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Always consider a problem under the minimum structure in which it makes
sense. ... one is naturally led to the study of problems with a kind of minimal
and intrinsic structure. Besides the fact that it is much easier to find the crux
of the matter in a simple structure than in a complicated one, there are not
so many really basic structures, so one can hope that they will remain of
interest for a very long time. — Talagrand (2005)

This lecture focuses on metric spaces, topology, and continuity. Similar material is
covered in chapters 12 and 29, of Simon and Blume (1994), 1.3 of Carter (2001), chapter
2 of De la Fuente (2000), and any textbook on real analysis, such as Rudin (1976) or Tao
(2006).

Many proofs in mathematics rely on showing some approximation can be made arbi-
trarily close. For example, showing that the first order conditions are necessary for an
optimum relied on approximating the objective function with a first order expansion.
To facilitate such arguments, we need some good ways to measure closeness. The most
obvious way is to define some sort of distance. This is what metric spaces do. Given a
measure of distance, we can think about convergence of sequences, continuity of func-
tions, et cetera. We will see that a distance also gives rise to a classification of sets (as
open and closed), and these open and close sets can also be used to describe convergence
of sequences, continuity, and so on. This is what topology is about. Topology gives us
another way of thinking about closeness without referring directly to distance. This can
sometimes lead to easier proofs and new insights. There also exist sets that can be assigned
a topology, but for which there does not exist an equivalent distance.1

1. Sequences and limits

A sequence is a list of elements, {x1, x2, ...} or {xn}∞n�1 or sometimes just {xn}. Although
the notation for a sequence is similar to the notation for a set, they should not be confused.
Sequences are different from sets in that the order of elements in a sequence matters, and
the same element can appear many times in a sequence. Some examples of sequences
with xi ∈ R include

1This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License
1In econometrics, you might eventually encounter weak convergence and hear references to the topology

of weak convergence. This is an example of a non-metrizable topology.
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(1) {1, 1, 2, 3, 5, 8, ...}
(2) {1, 1

2 ,
1
3 ,

1
4 , ...}

(3) { 1
2 ,

−2
3 ,

3
4 ,

−4
5 ,

5
6 , ...}

Some sequences, like 2, have elements that all get closer and closer to some fixed point. We
say that these types of sequences converge. A sequence that does not converge diverges.
Some divergent sequences like 1, increase without bound. Other divergent sequences,
like 3, are bounded, but they do not converge to any single point.

To analyze sequences with elements that are not necessarily real numbers, we need to
be able to say how far apart the entries in the sequence are.

Definition 1.1. A metric space is a set, X, and function d : X × X → R called a metric (or
distance) such that ∀x , y , z ∈ X

(1) d(x , y) > 0 unless x � y and then d(x , x) � 0
(2) (symmetry) d(x , y) � d(y , x)
(3) (triangle inequality) d(x , y) ≤ d(x , z) + d(z , y).

Example 1.1. R is a metric space with d(x , y) � |x − y |.

Example 1.2. Any normed vector spacea is a metric space with d(x , y) �


x − y



.
aIn the past, we covered vector spaces before metric spaces, so this example made more sense here.
Now it can be safely skipped.

The most common metric space that we will encounter will be Rn with the Euclidean
metric, d(x , y) �



x − y


 �

√∑n
i�1(xi − yi)2.

Definition 1.2. A sequence {xn}∞n�1 in a metric space converges to x if ∀ϵ > 0 ∃N such
that

d(xn , x) < ϵ
for all n ≥ N . We call x the limit of {xn}∞n�1 and write limn→∞ xn � x or xn → x.

Example 1.3. The sequence {1, 1
2 ,

1
3 ,

1
4 , ...} � {1/n}∞n�1 converges. To see this, take any

ϵ > 0. Then ∃ N such that 1/N < ϵ. For all n ≥ N , d(1/n , 0) � 1/n < ϵ.
If a sequence does not converge, it diverges.

Example 1.4. The Fibonacci sequence, {1, 1, 2, 3, 5, 8, ...} diverges.

Definition 1.3. a is an accumulation point of {xn}∞n�1 if ∀ϵ > 0 ∃ infinitely many xi such
that

d(a , xi) < ϵ.

Example 1.5. The sequence { 1
2 ,

−2
3 ,

3
4 ,

−4
5 ,

5
6 , ...} has two accumulation points, 1 and −1.

The limit of any convergent sequence is an accumulation point of the sequence. In fact, it
is the only accumulation point.
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Lemma 1.1. If xn → x, then x is the only accumulation point of {xn}∞n�1.

Proof. Let ϵ > 0 be given. By the definition of convergence, ∃N such that

d(xn , x) < ϵ
for all n ≥ N . {n ∈ N : n ≥ N} is infinite, so x is an accumulation point.

Suppose x′ is another accumulation point. Then ∀ϵ > 0 ∃N and N′ such that if
n ≥ N and n ≥ N′, then d(xn , x) < ϵ/2 and d(xn , x′) < ϵ/2). By the triangle inequality,
d(x , x′) ≤ d(xn , x′) + d(xn , x) < ϵ. Since this inequality holds for any ϵ, it must be that
d(x , x′) � 0. d is a metric, so then x � x′, and the limit of sequence is the sequence’s
unique accumulation point. □

The third example of a sequence at the start of this section, 3, shows that the converse
of this lemma is false. Not every accumulation point is a limit.

Definition 1.4. Given {xn}∞n�1 and any sequence of positive integers, {nk} such that n1 <
n2 < ... we call {xnk } a subsequence of {xn}∞n�1.

In example 3, there are two accumulation points, −1 and 1, and you can find subse-
quences that converge to these points.

Lemma 1.2. Let a be an accumulation point of {xn}. Then ∃ a subsequence that converges to a.

Proof. We can construct a subsequence as follows. Let {ϵk} be a sequence that converges
to zero with ϵk > 0∀k, (for example, ϵk � 1/k). By the definition of accumulation point,
for each ϵk ∃ infinitely many xn such that

d(xn , a) < ϵk (1)

Pick any xn1 such that (1) holds for ϵ1. For k > 1, pick nk , n j for all j < k and such that
(1) holds for ϵk . Such an nk always exists because there are infinite xn that satisfy (1). By
construction, limk→∞ xnk � a (you should verify this using the definition of limit). □

Convergence of sequences is often preserved by arithmetic operations, as in the follow-
ing two theorems.

Theorem 1.1. Let {xn} and {yn} be sequences in Rn (or any normed vector space) V . If xn→x
and yn→y, then

xn + yn→x + y.

