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1. References

These notes are about optimal control. References from our text books are chapter
10 of Dixit (1990), chapter 20 Chiang and Wainwright (2005), and chapter 12.2 of De la
Fuente (2000) (and chapter 13 for more examples). Other readily available useful refer-
ences invclude Dorfman (1969) who derives the maximum principle in a model of capital
accumulation and Intriligator (1975) which has some economic examples. There are two
textbooks about optimal control in economics available online through UBC libraries.
Sethi and Thompson (2000) focuses on examples. Caputo (2005) also has many examples,
but goes into a bit more mathematical detail.

Although more advanced than what these notes cover, Luenberger (1969) is the classic
mathematics text on optimal control and is excellent. Clarke (2013) is available online
through UBC libraries and covers similar material as Luenberger (1969), but at a more
advanced level.

2. Introduction

In the past few lectures we have focused on optimization problems of the form

max
x

f (x) s.t. h(x) � c

where x ∈ Rn . The variable that we are optimizing over, x, is a finite dimensional
vector. There are interesting optimization problems in economics that involve an infinite
dimensional choice variable. The most common example are models where something is
chosen at every instant of time.

Example 2.1. [Optimal growth] Consider an simple one sector economy. The only
input to production is capital. Output can be used for consumption or investment.
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The optimal paths of consumption and capital solve

max
c(t),k(t)

∫ ∞

0
e−δt u(c(t))dt

s.t. dk
dt

� f (k) − ϕk − c

k(0) � k0

0 ≤ c ≤ f (k)
Here, δ is the discount rate, ϕ is the depreciation rate, and we will assume that
both f and u are increasing, twice differentiable, and concave (have negative second
derivatives).

Example 2.2. [Investment costs] A firm that produces output from capital and labor.
The price of output is p and the wage is w. The rate of change of capital is equal to
investment minus current capital times the depreciation rate, δ. The price of capital
goods is q. It is costly for the firm to adjust its capital stock (because, e.g. the firm
might have to temporarily shut down to install new equipment). The adjustment cost
is given by c(i(t), k(t)). It is such that c(0, k) � 0, and i ∂c

∂i ≥ 0. The firm’s problem is

max
k(t),i(t),l(t)

∫ T

0
e−rt [

p f (k(t), l(t)) − qi(t) − wl(t) − c(i(t), k(t))
]

dt

s.t. dk
dt

� i(t) − δk(t)
k(0) � k0

k(t) ≥ 0
l(t) ≥ 0.

The previous two examples involved making a decision at every instant in time. Prob-
lems that involve making a decision for each of a continuum of types also lead to infinite
choice variables.

Example 2.3. [Contracting with a continuum of types] On problem set 1, we studied
a problem where a price discriminating monopolist was selling a good to two types
of consumers. We could also imagine a similar situation where there is a continuous
distribution of types. A consumer of type θ gets 0 utility from not buying the good,
and θν(q) − T from buying q units of the good at cost T. Let the types be indexed by
θ ∈ [θl , θh] and suppose the density of θ is fθ. The seller does not observe consumers’
types. However, the seller can offer a menu of contracts (q(θ), T(θ)) such that type θ
will choose contract (q(θ), T(θ)). The seller chooses the contracts to maximize profits
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subject to the requirement that each type chooses its contract.

max
q(θ),T(θ)

∫ θh

θl

[
T(θ) − cq(θ)

]
fθ(θ)dθ

s.t.
θν

(
q(θ)

)
− T(θ) ≥ 0∀θ (1)

θν
(
q(θ)

)
− T(θ) ≥ max

θ̃
θν

(
q(θ̃)

)
− T(θ̃)∀θ (2)

The first constraint (1) is referred to as the participation (or individual rationality)
constraint. It says that each type θ must prefer buying the good to not. The second
constraint (2) is referred to as the incentive compatibility constraint. It says that type θ
must prefer buying the θ contract instead of pretending to be some other type θ̃. This
approach to contracting with asymmetric information—that you can setup contracts
such that each type chooses a contract designed for it—is called the revelation principle
because the choice of contract makes the consumers reveal their types.

Example 2.4 (Optimal income taxation Mirrlees (1971)). There are a continuum of
workers with productivity w ∈ [wl , wh] with density f . Workers’ wages equal their
productivity. If a worker supplies ℓ units of labor, she produces wℓ units of consump-
tion. Workers’ utility from consumption, c, and labor ℓ is given by u(c , ℓ) with ∂u

∂c > 0
and ∂u

∂ℓ < 0. The government chooses taxes t(wℓ) to maximize social welfare, which
is given by

∫
G(u(c(w), ℓ(w))) f (w)dw subject to some required spending of g. The

government does not observe w. Using the revelation principle as in the previous
example, we can write the government’s problem as

max
ℓ,t

∫ wh

wl

G (u(wℓ(w) − t(wℓ(w)), ℓ(w))) f (w)dw

s.t.∫ wh

wl

t(w) f (w)dw ≥ g

ℓ(w) ∈ arg max
ℓ̃

u(w ℓ̃ − t(w ℓ̃), ℓ̃)

Under standard conditions on u, we can replace the last constraint with a first order
condition,

∂u
∂c

w (1 − t′(wℓ)) + ∂u
∂ℓ

� 0.

As in the first two examples, this last constraint now involves the derivative of one the
variables we are maximizing over, t′.
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All of these examples have a common structure. They each have the following form:

max
x(t),y(t)

∫ T

0
F(x(t), y(t), t)dt

s.t.
dy
dt

� g(x(t), y(t), t)∀t ∈ [0, T]
y(0) � y0

This is a generic continuous time optimal control problem. x is called a control variable,
and y is called a state variable. The choice of x controls the evolution of y through the
first constraint. We will now derive some necessary conditions for a maximum.

3. The maximum principle

We will now derive some necessary conditions on the maximizers of an optimal control
problem. That is, we will come up with a first order condition. We will do this in two
ways. First, we will approximate the continuous problem with a discrete one, solve the
discrete problem, and then take a limit to make the solution continuous again. Second,
we will set up a Lagrangian for the above problem and then take functional derivatives to
get the first order condition. Both approaches will lead to the same solution.

