SETS AND THEIR PROPERTIES
PauL SCHRIMPF
OcToBER 2, 2019
UnNiversiTy OF BritisH CoLuMBIA
Econowmics 526

©@®O'

Much (perhaps all) of mathematics is about studying sets of objects with particular
properties.

Section 1 introduces sets and some related concepts. Section 1.4 briefly discusses car-
dinality and introduces countable and uncountable sets. Section 2 is about relations,
especially orders, which are used to state Arrow’s impossibility theorem. The appendix
section A is about familiar sets of numbers, including the integers, rationals, and real
numbers. The properties of these sets of numbers that make them distinct are discussed.

References. Section 1 on sets is partly based on chapter 1 of Carter (2001). Any similar
high-level mathematical economics textbook covers similar material. Examples include
De la Fuente (2000), Ok (2007), and Corbae, Stinchcombe, and Zeman (2009). Textbooks
on real analysis, such as Rudin (1976) and Tao (2006), also typically start with a section
about sets.

Section 1.4 about cardinality is largely based on chapter 2 Rudin (1976). Chapter B of
Ok (2007) covers similar material. Weeks 2 and 3 of the notes of Tao (2003) (on which Tao
(2006) is based) also cover cardinality.

Section 2 about relations is based on chapter 1.2 of Carter (2001). Arrow’s impossibility
theorem firstappeared in Arrow (1950). Feldman (1974) is a more approachable, simplified
proof of the theorem.

The appendix section A is based on Rudin (1976), but any textbook on real analysis will
cover similar material. Tao (2006) (or the note version Tao (2003)) is especially detailed
and careful in its construction of the real numbers.

1. Sets

A set is any well-specified collection of elements.! Sets are conventionally denoted
by capital letters, and elements of a set are usually denoted by lower case letters. The
notation, 2 € A, means that a4 is a member of the set A. A set can be defined by listing its
elements inside braces. For example,

A ={4,5,6}

1This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License
1“Well-specified” is somewhat ambiguous, and this ambiguity can lead to trouble such as Russell’s
paradox or Cantor’s paradox. We’ll ignore these paradoxes, but rest assured that they can be avoided by
more carefully defining “well-specified.”
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means that A is a set of three elements with members 4, 5, and 6. The members of a set
need not be explicitly listed. Instead, they can be defined by some logical relation. For
example, the same set A could be written

A={neN:3<n<7} (1)

where N = {1, 2, 3, ...} is the natural numbers. The expression in (1) could be read as, “the
set of natural numbers, 1, such that 3 is less than n is less than 7.” Sometimes | will be
used to mean “such that” instead of :. The elements of sets need not be simple things like
numbers. For example, if Ay = {n € N : n > k} is the set of natural numbers greater than
k, then you could have a set of sets, B = {A1, A10, A¢}. Sets are unordered, so the previous
definition of B is the same as B = {Aj, As, A10}. Also, sets do not contain duplicates, so
for example, {1,1,2} = {1,2}. Sets can be empty. The empty set, also called the null set,
is denoted by 0 or, less commonly, {}.

1.1. Economic examples. Sets appear all over economics.?

Example 1.1. [Sample space] In a random experiment, the set of all possible outcomes
is called the sample space. E.g. for the roll of a dice, the sample spaceif {1,2,3,4,5, 6}.
An event is any subset of the sample space.

Example 1.2. [Games] A game is a model of strategic decision making. A game
consists of a finite set of n players, say N = {1,2, ..., n}. Each player i € N chooses an
action a; from a set of actions A;. The outcome of the game depends on the actions
chosen by all players.

Example 1.3. [Consumption set] The consumption set is the set of all feasible con-
sumption bundles. Suppose there are n commodities. A consumer chooses a con-
sumption bundle x = (x1,x2, ..., x,). Consumption cannot be negative, so the con-
sumption set is a subset of R} = {(x1,...,x,) : x1 > 0,x2 >0, ...x,, > 0}.