Proof. Let ϵ > 0 be given. Then ∃ Nx such that for all n ≥ Nx ,

d(xn , x) < ϵ/2,

and ∃Ny such that for all n ≥ Ny ,

d(yn , y) < ϵ/2.

Let N � max{Nx ,Ny}. Then for all n ≥ N ,

d(xn + yn , x + y) �


(xn + yn) − (x + y)



 ≤ ∥xn − x∥ +


yn − y




<ϵ/2 + ϵ/2 � ϵ.

□
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Theorem 1.2. Let {xn} be a sequence in a normed vector space with scalar field R and let {cn} be
a sequence in R. If xn→x and cn→c then

xn cn→xc.

Proof. Left as an exercise. □

In fact, later we will see that if f (·, ·) is continuous, then lim f (xn , yn) � f (x , y). The
previous two theorems are examples of this with f (x , y) � x + y and f (c , x) � cx,
respectively.

1.1. Series. Infinite sums or series are formally defined as the limit of the sequence of
partial sums.

Definition 1.5. Let {xn}∞n�1 be a sequence in a normed vector space. Let sn �
∑n

i�1 xi
denote the sum of the first n elements of the sequence. We call sn the nth partial sum. We
define the sum of all the xis as

∞∑
i�1

xi ≡ lim
n→∞

sn

This is called a(n infinite) series.

Example 1.6. Let β ∈ R.
∑∞

i�0 β
i is called a geometric series. Geometric series appear

often in economics, where β will be the subjective discount factor or perhaps 1/(1+ r).
Notice that

sn �1 + β + β2
+ · · · + βn

�1 + β(1 + β + · · · + βn−1)
�1 + β(1 + β + · · · + βn−1

+ βn) − βn+1

sn(1 − β) �1 − βn+1

sn �
1 − βn+1

1 − β ,

so,
∞∑

i�0
βi

� lim sn

� lim
1 − βn+1

1 − β

�
1

1 − β if |β | < 1.

1.2. Cauchy sequences. We have defined convergent sequences as ones whose entries all
get close to a fixed limit point. This means that all the entries of the sequence are also
getting closer together. You might imagine a sequence where the entries get close together
without necessarily reaching a fixed limit.

4
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Definition 1.6. A sequence {xn}∞n�1 is a Cauchy sequence if for any ϵ > 0 ∃N such that for
all i , j ≥ N , d(xi , x j) < ϵ.

It turns that in Rn Cauchy sequences and convergent sequences are the same. This is a
consequence of the way the real numbers are defined.

1.1. Every Cauchy sequence in R converges.

There is a more detailed discussion of this in Chapter 29.1 of Simon and Blume. If you
want more practice with the sort of proofs in this lecture, it would be good to read that
section. The convergence of Cauchy sequences in the real numbers is equivalent to the
least upper bound property that is discussed in the appendix to the lecture notes on sets.

Cauchy sequences do not converge in all metric spaces. For example, the rational
numbers are a metric space, and any sequence of rationals that converges to an irrational
number in R is a Cauchy sequence in Q but has no limit in Q. Having Cauchy sequences
converge is necessary for proving many theorems, so we have a special name for metric
spaces where Cauchy sequences converge.

Definition 1.7. A metric space, X, is complete if every Cauchy sequence of points in X
converges in X.

Example 1.7. Rn is a complete metric space. A brief argument follows. You may
want to state the details as an exercise. Let {xi} be a Cauchy sequence in Rn . Each
coordinate of xi � (x1i , ..., xni) is a Cauchy sequence in R. R is complete, so each
coordinate has a limit, x ji→x j for j � 1, ..., n. Finally, show that x � (x1, ..., xn) is the
limit of the original sequence in Rn .

Example 1.8. ℓp � {(x1, x2, ...) s .t . xi ∈ R,
∑∞

i�1 |xi |p < ∞} with metric

dp(x , y) �
( ∞∑

i�1
|xi − yi |p

)1/p

is a complete metric space.
Showing that ℓp is complete is slightly tricky because you have deal with a sequence

of xi ∈ ℓp , each element of which is itself an infinite sequence.
To show that ℓp is complete, let {xn}∞n�1 be a Cauchy sequence. Let



x − y




p denote
dp(x , y).

Denote the elements of xi by xi1, xi2, .... First, let’s show that for any n, x1n , x2n , ...
is a Cauchy sequence in R. Let ϵ > 0. Since {xn}∞n�1 is Cauchy, ∃Nϵ such that for all
i , j ≥ Nϵ, 

xi − x j




p < ϵ.

Since 

xi − x j


p

p �

( ∞∑
m�1

��xim − x jm
��p)

5
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All terms in the sum on the right are non-negative and the sum includes
��xin − x jn

��, so��xin − x jn
��p ≤



xi − x j


p

p��xin − x jn
�� ≤ 

xi − x j




p

Therefore,
��xin − x jn

�� < ϵ for all i , j ≥ Nϵ, i.e. x1n , x2n , ... is a Cauchy sequence in R. R
is complete, so it has some limit. Denote the limit by x∗

n .
Now we will show that x∗ � (x∗

1, x
∗
2, ...) is the limit of {xn}∞n�1. First, we should show

that x∗ ∈ ℓp . Let

s∗m �

m∑
n�1

|x∗
n |p .

We need to show that lim s∗m exists. Since {xn}∞n�1 is Cauchy, ∃ j such that if i ≥ j,

xi − x j


 < 1. Using the triangle inequality,

∥xi ∥ ≤


xi − x j



 + 

x j


 � 1 +



x j


 ≡ M

for all i ≥ j and some fixed j. Thus, ∥xi ∥ ≤ M for some constant M and all i ≥ j. Then,

s∗m �

m∑
n�1

|x∗
n |p � lim

i→∞

m∑
n�1

|xin |p ≤ Mp .

The final inequality comes from the fact that
∑m

n�1 |xin |p ≤ ∑∞
n�1 |xin |p � ∥xi ∥p ≤ Mp .