3.1. Discretization. Let’s begin by approximating our continuous time problem with
a discrete time problem. This will be useful because we already know how to solve
optimization problems with a finite dimensional choice variable.

The integral can be approximated by a sum. If divide [0, T] into J intervals of length ∆,
we have ∫ T

0
F(x(t), y(t), t)dt ≈

T∑
j�1
∆F(x(∆ j), y(∆ j),∆ j).

Similarly, we can approximate dy
dt ≈ y(∆ j)−y(∆( j−1))

∆
. Thus, we can approximate the whole

problem by:

max
x1 ,...,x J ,y1 ,...,yJ

J∑
j�1
∆F(x j , y j ,∆ j) s.t.

y j − y j−1 � ∆g(x j , y j ,∆ j) for j � 1, ..., J

where we are letting x j � x(∆ j), y j � y(∆ j). This is just a usual optimization problem.
The first order conditions are

[x j] : ∆
∂F
∂x

+ λ j∆
∂g
∂x

�0

[y j] : ∂F
∂y

− λ j + λ j+1 + λ j∆
∂g
∂y

�0

[λ j] : y j − y j−1 − ∆g(x j , y j ,∆ j) �0.
4
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Each of these equations hold for j � 1, ..., J. Also, since there is no J + 1 constraint, we set
λ J+1 � 0. Rearranging these slightly gives

[x j] : ∂F
∂x

+ λ j
∂g
∂x

�0

[y j] : ∂F
∂y

+ λ j
∂g
∂y

� −
λ j+1 − λ j

∆

[λ j] : g(x j , y j ,∆ j) �
y j − y j−1

∆
.

Taking the limit as ∆→0 to go back to continuous time, these become,

[x j] : ∂F
∂x

+ λ(t)∂g
∂x

�0

[y j] : ∂F
∂y

+ λ(t)∂g
∂y

� − dλ
dt

[λ j] : g(x j , y j ,∆ j) �dy
dt
.

Any optimal x(t), y(t), and λ(t) must satisfy these equations. This result is known as
Pontryagin’s maximum principle. It is often stated by defining the Hamiltonian,

H(x , y , λ, t) � F(x(t), y(t), t) + λ(t)g(x(t), y(t), t).

Using the Hamiltonian, the three equations can be written as

[x] : 0 �
∂H
∂x

(x∗, y∗, λ∗, t)

[y] : −dλ
dt

(t) �∂H
∂y

(x∗, y∗, λ∗, t)

[λ] :
dy
dt

(t) �∂H
∂λ

(x∗, y∗, λ∗, t).

The [y] equation is called the co-state equation, and λ are called co-state variables (λ is
still also called the Lagrange multiplier).

Theorem 3.1 (Pontryagin’s maximum principle). Consider

max
x ,y

∫ T

0
F(x(t), y(t), t)dt

s.t. (3)
dy
dt

� g(x(t), y(t), t)∀t ∈ [0, T] (4)

y(0) � y0.

where x and y are functions from [0, T] to R, and F, g : R2 × [0, T]→R are continuously
differentiable. Define the Hamiltonian as

H(x , y , λ, t) � F(x(t), y(t), t) + λ(t)g(x(t), y(t), t).
5
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If x∗ and y∗ are local constrained maximizers of (4), then there exists λ∗(t) such that

[x] : 0 �
∂H
∂x

(x∗, y∗, λ∗, t)

[y] : −dλ
dt

(t) �∂H
∂y

(x∗, y∗, λ∗, t)

[λ] :
dy
dt

(t) �∂H
∂λ

(x∗, y∗, λ∗, t)

1

3.2. Lagrangian approach. Although it leads to a correct maximum principle, the above
discretization approach has some downsides. One is that the derivation is somewhat
tedious, and it only applies to problems of the form we considered. Similar problems
will still have something like a Hamiltonian and maximum principle, but the details can
change. Discretizing every problem could be time consuming and error prone. More
importantly, it is challenging to prove that discretizing actually gives the correct solution.
Specifically, it is difficult to show that the limit as ∆→0 of the discretized solution actually
solves the continuous problem.

History 3.1. Pontryagin laid out the maximum principle around 1950, a remarkably
recent date. Mathematicians have been studying related problems for hundreds (or
perhaps thousands) of years. Various physical and geometric problems lead to a
maximization of the form

max
x

∫ b

a
F(t , y(t), y′(t))dt s .t . y(a) � A, y(b) � B. (5)

Hero of Alexandria studied one such problem in around 0 A.D. Many of the mathe-
maticians associated with the development of calculus in the 17th century works on
such problems, including Newton, Leibniz, Bernoulli, and l’Hôpital. In 1744, Euler
made the first systematic study of (5) and showed that a necessary condition for y∗ to
be a maximizer is that

d
dt
∂F
∂y′ (t , y(t), y′(t)) � ∂F

∂y
(t , y(t), y′(t)),

which is why we still call similar results Euler(-Lagrange) equations. Euler proved
this by discretization. In 1755, Lagrange approached (5) using a different technique.
Instead of discretization, Lagrange worked with functional directional derivatives.
That, is Lagrange considered what happens to the problem when you replace x(t)with
x(t) + v(t) for some small function v. He referred to the direction, v, as a variation.
Lagrange wrote a letter to Euler describing this new approach. Euler instantly agreed

1The condition for x is often stated somewhat more generally as

H(x∗ , y∗ , λ∗ , t) � max
x

H(x , y∗ , λ∗ , t).
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that it was more elegant and began referring to this area of mathematics as the calculus
of variations.

Optimal control problems were not systematically studied until 200 years later. Part
of this reason was practical. In the 18th and 19th century, there were many practical
problems of the form (5), but not very many of the more general optimal control form:

max
x(t),y(t)

∫ T

0
F(x(t), y(t), t)dt

s.t. (6)
dy
dt

� g(x(t), y(t), t)∀t ∈ [0, T]
y(0) � y0.