1.2. Set operations. Given two sets A and B, a new set can be formed with the following
operations:

(1) Union: AUB ={x:x € Aorx € B}.
(2) Intersect: ANB ={x:x € Aand x € B}.
(3) Minus: A\B={x:x€ Aand ¢ B}
(4) Product: AxB={(x,y):x €A,y € B}
(5) Power set: P(A) = set of all subsets of A
Often, we will discuss sets that are all subsets of some universal set, U. In this case, the

complement of A in U is A° = U \ A. If we have an indexed collection of sets, {A }xex,
we may take the union or intersection of all these sets and denote it as Uxegc Ak or NiegcAr.

2These examples come from chapter 1 of Carter.
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1.3. Set relations. If every element of A is also in B, then we say that B contains A and
write B 2 A, or A is a subset of B and write A C B. If, additionally, there exists b € B
such that b ¢ A, then we say that A is a proper subset of B, which is denoted by A C B or
B> A.

Example 1.4 (1.2 Games continued). In a game subsets of players are called coalitions.
The set of all coalitions is the power set of the set of players, P(N).

The action space of a game is the set of all possible outcomes or combinations of
actions, A = A1 X Ay X ... X A,,. Anelementof A, a = (a1,ay, ...,a,) is called an action
profile.

1.4. Cardinality . * Sometimes, we want to compare the size of two sets. This is easy
when sets are finite; we simply count how many elements each has. It is not so easy
to compare the size of infinite sets. Consider, for example, the natural numbers, N, the
integers Z, rationals, Q, and real numbers, R. Let |A| denote the “size” of A (we will define
it precisely later). We know that

NczZcQCcCR,
so it seems sensible to say that
IN| < |Z] < Q] < [R].

On the other hand, the even integers are a subset of Z, but since we can write the set of
even integers as {2x : x € Z}, it doesn’t seem like there are any more integers than even
integers. It was questions like these that led Georg Cantor to pioneer set theory in the
1870’s.

A function (aka mapping), f : A — B is called one-to-one (aka injective) if for every
b € B theset {a: f(a) = b} is either a singleton or emptyo. f is called onto (aka surjective)
if Vb€ B3a € A: f(a) = b. If there exists a one-to-one mapping of A onto B (aka bijection
or one-to-one correspondence), then we say that A and B have the same cardinal number
(or cardinality) and write |A| = |B|. Let J, = {1,...,n}. A is finite if |A| = |J,|. A is
countable if |A| = [N|. A is uncountable if A is neither finite nor countable. You should
verify that the relation |A| = |B| is reflexive (|A| = |A|), symmetric (|JA| = |B| implies
|B| = |Al), and transitive (if |A| = |B| and |B| = |C| then |A| = |C]).

Lemma 1.1. Z is countable.

Proof. We can construct a bijection between Z and N as follows:

Z: 0, -1, 1, 2, =2, 3, =3, ..
N: 1, 2, 3, 4, 5, 6, 7,..

Or as a formula, f : N — Z with
(n—-1)/2if n odd
f@)={

—n /2 if n even.

3This section based on Chapter 2 Rudin (1976).
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Theorem 1.1. Every infinite subset of a countable set A is countable.

Proof. A is countable, so there exists a bijection from A to N. We can use this mapping to
arrange the elements of A in a sequence, {4}, ;* Let B be an infinite subset of A. Let
n1 be the smallest number such that a,, € B. Given ny_1, let nx be the smallest number
greater than n;_; such that a,, € B. Such an n; always exists since B is infinite. Also,
B = {an, };., since otherwise there would be a b € B, but b ¢ A. Thus, f(k) = ay, isa
one-to-one correspondence between B and N. m|

Theorem 1.2. The rational numbers are countable.
Proof. Consider the following arrangement of positive rational numbers:

1/1 2/1 3/1 4/1
1/2 2/2 3/2 4/2
1/3 2/3 3/3 4/3

Starting in the top left and going back and forth diagonally, we get the following sequence:
1/1,1/2,2/1,1/3,2/2,3/1, ...
Adding zero and the negative rationals, we can write e.g.

0,1/1,-1/1,1/2,-1/2,2/1,-2/1,1/3,-1/3,2/2,-2/2,3/1, ...
=01, 92, 43, 4, ---

Continuing on in this way, we could list all rational numbers. Some of these fractions
represent the same number and can be removed. Thus, we obtain a correspondence
between the rationals and an infinite subset of N. However, by theorem 1.1, this subset is
countable, so the rationals are also countable. O

Theorem 1.3. The real numbers are uncountable.