Importantly, the upper bound Mp does not depend on i or m. Thus, we have shown
that

s∗m ≤ Mp

for all m. s∗m is a bounded weakly increasing sequence in R, so it must converge.a
Finally, we should show that {xn}∞n�1 converges to x∗. Let ϵ > 0. Since the original

sequence is Cauchy, there is an N such that if i , j > N , then
M∑

m�1

��xim − x jm
��p ≤



xi − x j


p
< ϵ

for all M. Therefore,

lim
j→∞

M∑
m�1

��xim − x jm
��p �

M∑
m�1

|xim − x∗
m | < ϵ

for all i ≥ N and all M. Thus,

∥xi − x∗∥ � lim
M→∞

M∑
m�1

|xim − x∗
m | < ϵ

for all i ≥ N , so the sequence converges.
aLet {xn}∞n�1 ∈ R and suppose x1 ≤ x2 ≤ x3 ≤ ... and {xn}∞n�1 is bounded, then we will show {xn}∞n�1
converges. Suppose not. Then the sequence has no accumulation points. In particular, xi is not an
accumulation point of the sequence for any i i.e. there is an ϵ > 0 such that for all i there are finitely

6
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many j with d(xi , x j) < ϵ. Then we can construct a subsequence by choosing jk such that jk > jk−1 and
|x jk − x jk−1 | > ϵ. But then

x jk �x j1 + (x j2 − x j1) + (x j3 − x j2) + ... + (x jk − x jk−1)
≥x j1 + (k − 1)ϵ

which is not bounded.

2. Open sets

Definition 2.1. Let X be a metric space and x ∈ X. A neighborhood of x is the set

Nϵ(x) � {y ∈ X : d(x , y) < ϵ.

A neighborhood is sometimes also called an open ϵ-ball of x and written Bϵ(x). I will
try to stick with the Nϵ(x) notation, but I might sometimes use ball and neighborhood
interchangeably.

Definition 2.2. A set, S ⊆ X is open if ∀x ∈ S, ∃ ϵ > 0 such that

Nϵ(x) ⊂ S.

For every point in an open set, you can find a small neighborhood around that point
such that the neighborhood lies entirely within the set.

Example 2.1. Any open interval, (a , b) � {x ∈ R : a < x < b}, is an open set.

Theorem 2.1.
(1) Any union of open sets is open. (finite or infinite)
(2) The finite intersection of open sets is open.

Proof. Let S j , j ∈ J be a collection of open sets. Pick any j0 ∈ J. If x ∈ ∪ j∈ JS j , then there
must be ϵ j0 > 0 such that Nϵ j0

(x) ⊂ S j0 . It is immediate that Nϵ j0
(x) ⊂ ∪ j∈ JS j as well.

Let S1, .., Sk be a finite collection of open sets. For each i ∃ϵi > 0 such that Nϵi (x) ⊂ Si .
Let ϵ � mini∈{1,...,k} ϵi . Then ϵ > 0 since it is the minimum of a finite set of positive
numbers. Also, Nϵ(x) ⊂ Si for each i, so Nϵ(x) ⊂ ∩k

i�1Si . □

Definition 2.3. The interior of a set A is the union of all open sets contained in A. It is
denoted as int(A).

From the previous, theorem, we know that the interior of any set is open.

Example 2.2. Here some examples of the interior of sets in R.
(1) A � (a , b), int(A) � (a , b).
(2) A � [a , b], int(A) � (a , b).
(3) A � {1, 2, 3, 4, ...}, A � ∅

Exercise 2.1. Let X be a metric space and {xn}∞n�1 a sequence in X. Show that xn→x
if and only if for every open set U containing x ∃N such that xn ∈ U for all n ≥ N .

7
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3. Closed sets

A closed set is almost like the opposite of an open set. However, a set can be both open
and closed, and a set can be neither, so they are not exactly opposites.

Definition 3.1. A set S ⊆ X is closed if its complement, Sc , is open.

For any metric space, X, the whole space, X is open. Therefore, the Xc � ∅ is closed. The
empty set is considered open in any metric space. For now, you could just consider this to
be by convention, but below we will that closed sets can also be defined by convergence of
sequences. By that definition, the whole space is closed, so its complement, the empty set
must be open. Anyway, the point is that the empty set and entire metric space are always
both open and closed.

Closed sets behavior under union and intersections is the mirror image of that of open
sets.

Theorem 3.1.
(1) The intersection of any collection of closed sets is closed.
(2) The union of any finite collection of closed sets is closed.

Proof. Let C j , j ∈ J be a collection of closed sets. Then
(
∩ j∈ J C j

) c
� ∪ j∈ J Cc

j . Cc
j are open, so

by theorem 2.1, ∪ j∈ J Cc
j �

(
∩ j∈ J C j

) c
� is open.

The proof of part 2 is similar. □

Example 3.1 (Closed sets). Some examples of closed sets include
(1) [a , b] ⊆ R
(2) {(x , y) ∈ R2 : x2 + y2 ≤ 1}
(3) {x ∈ Rn : Ax � b} where A is an m × n matrix and b ∈ Rm

Example 3.2 (Discrete metric and topology). Let X be any set. Define a metric on X
by

∆(x , y) �
{

1 if x , y
0 if x � y

This is a metric because it is positive definite, symmetric, and satisfies the triangle
inequality. This metric is called the discrete metric. In this space, the set of any single
point {x} is open since Nϵ(x) � {x} ⊆ {x} for any ϵ < 1. Any union of open sets is
open, so all subsets of X are open. Since every set is open, the complement of every
set is open, so every set is closed as well.
Closed sets can also be defined as sets that contain the limit of any convergent sequence

in the set. Simon and Blume use this definition. The next theorem shows that their
definition is equivalent to ours.

Theorem 3.2. Let {xn} be any convergent sequence with each element contained in a set C. Then
lim xn � x ∈ C for all such {xn} if and only if C is closed.

8
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Proof. First, we will show that any set that contains the limit points of all its sequences is
closed. Let x ∈ Cc . Consider N1/n(x). If for any n, N1/n(x) ⊂ Cc , then Cc is open, and C is
closed as desired. If for all n, N1/n(x) 1 Cc , then ∃yn ∈ N1/n(x) ∩ C. The sequence {yn} is
in C and yn→x. However, by assumption C contains the limit of any sequence within it.
Therefore, there can be no such x, and Cc must be open and C is closed.

Suppose C is closed. Then Cc is open. Let {xn} be in C and xn→x. Then d(xn , x)→0,
and for any ϵ > 0, ∃xn ∈ Nϵ(x). Hence, there can be no ϵ neighborhood of x contained in
Cc . Cc is open by assumption, so x < Cc and it must be that x ∈ C. □

Definition 3.2. The closure of a set S, denoted by S (or cl(S)), is the intersection of all
closed sets containing S.

Example 3.3. If S is closed, S � S.

Example 3.4. (0, 1] � [0, 1]

Lemma 3.1. S is the set of limits of convergent sequences in S.

Proof. Let {xn} be a convergent sequence in S with limit x. If C is any closed set containing
S, then {xn} is in C and by theorem 3.2, x ∈ C. Therefore, x ∈ S.