If Euler and Lagrange had thought (6) was important, they likely could have derived
the maximum principle. Optimal control problems were studied in the 1950s because
questions like how to launch a satellite using the least amount of fuel, how to land a
spaceship on the moon as softly as possible, and how to fire an ICBM from one side
of the world to the other as quickly as possible all have this form. Pontryagin was a
Soviet mathematician.a

One technical difference between classic calculus of variation problems (5) and
optimal control problems (6) is that calculus of variation problems typically have
solutions that are twice continuously differentiable, but optimal control problems (6)
often have y∗ only once differentiable, and x∗ discontinuous. Euler and Lagrange may
have been able to handle this difference. However, one thing that modern mathematics
does, but 18th century mathematics could not have done, is give general conditions
under which a maximum exists.
aAt roughly the same time that Pontryagin developed optimal control, Richard Bellman, an American
mathematician, developed dynamic programming to solve the same sort of problems.

Discretization can be avoided by considering the similarities between optimal control
problems and the finite optimization problems we studied earlier. A powerful technique
for solving new problems is to think about the features the new problem shares with old
ones. Then, define and study a new abstraction that subsumes both the old and new
problem. This process can also give new insights to the old problem, and potentially
apply to other problems that you were not even thinking about. We will do some of this
here.

To begin, recall how we arrived at the first order condition for standard optimization
problems. We considered looking at small changes around a maximizer and approximated
how the objective function would change using directional derivatives. We can apply a
similar idea here. For x ∈ Rn and f : Rn→R, a directional derivative is:

d f (x; v) � lim
α→0

f (x + αv) − f (x)
α

where α is a scalar and v ∈ Rn is a direction. When x(·) is a function, we can apply
the same idea. Let Q be a function from some set of functions to R. For example, in the

7
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optimal control example, Q(x , y) �
∫ T

0 F(x(t), y(t), t)dt, where x : [0, T]→R, y : [0, T]→R,
F : R3→R. Let v : [0, T]→R and w : [0, T]→R be another function that we’ll think of as
a direction. We’ll consider changing x by v and y by w. The directional derivative of Q
with respect to in direction v , w is

dQ(x , y; v , w) � lim
α→0

Q(x + αv , y + αw) − Q(x , y)
α

For example, when Q(x , y) �
∫ T

0 F(x(t), y(t), t)dt, then

dQ(x , y; v , w) � lim
α→0

∫ T
0 F(x(t) + αv(t), y(t) + αw(t), t) − F(x(t), y(t), t)dt

α
assuming we can interchange the limit and integral

�

∫ T

0
lim
α→0

F(x(t) + αv(t), y(t) + αw(t), t) − F(x(t), y(t), t)
α

dt

�

∫ T

0

∂F
∂x

(x(t), y(t), t)v(t) + ∂F
∂y

(x(t), y(t), t)w(t)dt

2 Using directional derivatives the first order condition for (6) can be stated as if x∗, y∗ are
maximizers, then for all v and w that satisfy the constraints, we have

0 � dQ(x∗, y∗; v , w) �
∫ T

0

∂F
∂x

(x(t), y(t), t)v(t) + ∂F
∂y

(x(t), y(t), t)w(t)dt (7)

Just as when maximizing with respect to vectors, the set of v and w that satisfy the
constraints is the set of v and w for which the derivative of the constraints in directions v
and w is 0. The derivative of the constraints in direction v and w is

0 � lim
α→0

g(x∗(t) + αv(t), y∗(t) + αw(t), t) − d(y∗ + αw)/dt − [g(x∗(t), y∗(t), t) − dy∗/dt]
α

0 �
∂g
∂x

(x∗(t), y∗(t), t)v(t) + ∂g
∂y

(x∗(t), y∗(t), t)w(t) − dw
dt

(8)

Thus, the first order condition is that if v and w satisfy (8) then v and w must also satisfy
(7). In the previous set of notes, when working with finite dimensional optimization
problems, we then asserted that some results from linear algebra imply that this first
order condition is equivalent to there existing Lagrange multipliers. These results can be
generalized to the current situation by recognizing that both functions and vectors in Rn

share some important properties. Namely, they can be added together and multiplied by
scalars. We will return to this idea in the second half of the course. Suppose there exists

2The dominated convergence theorem gives conditions for which lim
∫

somethin g �
∫

lim somethin g.
Here, a simple (but not the weakest) sufficient condition is existence of ∂F

∂x and ∂F
∂x ≤ M for some constant M.
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λ(t) such that

−λ(t)∂g
∂x

(x∗(t), y∗(t), t) �∂F
∂x

(x∗(t), y∗(t), t)

−λ(t)
[
∂g
∂y

(x∗(t), y∗(t), t)w(t) − dw
dt

]
�
∂F
∂y

(x∗(t), y∗(t), t)w(t)

then (8) implies (7). Showing the reverse (i.e. that the first order condition above implies
the existence of multipliers) is more difficult. For now, let’s take as given that this first
order condition can be equivalently expressed using a Lagrangian.

What should the Lagrangian look like here? Recall that our problem is:

max
x(t),y(t)

∫ T

0
F(x(t), y(t), t)dt

s.t.
dy
dt

� g(x(t), y(t), t)∀t ∈ [0, T]
y(0) � y0.

The Lagrangian is the objective function minus the sum of the multipliers times the
constraints. Here, we have a continuum of constraints on dy/dt, so instead of a sum we
should use an integral. The Lagrangian is then

L(x , y , λ, µ0) �
∫ T

0
F(x(t), y(t), t)dt −

∫ T

0
λ(t)

(
dy
dt

− g(x(t), y(t), t)
)

dt − µ0(y(0) − y0)

It is somewhat difficult to think about the derivative of L with respect to y because
L involves both y and dy/dt. We can get around this by eliminating dy/dt through
integration by parts (it would also work okay to differentiate first and then integrate by
parts like we did in class).3 Integrating by parts gives

L(x , y , λ, µ0) �
∫ T

0
F(x(t), y(t), t)dt +

∫ T

0

(
λ(t)g(x(t), y(t), t) + y(t)dλ

dt

)
dt+

− λ(T)y(T) + λ(0)y(0) − µ0(y(0) − y0).

