is linearly independent, and hence a basis, for S + T. Finally, note that since B, BS, and BT
must be disjoint,

dim(S + T) � |B ∪ BS ∪ BT | � |B ∪ BS | + |B ∪ BT | − |B |.
□

There is an interesting relationship among the null spaces and ranges of a linear trans-
formation and its transpose. Let A ∈ L(V,W) and suppose V and W are finite dimensional.
Finite dimension ensures that V∗ � V and W ∗ � W . Then nullA ⊆ V and rangeAT ⊆ V .
How are these subspaces related?

Theorem B.1 (Fundamental theorem of linear algebra). Let A ∈ L(V,W), where V and W
are finite dimensional. Then

V � nullA ⊕ rangeAT

and
W � nullAT ⊕ rangeA.

Also, dim(rangeA) � dim(rangeAT) and,

dim(V) � dim(nullA) + dim(rangeA)
and

dim(W) � dim(nullAT) + dim(rangeA).

Proof. Suppose x is in the null space of A. Then Ax � 0. By the definition of the transpose,

wTAx � (AT w)T x � 0

The set {v : v � AT w} is the range of AT . If x ∈ nullA ∩ rangeAT , then there is a w such
that AT w � x. We know from the previous equation that (AT w)T x � 0 � xT x. Therefore,
it must be that x � 0, so nullA ∩ rangeAT � {0}.

Let U be such that nullA ⊕ U � V (lemma B.2), and dim(nullA) + dim(U) � dim(V).
Theorem 5.1 then implies that, dim(U) � dim(rangeA). Additionally, lemma B.4 implies
that dim(nullA + rangeAT) � dim(nullA) + dim(rangeAT) ≤ dim(V), so we can conclude
that dim(rangeAT) ≤ dim(rangeA).

Identical reasoning shows the opposite inequality. Therefore dim(rangeA) � dim(rangeAT).
Finally, since dim(nullA) + dim(rangeAT) � dim(V) and nullA ∩ rangeAT � {0}, using
lemma B.3, we can conclude that V � nullA ⊕ rangeAT . Identical reasoning shows that
W � nullAT ⊕ rangeA. □
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Strang (1993) has a nice discussion of this theorem.
The requirement of finite dimension is really essential in this theorem. In infinite

dimension, V∗ need not be the same as V . If V and V∗ are different, it does not make sense
to talk about nullA+ rangeAT , because nullA ⊆ V and rangeAT ⊆ V∗. Some people object
to calling this theorem “fundamental” because it does not extend to infinite dimensional
spaces.

This theorem has some nice implications for systems of linear equations. If A �©­­«
a11 · · · a1n
...

. . .
...

am1 · · · amn

ª®®¬ is a matrix, then the range of A is

{Ax : x ∈ Rn} �
{( ∑n

j�1 a1 j x j
...
∑n

j�1 am j x j

)
: x j ∈ R

}
,

the set of linear combinations of the columns of A. The column space of A, denoted
Col(A), is the space spanned by the column vectors of A. The column space of A is the
same as the range of A.

Similar reasoning shows that the space of linear combinations of the rows of A is the
range of AT . The row space of A, denoted Row(A), is the space spanned by the row vectors
of A. The fundamental theorem of linear algebra shows that the dimensions of the column
and row spaces are equal. The rank of a matrix is the dimension of its row and column
spaces.

Definition B.2. The rank of a linear transformation is the dimension of its range.

Example B.1. Let X be an n × k matrix. Define:

Px � X(XT X)−1XT

and
Mx � I − X(XT X)−1XT .

Both Px and Mx are linear transformations from Rn to Rn . Also, both Px � PT
x and

Mx � MT
x . Therefore, from the fundamental theorem of linear algebra,

Rn
� nullPx ⊕ rangePx

and
Rn

� rangeMx ⊕ nullMx .

Suppose w ∈ rangePx , then ∃y ∈ Rn such that Px y � w. Notice that

Mx w �MxPx y

�(Px − Px)y � 0,

so w ∈ nullMx . Similarly, if w ∈ rangeMx , then w ∈ nullPx . Also, if w ∈ nullPx , then

Mx w � w − Pxw � w
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so w ∈ rangeMx . We can conclude that null Px � range Mx and null Mx � range Px .
Hence,

Rn � nullPx ⊕ rangePx

� �

Rn � rangeMx ⊕ nullMx .

In studying constrained optimization problems,

max
x

f (x) s.t. h(x) � c ,

we used the fact that
Dhx v � 0 �⇒ D fx v � 0 (5)

is equivalent to there existing λT such that

D fx + λ
T Dhx � 0.

Equation (5) is just another way of saying nullDhx ⊆ nullD fx . An immediate consequence
of theorem B.1 is the following.

Corollary B.1. Let A ∈ L(V,W) and B ∈ L(V, Z). Then nullA ⊆ nullB iff rangeAT ⊇
rangeBT .

Proof. From theorem B.1, we know that V � nullA⊕ rangeAT � nullB⊕ rangeBT . Suppose
nullA ⊆ nullB. Let v ∈ rangeBT . Then either v � 0, in which case v ∈ rangeAT , or
v < nullB. If v < nullB, v < nullA as well. Therefore, v ∈ rangeAT .

If rangeAT ⊇ rangeBT , an identical argument shows nullA ⊆ nullB. □

Letting A � Dhx and B � D fx , we know that nullDhx ⊆ D fx iff rangeDhT
x ⊇ rangeD f T

x .
This means that for every w∗ ∈ W ∗, ∃λw ∈ Z∗ such that

D f T
x w∗

� DhT
x λw .

For optimization problems, W � R, so it suffices to just consider w∗ � 1,

D f T
x � DhT

x λ.

If V and Z are finite dimensional, then we can substract and transpose to get

D fx − λT Dhx � 0.

Corollary (B.1) is also true in infinite dimensional spaces under some additional con-
ditions.7 In fact, theorem 7.2 is equivalent to this corollary. When working with optimal
control problems, we were using this result and making some implicit assumptions about
how elements from the duals spaces can be written as integrals. Appropriately defining
V and Z ensures that these assumptions hold. The details are tedious, so we will not go
into them.

7The ranges of A and B must be closed. See e.g. section 6.6 of Luenberger (1969).
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