Let x ∈ S. For any ϵ > 0, Nϵ(x) ∩ S , ∅ because otherwise Nϵ(x)c is a closed set
containing S, but not x. Therefore, we can construct a sequence xn ∈ S ∩ N1/n(x) that
converges to x and is in S. □

Example 3.5. {1/n}n∈N � {0, 1, 1/2, 1/3, ...}

Definition 3.3. The boundary of a set S is S ∩ Sc .

Example 3.6. The boundary of [0, 1] is {0, 1}.

Example 3.7. The boundary of the unit ball, {x ∈ R2 : ∥x∥ < 1} is the unit circle,
{x ∈ R2 : ∥x∥ � 1}.

Lemma 3.2. If x is in the boundary of S then ∀ϵ > 0, Nϵ(x) ∩ S , ∅ and Nϵ(x) ∩ Sc , ∅.

Proof. As in the proof of lemma 3.1, all ϵ-neighborhoods of x ∈ S must intersect with S.
The same applies to Sc . □

Exercise 2.1 and theorem 3.2 show that there is an important relationship between
convergence of sequences and open and closed sets. Given a definition of what it means
for a sequence to converge, we could use theorem 3.2 to define closed sets. Open sets
could then be defined as the complement of closed sets. Conversely, if we specify which
sets are open and closed, we can then define convergence of sequences as in exercise 2.1.
Metrics, convergence of sequences, and open and closed sets are three different ways of
describing notions of proximity and continuity.

9
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4. Compact sets

Compact sets are a generalization of finite sets. Compact sets are essential for prov-
ing many important theorems. Compact sets have a somewhat difficult to understand
definition, but they are incredibly useful.

Definition 4.1. An open cover of a set S is a collection of open sets, {Gα} α ∈ A such that
S ⊆ ∪α∈AGα.

Example 4.1. Some open covers of R are:
• {R}
• {(−∞, 1), (−1,∞)
• {..., (−3,−1), (−2, 0), (−1, 1), (0, 2), (1, 3), ...}
• {(x , y) : x < y}

The first two are finite open covers since they consist of finitely many open sets. The
third is a countably infinite open cover. The fourth is an uncountably infinite open
cover.

Example 4.2. Let X be a metric space and A ⊆ X. The set of open balls of radius ϵ
centered at all points in A is an open cover of A. If A is finite / countable / uncountable,
then this open cover will also be finite / countable / uncountable.

Open covers of the form in the previous example are often used to prove some property
applies to all of A by verifying the property in each small Nϵ(x). Unfortunately, this often
involves taking a maximum or sum of something for each set in the open cover. When
the open cover is infinite, it can be hard to ensure that the infinite sum or maximum stays
finite. When we have a finite open cover, we know that things will remain finite.

Definition 4.2. A set K is compact if every open cover of K has a finite subcover.

By a finite subcover, we mean that there is finite subset of the sets in the open cover,
Gα1 , ...Gαk such that S ⊂ ∪k

j�1Gα j . Compact sets are a generalization of finite sets. Many
facts that are obviously true of finite sets are also true for compact sets, but not true for
infinite sets that are not compact. Suppose we want to show a set has some property. If
the set is compact, we can cover it with a finite number of small ϵ balls and then we just
need to show that each small ball has the property we want. We will see many concrete
examples of this technique in the next few weeks.

Example 4.3. R is not compact. {..., (−3,−1), (−2, 0), (−1, 1), (0, 2), (1, 3), ...} is an infi-
nite cover, but if we leave out any single interval (the one beginning with n) we will
fail to cover some number (n + 1).

Example 4.4. Let K � {x}, a set of a single point. Then K is compact. Let {Gα}α∈A be
an open cover of K. Then ∃ α such that x ∈ Gα. This single set is a finite subcover.

10
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Example 4.5. Let K � {x1, ..., xn} be a finite set. Then K is compact. Let {Gα}α∈A be an
open cover of K. Then for each i, ∃ αi such that xi ∈ Gαi . The collection {Gα1 , ...Gαn }
is a finite subcover.

Example 4.6. (0, 1) ⊆ R is not compact. {(1/n , 1)}∞n�2 is an open cover, but there can be
no finite subcover. Any finite subcover would have a largest n and could not contain,
e.g. 1/(n + 1).

Example 4.7. Pick any x ∈ Rn . Let K � {x 1
2 , x

2
3 , x

3
4 , ...}. Then K is not compact.

Consider the open cover N∥x∥ 1
3(n+2)2

(x n
n+1) for n � 1, 2, .... Assuming x , 0, each of

these neighborhoods contains exactly one point of K, so there is no finite subcover.
Before using compactness, let’s investigate how being compact relates to other properties

of sets, such as closed/open.

Lemma 4.1. Let X be a metric space and K ⊆ X. If K is compact, then K is closed.

Proof. Let x ∈ Kc . The collection {Nd(x.y)/3(y)}, y ∈ K is an open cover of K. K is compact,
so there is a finite subcover, Nd(x ,y1)/3(y1), ...,Nd(x ,yn)/3(yn). For each i, Nd(x ,yi)/3(yi) ∩
Nd(x ,yi)/3(x) � ∅, so

∩n
i�1Nd(x ,yi)/3(x)

is an open neighborhood of x that is contained in Kc . Kc is open, so K is closed. □

Lemma 4.2. Let X be a metric space, C ⊆ K ⊆ X. If K is compact and C is closed. Then C is also
compact.

Proof. Let {Gα}α∈A be an open cover for C. Then {Gα}α∈A plus Cc is an open cover for K.
Since K is compact there is a finite subcover. Since C ⊆ K, the finite subcover also covers
C. Therefore, C is compact. □

An equivalent definition of compactness is in terms of collection of sets with “the finite
intersection property.” A collection of sets {Cα}α∈B has the finite intersection property if
for all finite subsets, F ⊆ A, the intersection, ∩α∈FCα is not empty.

Lemma 4.3. Let X be a metric space and K ⊆ X. K is compact if and only if for every collection
of closed subsets, {Cα}α∈B with Cα ⊆ K, with the finite intersection property, the intersection of
all the subsets is not empty i.e. ∩α∈BCα is not empty.

Proof. Left as an exercise. The statement in the lemma is basically the contrapositive of
the definition of compact, combined with the observation that the complement of closed
sets are open and vice versa, and the fact that (A ∪ B)c � Ac ∩ Bc . □

The definition of compactness is somewhat abstract. We just saw that compact sets are
always closed. Another property of compact sets is that they are bounded.