We can then differentiate with respect to x(t) and y(t) to get the first order conditions.

[x] : ∂F
∂x

+ λ(t)∂g
∂x

�0

[y] : ∂F
∂y

+ λ(t)∂g
∂y

� − dλ
dt

These, along with the constraint, are once again the Maximum principle.

3Integration by parts says that
∫ b

a u(x)v′(x)dx � u(b)v(b) − u(a)v(a) −
∫ b

a v(x)u′(x)dx.
9
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3.3. Transversality conditions. The three equations of the maximum principle are not
necessarily enough to determine x, y, and λ. The reason is that they tell us about dy/dt
and dλ/dt instead of y and λ. For any constant, c, d(y + c)/dt � dy/dt, so the three
equations only determine y and λ up to a constant. To pin down the constant for y, the
problem tells us what y(0) must be. To pin down the constant for λ, there is an extra
condition on λ(T). This condition is called a transversality condition. Unfortunately, the
heuristic derivations we did above obscure the transversality condition somewhat. In the
discrete time approach, we set λ J+1 � 0, so we also should impose λ(T) � 0.

The same condition appears in the Lagrangian approach, if we are more careful about
taking derivatives. Taking the derivative of

∫ T
0 F(x(t), y(t), t)dt with respect to x(τ) hold-

ing x(·) constant for all other periods does not really make sense because changing x at a
single point will not change the integral at all. Instead, we need to consider directional
derivatives. Let v be another function of t. Then the derivative of L with respect to x in
direction v is

dxL(x , y , λ, µ0; v) � lim
α→0

L(x + αv , y , λ, µ0) − L(x , y , λ, µ0)
α

�
d

dα
L(x + αv , y , λ, µ0).

This is exactly the same as our previous definition of a directional derivative, except now
the direction is a function. The first order conditions are that the directional derivatives
are zero for all directions (functions) v. Assuming that F is well-behaved so that we can
interchange integration and differentiation,4, the first order conditions are then

[x] : 0 �

∫ T

0

∂F
∂x

(x(t), y(t), t)v(t)dt −
∫ T

0
−∂g
∂x

(x(t), y(t), t)v(t)λ(t)dt

�

∫ T

0
v(t)

(
∂F
∂x

(x(t), y(t), t) + ∂g
∂x

(x(t), y(t), t)λ(t)
)

dt

[y] : 0 �

∫ T

0

∂F
∂y

(x(t), y(t), t)v(t)dt −
∫ T

0

(
∂v
∂t

(t) − ∂g
∂y

(x(t), y(t), t)v(t)
)
λ(t)dt − µ0v(0)

�

∫ T

0
v(t)

(
∂F
∂y

(x(t), y(t), t) + ∂g
∂y

(x(t), y(t), t)λ(t)
)

dt −
∫ T

0

dv
dt

(t)λ(t)dt − µ0v(0)

�

∫ T

0
v(t)

(
∂F
∂y

(x(t), y(t), t) + ∂g
∂y

(x(t), y(t), t)λ(t)
)

dt +
∫ T

0

dλ
dt

(t)v(t)dt−

− λ(T)v(T) + λ(0)v(0) − µ0v(0).

The last line comes from integration by parts. These conditions must hold for for all

functions v. If we take v(t) �
{

0 if t < T
1 if t � T

, then the second equation requires λ(T) � 0.

We can also deduce the transversality condition by thinking about the interpretation of
the multiplier as the shadow price of the relaxing the constraint. Relaxing the constraint
affects the objective function by changing future y. At time T, there is no future y, so the
value of relaxing the constraint must be 0 � λ(T).

4By Leibniz’s rule, F and its partial derivatives being continuous is sufficient.
10
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It is important to understand where the transversality condition comes from, because
the transversality condition can change depending on whether T is finite or infinite and
whether or not there are constraints on y(T) or x(T).

Example 3.1. A landlord can rent y(t) units of housing at price p(t). The landlord
can adjust her housing at rate x(t) for cost s(t)x(t) + c(t)x(t)2, where s(t) represents
the price of buying or selling housing and c(t)x(t)2 is an adjustment cost meant to
capture the idea that it can be increasingly costly to buy or sell a large amount at
once. The landlord has a finite time horizon and no discounting. The landlord’s profit
maximization problem is

max
x ,y

∫ T

0
p(t)y(t) − s(t)x(t) − c(t)x(t)2dt

s.t.
dy
dt

� x(t)
y(0) � y0.

The maximum principle for this problem is that

[x] : 0 � − s(t) − 2c(t)x(t) + λ(t)

[y] : −dλ
dt

�p(t)

and the tranversality condition is

λ(T) � 0.

Using the transversality condition and the first order condition for [y], we can solve
for λ. From the fundamental theorem of calculus, we know that

λ(t) �λ(T) −
∫ T

t

dλ
dt

(τ)dτ

so,

λ(t) �0 −
∫ T

t
−p(τ)dτ

λ(t) �
∫ T

t
p(τ)dτ

We can then substitute this into the first order condition for [x] to solve for x(t),

x(t) �λ(t) − s(t)
2c(t)

x(t) �
∫ T

t p(τ)dτ − s(t)
2c(t) .

11
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Finally, we can solve for y(t) by integrating the constraint.

y(t) �y(0) +
∫ t

0

dy
dt

(r)dr

�y(0) +
∫ t

0


∫ T

r p(τ)dτ − s(r)
2c(r)

 dr

We can evaluate these integrals for some simple p(t), s(t), and c(t). For example, when
everything is constant, p(t) � p, s(t) � s, and c(t) � c, then

x(t) �p(T − t) − s
2c

y(t) �y(0) + t
pT − s

2c
− p

4c
t2

3.4. Additional constraints . Many optimal control problems include some additional
constraints. In the four examples above, there were often bounds constraints on the
control and/or state variables. In general, we might have some constraints of the form
h(x(t), y(t), t) ≤ 0 for all t. It also common for there to be constraints on the initial and/or
final values of y. Having additional constraints can change the first order conditions of
the maximum principle. You can always figure out the correct first order conditions by
starting with the Lagrangian. Either the discrete approach that we took to first arrive at
the maximum principle, or the directional derivative approach of the previous section
will work.