Definition 4.3. Let X be a metric space and S ⊆ X. S is bounded if ∃x0 ∈ S and r ∈ R
such that

d(x , x0) < r
11
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for all x ∈ S.

A bounded set is one that fits inside an open ball of finite radius. For subsets of R this
definition is equivalent to there being a lower and upper bound for the set. For subsets of
a normed vector space, if S is bounded then there exists some M such that ∥x∥ < M for
all x ∈ S.

Lemma 4.4. Let K ⊆ X be compact. Then K is bounded.

Proof. Pick x0 ∈ K. {Nr(x0)}r∈R is an open cover of K, so there must be a finite subcover.
The finite subcover has some maximum r∗. Then K ⊆ Nr∗(x0), so K is bounded. □

This lemma along with lemma 4.1 show that if a set is compact then it is also closed and
bounded. In Rn , the converse is also true.

Theorem 4.1 (Heine-Borel). A set S ⊆ Rn is compact if and only if it is closed and bounded.

Proof. We already showed that if S is compact, then it is closed and bounded.
Now suppose S is closed and bounded. Since S is bounded, it is a subset of some n-

dimensional cube, say [−a , a]n (i.e. the set of all vectors x � (x1, .., xn) with −a ≤ xi ≤ a).
We will show [−a , a]n is compact, and then use the fact that a closed subset of a compact
set is compact.

Let’s just show [−a , a]n is compact for n � 1. The argument for larger n is similar, but
the notation is more cumbersome. If [−a , a] is not compact, then there is an infinite open
cover with no finite subcover, say {Gα}α∈A . If we cut the interval into two halves, [−a , 0]
and [0, a], at least one of them must have no finite subcover. We can repeat this argument
many times to get nested closed intervals of length a/(2k) for any k. Call the kth interval
Ik . We claim that ∩∞

k�1Ik , ∅. To show this take the sequence of lower endpoints of the
intervals, call it {xn}∞n�1. This is a Cauchy sequence, so it converges to some limit, x0. Also,
for any k, {xn}∞n�k is a sequence in Ik . Ik is closed so x0 ∈ Ik . Thus x0 ∈ ∩∞

k�1Ik . On the
other hand, Ik ⊂ ∪α∈AGα for all k. Therefore, x0 must be in some open Gα as part of this
cover. Then ∃ϵ > 0 such that Nϵ(x0) ⊂ Gα. However, for k > 1/ϵ, Ik ⊂ Nϵ(x0) ⊂ Gα, and
then Ik has a finite subcover. Therefore, [−a , a] must be compact.

The argument for n > 1 is very similar. For n � 2, we would divide the square [−a , a]2
into four smaller squares. For n � 3, we would divide the cube into eight smaller cubes.
In general we would divide the hypercube [−a , a]n into 2n hypercubes with half the side
length. □

You may wonder whether closed and bounded sets are always compact. We will see that
all finite dimensional real vector spaces are isomorphic to Rn . In any such space, sets are
compact iff they are closed and bounded. However, in infinite dimensional spaces, there
are closed and bounded sets that are not compact. The argument in the previous proof
does not apply to infinite-dimensional spaces because an infinite dimensional hypercube
can only be divided into infinitely many hypercubes with half the side length.

Example 4.8. ℓ∞ � {(x1, x2, ...) : supi |xi | < ∞ with norm ∥x∥ � supi |xi | is a normed
vector space. Let ei be the element of all 0s except for the ith position, which is 1. Then

12
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E � {ei}∞i�1 is closed and bounded. However, E is not compact because {N1/2(ei)}∞i�1 is
an open cover with no finite subcover.

It is always true that a closed subset of a compact set is compact.

Lemma 4.5. Let C ⊆ K ⊆ X, where X is a metric space. If K is compact and C is closed, then C
is compact.

Proof. Let {Gα}α∈A be an open cover for C. C is closed, so Cc is open. Also, Cc along with
{Gα}α∈A is an open cover of K. K is compact so there exists a finite subcover. This finite
subcover (with Cc removed) is also a finite subcover of C. Therefore, C is compact. □

We saw that closed sets contain the limit points of all their convergent sequences. There
is also a relationship between compactness and sequences.

Definition 4.4. Let X be a metric space and K ⊆ X. K is sequentially compact if every
sequence in K has an accumulation point in K.

Sometimes this definition is written as: K is sequentially compact if every sequence in
K has a subsequence that converges in K. Compactness implies sequential compactness.

Lemma 4.6. Let X be a metric space and K ⊆ X be compact. Then K is sequentially compact.

Proof. Let {xn}∞n�1 be a sequence in K. Pick any ϵ > 0, Nϵ(x), x ∈ K is an open cover of
K, so there is a finite subcover. Therefore, one of the ϵ neighborhoods must contain an
infinite number of the elements from the sequence. Call this neighborhood Nϵ(x∗

1). Pick
the smallest n such that xn ∈ Nϵ(x∗

1) and call it n1. K1 � Nϵ(x∗
1)∩K is a closed subset of the

compact set K, so is itself compact. Repeat the above argument with ϵ/2 in place of ϵ and
K1 � Nϵ(x∗

1) ∩ K in place of K to find K2, K3, etc. The sets K1, K2, ... are all compact, (and
also closed) subsets of K. Moreover, for any finite collection Kℓ1 , ...Kℓm , ∩m

j�1Kℓ j � Kmax j ℓ j

is not empty. Since K is compact, ∩∞
j�1K j is also not empty. Finally, let x∗ ∈ ∩∞

j�1K j . Then
x∗ is an accumulation point of the original sequence {xn}. □

In Rn , a set is sequentially compact iff it is compact iff it is closed and bounded.

Theorem 4.2 (Bolzano-Weierstrass). A set S ⊆ Rn is closed and bounded if and only if it is
sequentially compact.

Proof. Let S be closed and bounded. By the Heine-Borel theorem (4.1), S is compact. By
lemma 4.6, S is sequentially compact.

Let S be sequentially compact. Let {xn} be a convergent sequence in S. Its limit is an
accumulation point, so it must be in S. Therefore, S is closed. To show S is bounded, pick
x0 ∈ S. Suppose ∃x1 ∈ S such that d(x1, x0) ≥ 1, and x2 ∈ S such that d(x2, x0) ≥ 2 etc.
This sequence is not Cauchy because of the reverse triangle inequality,

d(xi , x j) ≥
��d(xi , x0) − d(x j , x0)

�� � |i − j |
This would be a sequence in S with no accumulation points. Therefore, it must not always
be possible to find such xn . In other words, S must be bounded. □

13
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Comment 4.1. This theorem is sometimes stated as “each bounded sequence inRn has
a convergent subsequence.” As an exercise, you may want to verify that this statement
is equivalent to the one above.