Let us consider the following problem:

max
x ,y

∫ T

0
F(x(t), y(t))dt

s.t.
dy
dt

� g(x(t), y(t))
h(x(t), y(t)) ≤ 0 y(0) � y0

y(T) � yT

The Lagrangian is

L(x , y , λ, µ, ψ0, ψT) �
∫ T

0
F(x(t), y(t)) − λ(t)(dy

dt
− g(x(t), y(t))) − µ(t)h(x(t), y(t))dt+

− ψ0(y(0) − y0) − ψT(y(T) − yT).
The first order conditions for x and y are that for any function v,

[x] : 0 �

∫ T

0
v(t)

(
∂F
∂x

(x(t), y(t)) + λ(t)∂g
∂x

(x(t), y(t)) − µ(t)∂h
∂x

(x(t), y(t))
)

dt

[y] : 0 �

∫ T

0
v(t)

(
∂F
∂y

(x(t), y(t)) + λ(t)∂g
∂y

(x(t), y(t)) − µ(t)∂h
∂y

(x(t), y(t)) + dλ
dt

)
dt+

− λ(T)v(T) + λ(0)v(0) − ψ0v(0) − ψT v(T).
12
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Also, the constraints must be met, and µ(t) ≥ 0 with complementary slackness to
h(x(t), y(t)) ≤ 0. The first order condition for x implies that

∂F
∂x

(x(t), y(t)) + λ(t)∂g
∂x

(x(t), y(t)) − µ(t)∂h
∂x

(x(t), y(t)) � 0.

The first order condition for y implies that
∂F
∂y

(x(t), y(t)) + λ(t)∂g
∂y

(x(t), y(t)) − µ(t)∂h
∂y

(x(t), y(t)) � −dλ
dt
.

The first order condition for y also implies that λ(T) � −ψT , and λ(0) � ψ0. Each of the ψ
could be anything, so there is no restriction on either λ(T) or λ(0). This is okay because
the constraints on both the initial and final value of y will be enough to fully determine
the solution.

We still have not covered all possible forms of constraint. For example, the optimal
taxation problem includes a constraint of the form

∫ T
0 h(x(t), y(t))dt ≤ 0, the contracting

problem has a constraint involving both the derivative of y and x instead of just y, and the
taxation problem has a constraint on y′(x(t)t) instead of just y′(t). Rather than trying to
derive a form of the Hamiltonian and maximum principle that encompasses all possible
types of constraints, I find it easier to work from the Lagrangian. Nonetheless, theorem
A.1 in the appendix gives a version of the maximum principle that encompasses all the
examples that we have encountered.

4. Applications

We will begin with some examples where we can explicitly solve for the optimal control
and state variables. We will then analyze examples that cannot be explicitly solved,
but we can characterize the solution and do some comparative statics. We have three
different ways to arrive at the first order conditions for an optimal control problem. (1)
We can discretize the problem as in section 3. (2) We can write down the continuous
time Lagrangian and take directional (functional) derivatives. (3) We can write down the
Hamiltonian and use the maximum principle. If the problem does not have the same form
as that considered in theorem (3.1), then the usual Hamiltonian will not give the correct
answer. In that case we can either take approach (1) or (2), or perhaps use theorem (A.1).

Example 4.1 (Linear production and savings). Consider an economy that has a linear
production function, y � k. The model begins at time 0 and lasts until time T. Each
instant, output can be either saved to produce capital or consumed. There is no
depreciation or discounting. The objective is to maximize consumption. Let s(t) be

13
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the portion of output saved at time t. Then the problem can be written as

max
s ,k

∫ T

0
(1 − s(t))k(t)dt

s.t. dk
dt

� s(t)k(t)
k(0) � k0

k(t) ≥ 0
0 ≤ s(t) ≤ 1

Notice that this problem has the sorts of constraints considered in section 3.4. The
Lagrangian for this problem is

L �

∫ T

0

(
(1 − s)k − λ(dk

dt
− sk) + µk k + µs0s − µs1(s − 1)

)
dt − ψ0(k(0) − k0)

where s k, λ, µk , µs0, and µs1 are all functions of t.
The first order condition for the control variable, s, is that

−k + λk + µs0 − µs1 � 0.

The first order condition for k is

(1 − s) + λs + µk � −dλ
dt
.

The transversality condition, which also comes from the first order condition for k, is
λ(T) � 0.

To solve, first notice that if k(t) ≥ 0 for all t, we must have k0 ≥ 0. If k0 � 0, then
dk/dt � 0 regardless of s, and any choice of s(t) ∈ [0, 1] is a maximizer. Therefore, for
the remainder of the solution, we can assume k0 > 0.

Notice that the constraints imply dk/dt ≥ 0. Therefore if k0 > 0, then for all t,
k(t) ≥ k0 > 0. At time T, the first order condition for s says that

−k(T) + µs0(T) − µs1(T) � 0.

By complementary slackness, if µs0(t) > 0, then s(t) � 0 and µs1(t) � 0. Conversely,
if µs1(t) > 0, then s(t) � 1 and µs0(t) � 0. Therefore, since k(T) > 0, it must be that
µs0(T) > 0 and s(T) � 0.

Now, consider other t. The first order condition for s is that

k(t)(λ(t) − 1) + µs0(t) − µs1(t) � 0.

For the same reason that s(T) � 0, we must have s(t) � 0 whenever λ(t) < 1. In that
case the first order condition for y is that

1 � −dλ
dt
.

14
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Therefore, for t near T, we know that

λ(t) �
∫ t

T
−1dτ � T − t .

This λ(t) < 1 for t > T − 1. At T − 1, λ(T − 1) � 1 and

(1 − s) + s � 1 � −dλ/dt

regardless of t. Therefore for t just below T − 1, we must have λ(t) > 1. In that case
the first order condition requires s(t) � 1. Then, dλ

dt � −λ(t) < 0, so for even smaller t,
λ(t) will be even bigger and s(t) must still be 1.