Simon and Blume also prove this theorem in chapter 29.2. They do not prove the Heine-
Borel theorem first though, so their proof is of the Bolzano-Weierstrass theorem is longer.
Perhaps unsurprisingly, the details of their proof are somewhat similar to our proof of the
Heine-Borel theorem.

In Rn , compactness, sequential compactness, and closed and bounded are all the same.
In general metric spaces, this need not be true. We saw above that in ℓ∞, there are closed
and bounded sets which are not compact. However it is always true that sequential
compactness and compactness are the same for metric spaces. We already showed that
compactness implies sequential compactness. The proof that sequential compactness
implies compactness is a somewhat long and difficult, and you may want to skip it unless
you are especially interested.

Theorem 4.3. Let X be a metric space and K ⊆ X. K is compact if and only if K is sequentially
compact.

Proof. Lemma 4.6 shows that if K is compact, then K is sequentially compact.
Suppose every sequence in K has a convergent subsequence with a limit point in K. Let

Gα, α ∈ A be an open cover of K. A could be uncountable, so we will begin by showing
that there must be a countable subcover. Let n � 1. Pick x1 ∈ K. If possible choose x2 ∈ K
such that d(x1, x2) ≥ 1/n. Repeat this process, choosing x j in K such that d(x j , xi) ≥ 1/n
for each i < j. Eventually this will no longer be possible because otherwise we could
construct a sequence with no convergent subsequence. When it is no longer possible, set
n � n + 1. This gives a countable collection of open neighborhoods N1/n(xi) that cover
K for each n and get arbitrarily small as n increases. Call these neighborhoods η j for
j � 1, 2, ... Let J be set of all η j such that η j ⊆ Gα for some α. J is a subset of a countable
set, so J is countable. Note that ∪ j∈ Jη j ⊃ K because if x ∈ K, then x ∈ Gα for some α, and
then ∃ϵ such that Nϵ(x) ∈ Gα and ∃ j s.t. η j ⊂ Nϵ(x). Finally, for each j ∈ J choose Gα j

such that η j ⊆ Gα j . Such α j exist by construction. Also ∪ j∈ J Gα j ⊃ ∪ j∈ Jη j ⊃ K. So Gα j is a
countable subcover.

If Gα j has no finite subcover, then for each n,

Fn �
(
∪n

i�1Gαi

) c ∩ K

is not empty (if it were empty, then ∪n
i�1Gαi would be a finite subcover). Choose xn ∈ Fn .

Then {xn} is a sequence in K, and it must have a convergent subsequence with a limit, x0,
in K. However, each Fi+1 ⊂ Fi and Fi are all closed. Therefore, the sequence {x j}∞j�i is also
in Fi and so is its limit. Then x0 ∈ ∩∞

i�1Fi . However,

∩∞
i�1Fi �

(
∪∞

i�1Gαi

) c ∩ K,

but Gαi is a countable cover of K, which implies

∩∞
i�1Fi �

(
∪∞

i�1Gαi

) c ∩ K � ∅
14
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and we have a contradiction. Therefore, Gα j must have a finite subcover, and K is compact.
□

Comment 4.2. There are non-metric spaces where sequential compactness and com-
pactness are not equivalent. One can define open sets on a space without a metric
by simply specifying which sets are open and making it such that theorem 2.1 holds.
Such a space is called a topological space. You can then define closed sets, compact
sets, and sequential compactness in terms of open sets. Exercise 2.1 showed that it
is possible to define the convergence of sequences using only open sets, without re-
ferring to a metric at all. Similarly, you can define continuity of functions in terms of
open and closed sets. Topology is the branch of mathematics that studies topological
spaces. One interesting observation is that on Rn , if a set is open with respect to some
p-norm, then it is also open with respect to any other p-norm. Thus, we say that
Rn with the p-norms are topologically equivalent or homeomorphic. Properties like
continuity and compactness are the same regardless of what p-norm we use.

Topological spaces that are not metric spaces sound exotic, but they do sometimes
appear. An example of a non-metrizable topological space is the following. Let
X � { f : R→R}. Define convergence of sequences in this space as fn→ f if fn(x)→ f (x)
for all x ∈ R. Let S ⊂ X be closed if S contains the accumulation points of all sequences
in S. This definition of closed and open sets is called the topology of pointwise
convergence. This space and definition of convergence sounds reasonable (and is
reasonable), but there is no metric on this space that leads to the same definition of
convergence and closed sets.

In an area of econometrics and statistics called empirical process theory, you often
have to work with something called the topology of weak convergence, which has
a somewhat similar definition and is also non-metrizable. We saw in example 4.8
that in an infinite dimensional space, the unit sphere (or a closed neighborhood of
any radius) is not compact. It is also not sequentially compact. Econometricians care
about sequential compactness to show that limits and asymptotic distributions exist.
Working with weak convergence instead of a metrizable topology makes many nice
sets sequentially compact.
To review, in Rn a set is compact if any of the following four things hold:

(1) For every open cover there exists a finite subcover,
(2) Every collection of closed sets with the finite intersection property has a non-empty

intersection
(3) Every sequence in the set has a convergent subsequence, or
(4) The set is closed and bounded.

The first two are always equivalent. In infinite dimensional spaces, closed and bounded
sets need not be compact, but compact sets are always closed and bounded. In any metric
space, a set is compact if and only if it is sequentially compact.

15
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5. Functions and continuity

We have already used functions in this course, so perhaps we should have defined them
earlier. Anyway, a function from a set A to a set B is a rule that assigns to each a ∈ A one
and only one b ∈ B. If we want to call this function f , we denote this by f : A→B, which
is read as “ f is a function from A to B” or simply “ f from A to B.” The set A is called the
domain of f . B is called the target of f . The set

{y ∈ B : f (x) � y for some x ∈ A}

is called the image or range of f .

Example 5.1.
(1) Production functions: f : R2→R

• Linear f (x1, x2) � a1x1 + a2x2
• Cobb-Douglas: f (x1, x2) � Kxα1

1 xα2
2

• Constant elasticity of substitution: f (x1, x2) � K(c1x−a
1 + c2x−a

2 )−b/a

(2) Utility functions: u : RT→R
• Constant relative risk aversion: u(c1, ..., cT) �

∑T
t�1 β

t c1−γ
t

1−γ
• Constant absolute risk aversion: u(c1, ..., cT) �

∑T
t�1 β

t(−e−αct )
(3) Demand function with constant elasticity, D : R3→R2

D(p1, p2, y) �
(
Mpα11

1 pα12
2 yβ1

Mpα21
1 pα22

2 yβ2

)
where p1 and p2 are the prices of two goods and y is income.