We can conclude that s∗(t) �
{

1 if t < T − 1
0 if t ≥ T − 1

. For t < T − 1, we have dk/dt � k

and k(0) � k0. This implies that k(t) � k0e t . For t > T − 1, dk/dt � 0. Therefore,

k(t) �
{

k0e t if t < T − 1
k0eT−1 if t ≥ T − 1

. The maximum is then k0eT−1 if T > 1 and k0T if T < 1.

Example 4.2 (Inventory). A dairy has an order for yT units of cheese to be delivered at
time T at price p. Currently, the firm has y0 � 0 units available. Producing at a rate of
x(t) costs the firm cx(t)2. Storing cheese requires refrigeration, so it is costly. Storing
y(t) units costs s y(t). The dairy chooses its production schedule to maximize profits.

max
x ,y

p yT −
∫ T

0

(
cx(t)2 + s y(t)

)
dt

s.t.
dy
dt

� x(t)
y(T) � yT

y(0) � 0
x(t) ≥ 0

Let’s solve this problem using the maximum principle. This problem includes in-
equality constraints for all t, so we should use the form of the maximum principle
derived in section 3.4.

[x] : −2cx + λ + µ �0

[y] : −s � − dλ
dt

Since dλ/dt � s is constant, λ(t) must be linear with slope s, i.e.

λ(t) � st + λ(0).
Substituting that into the first order condition we have

−2cx(t) + st + λ(0) + µ(t) �0

x(t) �
st + µ(t) + λ(0)

2c
.

15
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There is also a complementary slackness condition on µ and x. First, suppose that x
is always positive, then µ(t) � 0, and we can solve for λ(0) using the initial and final
y.

y(T) − y(0) �
∫ T

0

dy
dt

dt

yT − 0 �

∫ T

0
x(t)dt

�

∫ T

0

st + λ(0)
2c

�
sT2 + 2λ(0)T

4c

λ(0) � 1
T

2c yT − sT

Substituting,
x(t) � s

2c
(t − T) + yT

T
.

This x(t) ≥ 0 for all t if yT ≥ s/2cT2.
If this inequality does not hold, then since storage is costly, we should expect that

if production, x, is ever 0, it would be for early t. Let t̄ be the time at which x is first
non-zero. Then,

yT �

∫ T

t̄

st + λ(0)
2c

yT �
s(T2 − t̄2) + 2λ(0)(T − t̄)

4c

λ(0) �yT
2c

T − t̄
− s

2(T + t̄).

Finally, we can use x(t̄) � 0 to solve for t̄.

t̄ �T − yT2c
Ts

.

Thus,

x(t) �
{

s
2c (t − T) + yT

T if t > T − yT2c
Ts

0 otherwise

16
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4.1. Optimal growth. Let’s characterize the solution to our optimal growth model in
example 2.1. The optimal growth problem is

max
c(t),k(t)

∫ ∞

0
e−δt u(c(t))dt

s.t. dk
dt

� f (k(t)) − ϕk(t) − c(t)
k(0) � k0

0 ≤ c(t) ≤ f (k(t))
The Lagrangian is

L �

∫ ∞

0

[
e−δt u(c) − λ(dk/dt − f (k) − ϕk − c) + µ0c − µ1(c − f (k))

]
dt − ψ(k(0) − k0)

The first order conditions are:

[c] : e−δt u′(c(t)) + λ(t) + µ0(t) − µ1(t) �0

[k] : λ(t)
(

f ′(k(t)) − ϕ
)
+ µ1(t) f ′(k(t)) � − dλ

dt
.

The multipliers on the inequality constraints are somewhat annoying to deal with. Fortu-
nately, under standard conditions, the constraints will not bind and their multipliers are
0. For example, if limc→0 u′(c) � ∞, as is the case for many specifications of u, then the
optimal c(t) > 0 for all t and µ0(t) � 0. Setting µ0 � µ1 � 0 and differentiating [c] with
respect to time gives

δe−δt u′(c) + e−δt u′′(c)dc
dt

� −dλ
dt
.

Substituting into [k] and rearranging gives
dc
dt

� − u′(c)
u′′(c)

(
f ′(k(t)) − ϕ − δ

)
This equation along with the constraint on k give us a pair of differential equations
expressing dc/dt and dk/dt as functions of c and k. We can plot dc/dt and dk/dt as
functions of c and k in a phase diagram as shown in figure 1. First, we can plot the line
where dk/dt � 0. This is just c � f (k) − ϕk. Above this red line, dk/dt < 0, and below
dk/dt > 0. Then, we can also plot the line where dc/dt � 0 in blue. This is just where
f ′(k∗) � ϕ + δ. Usually we assume f is concave, so then to the left of this line, dc/dt > 0
and to the right dc/dt < 0.

Given any initial k(0) we can use the phase diagram to trace out the path of k and c.
Initial capital, k(0) � k0 is fixed. The optimal c(0) will be such that the subsequent path
converges to the steady-state. The steady-state is where both capital and consumption are
constant. In the phase diagram, the steady-state is the intersection of the blue and red
lines. For each possible k0, there is a unique c(0) (on the black line in the figure) that leads
to the stead state. This stable path is shown in black in the figure. If k0 < k∗, then any c(0)
above the red cannot be optimal because then capital just decreases further. If c(0) is too
low, then capital increases, but consumption initially increases then decreases and fails to
reach the steady-state.
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Figure 1. Phase diagram
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Code for figure: https://bitbucket.org/paulschrimpf/econ526/src/master/02-optimalControl/

phase.R?at=master

The phase diagram is also useful to describing what will happen if some part of the
model changes unexpectedly. For example if productivity increases, so that the production
function changes from f (k) to A f (k) with A > 1, then the blue dc/dt � 0 curve will shift
to the right and the red dk/dt � 0 curve will rotate upward. There will be a new stable
path to go with the shifted curves. Suppose we start from the old steady-steady. If f (k)
shifts at time T, then k(T) will remain at the old stead-state capital and c(T) will jump
immediately to the new stable path. As time progresses k and c will adjust toward the
new steady-state.

4.1.1. Transversality conditions for infinite horizon problems. Transversality conditions for
infinite horizon problems are somewhat more delicate than for finite horizon problems.
Consider the problem:

max
x ,y

∫ ∞

0
F(x(t), y(t), t)dt

s.t.
dy
dt

� g(x(t), y(t))
y(0) � y0
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As with a finite horizon problem, writing down the Lagragian and looking at the first
order condition for y yields:

0 �

∫ ∞

0

(
∂F
∂y

(x(t), y(t), t) + λ(t)∂g
∂y

(x(t), y(t), t) + dλ
dt

(t)
)

v(t)dt− lim
T→∞

λ(T)v(T)+λ(0)v(0)−µv(0).

This implies the transversality condition that

lim
T→∞

λ(T)v(T) � 0 (9)

for all v that are valid perturbations to y. The difficulty here is that the set of v that are
allowed affects what (9) implies about λ. For example, if we allow v to be any function,
then we would need λ(T) � 0 for T sufficiently large (if not, set v(T) � 1/λ(T) and then
limT→∞ λ(T)v(T) , 0). However, in most cases v cannot be allowed to be any function.
For the derivative in direction v and the first order condition to make sense,∫ ∞

0
F(x(t), y(t) + αv(t), t)dt

must exist for small α. Additionally, to ensure the existence of Lagrange multiplies, the set
of allowed v must be rich enough to behave like the set of vectors in Rn . Specifically, when
you add two allowed directions, the sum must also be allowed. For most finite horizon
problems and many infinite horizon problems with discounting, the set of allowed v is
the set of bounded functions. In that case, (9) implies limT→∞ λ(T) � 0. (Unfortunately,
this is not true of all problems, see example 4.3).

Determining right set of allowed pertubations for a given problem can be difficult. For
a well behaved problem with a unique steady state and an optimal path that leads to the
steady state, the transversality condition is not needed to characterize the optimal path.
Any infinite horizon problem that I will ask about in this course will be of that sort.

A useful transversality condition for infinite horizon problems can be derived by looking
at the set of directions such that∫ ∞

0
F(x(t) + αv(t), y(t) + αw(t), t)dt

is finite and the constraints are satisfied. Michel (1982) takes such an approach and shows
that this leads to

lim
T→∞

F(x(T), y(T), T) + λ(T)g(x(T), y(T)) � 0.

See Acemoglu (2008) or Chiang (2000) for further discussion.

Example 4.3 (Non-standard transversality conditions ). The following two examples
feature solutions with limT→∞ λ(T) , 0., but that satisfy the condition

lim
T→∞

F(x(T), y(T), T) + λ(T)g(x(T), y(T)) � 0.
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(1)

max
x ,y

∫ ∞

0
(1 − y(t))x(t)dt

s.t.
dy
dt

� (1 − y(t))x(t)
y(0) � 0
0 ≤ x(t) ≤ 1

(2) Let ks � (α/δ)1/(1−α) and cs � (ks)α − δks .

max
c ,k

∫ ∞

0

(
log(c(t)) − log(cs)

)
dt

s.t.dk
dt

� k(t)α − c(t) − δk(t)
k(0) � 1
k(t) ≥ 0

4.2. Optimal contracting with a continuum of types. Let’s solve example 2.3.

max
q(θ),T(θ)

∫ θh

θl

[
T(θ) − cq(θ)

]
fθ(θ)dθ

s.t.
θν

(
q(θ)

)
− T(θ) ≥ 0∀θ (10)

θν
(
q(θ)

)
− T(θ) ≥ max

θ̃
θν

(
q(θ̃)

)
− T(θ̃)∀θ (11)

First, notice that if the participation constraint (10) holds for type θl , and (11) holds for θ,
then the participation constraint must also hold for θ.

We can show that the incentive compatibility constraint (11) is equivalent to the follow-
ing local incentive compatibility constraint and monotonicity constraint.

θν′(q(θ))q′(θ) − T′(θ) �0 (12)
dq(θ)

dθ
≥0 (13)

Consider the incentive compatibility constraint (11). The first order condition for the
maximization is

θν′(q(θ̃))q′(θ̃) � T′(θ̃).
This is the same as the local incentive compatibility constraint with θ � θ̃.

The second order condition for (11) is

θν′′(q(θ̃))q′(θ̃)2 + θ̃ν′(q(θ̃))q′′(θ̃) − T′′(θ̃) ≤ 0

On the other hand if we differentiate the local incentive compatibility constraint we get

ν′(q(θ))q′(θ) + θν′′(q(θ))q′(θ)2 + θν′(q(θ))q′′(θ) − T′′(θ) �0

θν′′(q(θ))q′(θ)2 + θν′(q(θ))q′′(θ) − T′′(θ) � − ν′(q(θ))q′(θ)
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We assume that ν′ > 0, and the monotonicity constraint says that q′ ≥ 0. Hence, this
equation implies the second order condition. Therefore, we have shown that the lo-
cal incentive compatibility constraint and monotonicity constraint are equivalent to the
incentive compatibility constraint.

Now, we can write the seller’s problem as

max
q(θ),T(θ)

∫ θh

θl

[
T(θ) − cq(θ)

]
fθ(θ)dθ

s.t.
θlν

(
q(θl)

)
− T(θl) ≥ 0 (14)

θν′(q(θ))q′(θ) − T′(θ) � 0 (15)
dq(θ)

dθ
≥ 0 (16)

Notice that this problem is slightly different than the problems in that the constraint
involves both dq/dθ and dT/dθ. Therefore, we should work from the Lagrangian instead
of using the maximum principle and the Hamiltonian.