I do not expect you to remember the names of these functions, but it is very likely that
you will repeatedly encounter them this year.
A continuous function is a function without any jumps or holes. Formally,

Definition 5.1. A function f : X→Y where X and Y are metric spaces is continuous at x
if whenever {xn}∞n�1 converges to x in X, then f (xn)→ f (x) in Y.

We simply say that f is continuous if it is continuous at every x ∈ X. There are some
equivalent definitions of continuity that are also useful. You may have seen continuity
defined as in the following lemma.

Lemma 5.1. f : X→Y is continuous at x if and only if for every ϵ > 0 ∃ δ > 0 such that
d(x , x′) < δ implies d( f (x), f (x′)) < ϵ.

Proof. Suppose f is continuous and there is an ϵ > 0 such that such that for any δ > 0,
d(x , x′) < δ does not imply d( f (x), f (x′)) < ϵ. Then by letting δ � 1/n we can construct
a convergent sequence by choosing xn such that d(x , xn) < 1/n and d( f (x), f (xn)) ≥ ϵ.
xn→x, but f (xn) ̸ → f (x). Therefore, if f is continuous it must be impossible to construct
such a sequence. This means that there must be some δ > 0 such that d(x , x′) < δ implies
d( f (x), f (x′)) < ϵ.

16
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Now suppose ∀ϵ > 0 ∃δ > 0 such that d(x , x′) < δ implies d( f (x), f (x′)) < ϵ. Let
xn→x. Then ∃N s.t. n ≥ N implies d(x , xn) < δ. But this implies d( f (x), f (xn)) < ϵ, so f
is continuous. □

Both the definition of continuity and (5.1) are about f being continuous at a point x.
We say that f is continuous on U ⊆ X if f is continuous at all x ∈ U.

A third way of defining continuity is in terms of open sets. First, another definition.

Definition 5.2. Let f : X→Y. f is continuous The preimage of V ⊆ Y is the set in X,
f −1(V) defined by

f −1(V) � {x ∈ X : f (x) ∈ V}
A function is continuous if and only if the preimage of any open set is open.

Lemma 5.2. f : X→Y is continuous at x if and only if for all open V with f (x) ∈ V , ∃ open
U ⊆ X such that x ∈ U ⊆ f −1(V).
Proof. Suppose for all open V ⊆ Y that ∃ open U such that x ∈ U ⊆ f −1(V). We want to
show that then f is continuous on U. To do that, let xn→x and let ϵ > 0. Nϵ( f (x)) is open,
so by assumption, ∃ open U such that x ∈ U ⊆ f −1(Nϵ( f (x))). By the definition of open
sets, ∃ δ > 0 such that Nδ(x) ⊆ U ⊆ f −1(Nϵ( f (x))). By the definition of xn→x, ∃N such
that if n ≥ N , xn ∈ Nδ(x). Then xn ∈ f −1(Nϵ( f (x))), so f (xn) ∈ Nϵ( f (x)), i.e.

d
(

f (xn), f (x)
)
< ϵ.

Therefore, f (xn)→ f (x).
Conversely, suppose f is continuous. Let V ⊆ Y be open. We want to show that ∃

open U such that x ∈ U ⊆ f −1(V). Suppose there is no such U. Then for any ϵ > 0,
∃x̃ϵ < f −1(V) with

d(x , x̃ϵ) < ϵ.
Pick a sequence of ϵn that converges to zero, such as ϵn � 1/n. Then the associated x̃n→x.
However, since each x̃n < f −1(V), f (x̃n) ∈ V c . But then having f (x̃n)→ f (x) would mean
that V c is not closed, which contradict V being open. Thus, there must exist an open U
such that x ∈ U ⊆ f −1(V) when f is continuous. □

Since the a set is open if and only its complement is closed, we can also define continuity
using closed sets.

Corollary 5.1. f : X→Y is continuous if and only if f −1(V) is closed for all closed V ⊆ Y.

Proof. Let V ⊆ Y be closed. Then V c is open. Also, note that the complement of the
preimage of V is the preimage of V c . In symbols,

f −1(V)c
� {x ∈ X : f (x) < V} � {x ∈ X : f (x) ∈ V c} � f −1(V c).

From lemma 5.2, f is continuous iff f −1(V c) � f −1(V)c is open for all open sets V c , which
is true iff f −1(V) is closed for all closed sets V . □

Earlier we saw that convergence of sequences is preserved by arithmetic. Since con-
tinuity can be defined using sequences, it should be no surprise that continuity is also
preserved by arithmetic.
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Theorem 5.1. Let f : X→Y and g : X→Y be continuous and X and Y be vector spaces. Then
( f + g)(x) � f (x) + g(x) is continuous.

Proof. If f and g are continuous, then by definition f (xn)→ f (x) and g(xn)→g(x)whenever
xn→x. From the previous lecture the limit of a (finite) sum is the sum of limits, so
f (xn) + g(xn)→ f (x) + g(x), and f + g is continuous. □

Similar results can be shown for subtraction, multiplication, etc, whenever they are well
defined.

Continuity is also preserved by composition.

Theorem 5.2. Let f : X→Y and g : Y→Z be continuous where X, Y, and Z are metric spaces.
Then f ◦ g is continuous, where

( f ◦ g)(x) � f (g(x)).
Proof. Let xn→x. g is continuous, so g(xn)→g(x). f is also continuous, so f (g(xn))→ f (g(x)).

□

f ◦ g is called the composition of f and g.

5.1. Onto, one-to-one, and inverses. We have already used the concepts of onto, one-to-
one, and inverses. We restate the definitions here.

Definition 5.3. f : X→Y is one-to-one or injective if for all x1, x2 ∈ X,

f (x1) � f (x2)
if and only if x1 � x2.

Equivalently, f is injective if for each y ∈ Y, the set {x : f (x) � y} is either a singleton
or empty. In terms of a nonlinear equation, if f is one-to-one, then f (x) � b has at most
one solution.

Definition 5.4. f : X→Y is onto or surjective if ∀y ∈ Y, ∃x ∈ X such that f (x) � y.

In terms of a nonlinear equation, if f is onto, then f (x) � b has at least one solution.
When f is one-to-one and onto, we say that f is bĳective. A bĳective function has an
inverse.

Definition 5.5. If f : X→Y is bĳective, then the inverse of f , written f −1 satisfies

f ( f −1(y)) � y

and
f −1( f (x)) � x.

Comment 5.1. While writing these notes, I briefly tried to prove that if f : X→Y is
bĳective and continuous, then f −1 is continuous. I could not do this, which is good,
because that statement is false. You have to be a little creative in defining X and Y to
come up with a counterexample. Let X � [0, 2π) and Y � {(x , y) ∈ R2 : x2 + y2 � 1}.
Then f (x) � (cos(x), sin(x)) is bĳective and continuous, but f −1 is not continuous at
(1, 0).
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This counterexample is actually related to a fundamental fact in topology. You may
remember from last lecture that topology is about studying spaces with open and
closed sets that do not necessarily have a metric. One thing that people are interested
when studying such spaces is finding a continuous (in both directions) bĳections
between them. Loosely speaking, two topological spaces will have a continuous
bĳection between them if one can be bent and stretched from one into the form of
another. You cannot bend a circle into an interval without breaking the circle, so
there is no continuous bĳection between the circle and an interval. When there is
a continuous bĳection between two spaces, they have the same collection of open
sets, so to a topologist, they are the same. We then call the spaces homeomorphic (or
topologically isomorphic). Loosely speaking, spaces will be homeomorphic if they are
the same dimension and their shapes have the same number of holes. The circle has
one hole, an interval has none, so they are not topologically isomorphic. I’d be remiss
not to make a joke now, so here goes: Why did the topologist eat her/his coffee mug
and drink from his/her donut? Because they’re topologically isomorphic. Hahaha.
We begin the course by studying how to solve optimization problems. However, we did

not worry too much about conditions that ensure an optimum exists. One fundamental
result that ensures the existence of optima is Weierstrass’s theorem.

Theorem 5.3 (Weierstrass). Let X be a metric space and f : X→R be continuous and K ⊂ X be
compact and nonempty. Then ∃x∗ ∈ K such that f (x∗) ≥ f (x)∀x ∈ K.

Proof. First, we show that supx∈K f (x) exists. R has the least upper bound property, so
it is enough to show that f is bounded. Let ϵ > 0. For each x, let x ∈ Ux be open and
Ux ⊆ f −1(Nϵ(x)). Such Ux exist since f is continuous. Also, {Ux}x∈K is open cover of K.
K is compact, so there exists a finite subcover. Let this subcover be Ux1 , ...,Uxn . For any
x ∈ K, x ∈ Ux j for some j and

f (x) ≤ f (x j) + ϵ.
Hence,

f (x) ≤ max
j∈{1,...,n}

f (x j) + ϵ

and f is bounded on K. R has the least upper bound property — any set bounded above
has a least upper bound, so f̄ � supx∈K f (x) exists.

Let f̄ � supx∈K f (x). Let yn � f̄ − 1/n. By definition of supremum, for each n, ∃ xn

such that yn ≤ f (xn) ≤ f̄ . Since K is compact, the sequence {xn} must have a convergent
subsequence xnk→x ∈ K. f is continuous, so f (xnk )→ f (x). Also, by construction,
d( f (xnk ), f̄ )→0, so it must be that f (x) � f̄ . □

6. Correspondences

2A function, f : X→Y associates exactly one element of Y, f (x), with each x ∈ X. Often
we encounter things that are like functions, but for each x ∈ X, there are multiple elements
of Y. We call this generalization of a function as correspondence.

2This section is largely based on section 2.1.5 of Carter (2001).
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Definition 6.1. A correspondence from a set X to a set Y, is a rule that assigns to each a
x ∈ X a subset of Y. We denote a correspondence by ϕ : X−→→Y.

An equivalent definition is that ϕ : X−→→Y is a function from X to the power set of Y.
Correspondences appear often in economics, especially as constraint sets in optimization
problems.

Example 6.1 (Budget correspondence). Suppose there are n goods with prices p ∈ Rn .
Then given income of m, a consumer can afford χ(p ,m) � {x ∈ X ⊆ Rn : p′x ≤ m},
which defines a correspondence χ : Rn+1−→→X. We can write the consumer’s problem
of maximizing utility subject to the budget constraint as

max
x∈χ(p ,m)

u(x)

If this problem has a solution, then the indirect utility function is the maximized
utility,

v(p ,m) � max
x∈χ(p ,m)

u(x).

The demand correspondence (usually function) is

x∗(p ,m) � arg max
x∈χ(p ,m)

u(x).

Such maximization problems are central to economics. To derive properties of the
indirect utility and demand functions it is often useful to treat the budge set as a
correspondence.

Correspondences also appear in economics in models with multiple equilibria, such as
many games.

Defining continuity is a bit more complicated for correspondences than for functions.
A function can either be continuous or it can jump. A correspondence can also expand or
contract. For example, consider ξ : R−→→R defined by

ξ(x) �
{
[0, 1] if x > 0
[1/4, 3/4] if x ≤ 0

and ψ : R−→→R defined by

ψ(x) �
{
[0, 1] if x ≥ 0
[1/4, 3/4] if x < 0

Both these correspondences are somewhat continuous because they contain a continuous
function, e.g. f (x) � 1/2, for all x. However, they are also somewhat discontinuous
because the corresponding set changes suddenly at 0. Motivated by this observation we
define the following:

Definition 6.2. A correspondence, ϕ : X−→→Y is upper hemicontinuous at x if for all
sequences xn→x and yn ∈ ϕ(xn) with yn→y, then y ∈ ϕ(x).

In the previous example, ψ is upper hemicontinuous at 0, but ξ is not. To see this
consider xn � 1/n and yn � 1.
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Definition 6.3. A correspondence, ϕ : X−→→Y is lower hemicontinuous at x if for all
sequences xn→x and y ∈ ϕ(x), there exists a subsequence, xnk and yk ∈ ϕ(xnk) with
yk→y.

In the previous example, ξ is lower hemicontinuous at 0, but ψ is not. To see this
consider xn � −1/n and y � 1.

Definition 6.4. We say that a correspondence is continuous if it is both upper and lower
hemicontinuous.

At all x , 0, ξ and ψ are continuous.

Exercise 6.1. A correspondence ϕ : X−→→Y can also be viewed as a function ϕ :
X→P(Y). There is a metric on the set of compact subsets of Y (which is a subset
of P(Y)) that leads to the same definition of continuity as in definition 6.4. What is
that metric?
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