The Lagrangian is:

L �

∫ θh

θl

( [
T(θ) − cq(θ)

]
fθ(θ) − λ(θ)

(
T′(θ) − θν′(q(θ))q′(θ)

)
+ µ(θ)q′(θ)

)
dθ+

+ ψ0
(
θlν

(
q(θl)

)
− T(θl)

)
While writing the first order conditions, we will use x for the direction of the derivative,

since the usual v is easily confused with ν. The first order condition for T is for any
x : [θl , θh]→R,

0 �

∫ θh

θl

x(θ) fθ(θ)dθ −
∫ θh

θl

λ(θ) dx
dθ

(θ)dθ − ψ0x(θl)

0 �

∫ θh

θl

x(θ)
(

fθ(θ) +
dλ
dθ

(θ)
)
− λ(θh)x(θh) + λ(θl)x(θl) − ψ0x(θl).

From this we see that λ′(θ) � − fθ(θ), λ(θl) � ψ0, and λ(θh) � 0. Given λ′ and λ(θh), it
must be that

λ(θ) �
∫ θ

θh

− fθ(θ̂)dθ̂

�1 −
∫ θ

θl

fθ(θ̂)dθ̂

�1 − Fθ(θ)

where Fθ is the cdf of fθ.
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The first order condition for q is that for all x,

0 �

∫ θh

θl

cx(θ) fθ(θ)dθ −
∫ θh

θl

λ(θ)
[
θν′′(q(θ))q′(θ)x(θ) + θν′(q(θ))x′(θ)

]
dθ−

+ ψ0θlν
′(q(θl))x(θl) +

∫ θh

θl

µ(θ)x′(θ)dθ

0 �

∫ θh

θl

x(θ)
[
c fθ(θ) − λ(θ)

(
θν′′(q(θ))q′(θ) − ν′(q(θ)) − θν′′(q(θ))q′(θ)

) ]
dθ+

+

∫ θh

θl

λ′(θ)θν′(q(θ))x(θ)dθ − λ(θh)θhν
′(q(θh))x(θh) + λ(θl)θlν

′(q(θl))x(θl)−

+ ψ0θlν
′(q(θl))x(θl) +

∫ θh

θl

µ(θ)x′(θ)dθ

0 �

∫ θh

θl

x(θ)
[
c fθ(θ) + λ(θ)ν′(q(θ)) + λ′(θ)θν′(q(θ))

]
dθ−

− λ(θh)θhν
′(q(θh))x(θh) + λ(θl)θlν

′(q(θl))x(θl)−

+ ψ0θlν
′(q(θl))x(θl) +

∫ θh

θl

µ(θ)x′(θ)dθ

If we assume that the monotonicity constraint does not bind, so µ(θ) � 0, we get that

0 �c fθ(θ) + λ(θ)ν′(q(θ)) + λ′(θ)θν′(q(θ))
0 �c fθ(θ) + (1 − Fθ(θ))ν′(q(θ)) − fθ(θ)θν′(q(θ))

θν′(q(θ)) �c +
1 − Fθ(θ)

fθ(θ)
ν′(q(θ))(

θ − 1 − Fθ(θ)
fθ(θ)

)
ν′(q(θ)) �c

This equation completely determines q(θ). We can then use the local incentive compati-
bility constraint (15) to solve for T′. Finally, (14) pins down T(θl).

You may recall from problem set 1 that with symmetric information, θν′(q(θ)) � c.
Since ν′ is decreasing in q, this implies that q(θ) is less than what it would be in the first
best symmetric information case for all θ < θh . The highest type, θh gets the optimal level
of consumption since Fθ(θh) � 1.

Exercise 4.1 (difficult). Solve the optimal taxation example. The steps and solution are
similar to the optimal contracting problem, but the expression you end up with is a bit
messier. See Mirrlees (1971), or Diamond (1998) for guidance. Saez (2001) expresses
the optimal tax schedule in terms of elasticities and the distribution of income, which
allows the optimal tax schedule to be estimated.
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Appendix A. Generalized maximum principle

The theorem below is a generalized version the maximum principle. I find it easier
to work from the Lagrangian than to try to remember or apply this theorem. We will
suppose we are choosing n instead of just 2 functions of t. We will denote the n functions
by z(t) collectively, and z j(t) individually. We will denote their derivatives by dz j

dt � Ûz j
individually, and simply Ûz(t) for the vector of n derivatives. There will some constraints
on the derivatives, which we will express as

Gm(z(t), Ûz , t) � 0

where Gm : R2n × [0, T]→R is continuously differentiable. For example, the canonical
optimal control problem has n � 2, z(t) � (x(t), y(t)), and

Gm(z(t), Ûz(t), t) � Ûy(t) − g(x(t), y(t), t).

Theorem A.1 (Generalized maximum principle). Let z : [0, T]→Rn . Let Ûz : [0, T]→Rn

denote the derivatives of z. Consider

max
z

∫ T

0
F(z(t), t)dt

s.t.
0 � Gm(z(t), Ûz(t), t)∀t ∈ [0, T],m ∈ 1, ...,M (17)∫ T

0
hk(z(t), t)dt � 0 for k � 1, ..., K (18)

z(0) � Z0 , z(T) � ZT (19)

Assume that F,G, h are continuously differentiable. If z∗ is a local constrained maximizer, then
there exists functions λm(t) and constants µk , ψ j,l such that

[z j] : 0 �
∂F
∂z j

(t) −
M∑

m�1
λm(t)

(
∂Gm

∂z j
(t) −

n∑
i�1

∂2Gm

∂ Ûz j∂zi
(t) Ûzi(t)

)
+

M∑
m�1

dλm

dt
(t)∂Gm

∂ Ûz j
(t) −

K∑
k�1

ψk
∂hk

∂z j
(t)

and

−ψ j,0 �

M∑
m�1

λm(0)
∂G
∂ Ûz j

(0)

ψ j,T �

M∑
m�1

λm(T)
∂G
∂ Ûz j

(T).

Exercise A.1. Verify that theorem is the same as the previous maximum principle
(3.1), if we set n � 2, z(t) � (x(t), y(t)), M � 1, K � 0, and

G1(z(t), Ûz(t), t) �
dy
dt

− g(x(t), y(t), t).
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Exercise A.2 (Difficult). Prove this theorem from the continuous time Lagrangian or
by discretizing.
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