Proof. (Cantor’s diagonal argument) We have not rigorously defined the real numbers, so
we will take for granted the following: every infinite decimal expansion, (e.g. 0.135436080...)
represents a unique real number in [0, 1), except for expansions that end in all zeros or
nines, which are equivalent®.

We will use proof by contradiction to prove the theorem. Proof by contradiction is a
common technique that works by showing that if the theorem were false, then we could
prove something that contradicts what we know is true.

4By this notation, we mean an infinite ordered list of elements of A, i.e. a1, a2, 43, ....
SE.g. 0.199... = 0.200...
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Suppose the theorem is false. Then we can construct a surjective mapping from N to
(0,1). That is we can list all real numbers in (0, 1) as

r1 =0. dn dio dis
rp =0. dyn dy dx
r3 =0. d31 d3p ds3

where each d;; € {0, 1, ...,9}, and no expansion ends in all nines. We will now show that
there is a real number in (0, 1) that is not in the list. Let x* = 0.d}d’d;.... where d;, is chosen
such that d;, # d,,, and x” is sure not to end in all nines. There are many possibilities, but
to be concrete, let’s set

b A 1t dy <8
0if dyy > 8

x*isin (0, 1), but x* # r,, for any n because d;, # d,,. Thus, we have a contradiction, and
there cannot be a onto mapping from N to (0, 1). If there is no surjective mapping from N
to (0, 1), there can be no surjective mapping from N to R since (0,1) C R. O

Countable sets are said to have cardinality 8 (“aleph null”). Note that an implication
of theorem 1.1 is that Ny is the smallest infinite cardinal number. The real numbers
have cardinality of the continuum, sometimes written 2% or ¢. You might be wondering
whether there are larger cardinal numbers. The answer is yes. The set of all subsets of
a set, A, called the power set of A, always has larger cardinality 214! (the proof of this is
similar to the proof that the real numbers are uncountable).

A final question to ask yourself is whether there are sets with cardinality between Ny
and 2%, The answer to that question is whatever you want it to be. The conjecture that
there are no cardinal numbers between 8y and 2™ is known as the continuum hypothesis.
It was proposed by Cantor in the 1870s. In 1900, Hilbert made a famous list of 23
important unsolved problems in mathematics. The continuum hypothesis was the first.
In 1940, Godel showed that the continuum hypothesis cannot be disproved from the
standard axioms that lie at the foundation of mathematics. In 1963, Cohen showed that
the continuum hypothesis cannot be proved from the standard axioms. This is an example
of Godel’s incompleteness theorem, a very interesting result that we won't be able to cover
in this course. Loosely speaking, Godel’s incompleteness theorem says that for any non-
trivial set of assumptions and system of logic, you can make statements consistent with
the system of logic that cannot be proven or disproven from the assumptions.

2. RELATIONS

There is not much more we can say about generic sets. Fortunately, sets used in econom-
ics and mathematics typically have some additional properties that we can utilize. Basic
mathematics studies real numbers. Numbers have many properties: they are ordered,
they can be added and multiplied, etc. Most of the abstract sets that we will study will
have some, but not all, of the properties of real numbers. We will begin by studying

ordered sets.
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Orderings, or, more generally, relations, are important in economics because they can
be used to represent preferences. Relations are things like =, <, <, and C. Formally,
Definition 2.1 (Relation). A relation on two sets A and B is any subset of AXB, R € AXB.
We usually denote relations by a Rpif (a,b) € R (where R could be some other symbol).

Although we define relations in terms of a subset of the product set, it’s usually easier
to just think about relations as a rule expressing the relationship between elements of A

and B. For most relations, A = B, and then we say R is a relation on A.

Example 2.1. Let A = B = R. Then < is associated with R = {(a,b) € R? : a < b},

Relations usually have some of following properties.

Definition 2.2 (Properties of relations). A relation K onAis

. . R
e reflexiveif a~a Va € A,

epe . R R . . R
transitive if 2 ~ b and b ~ c implies a ~ ¢,

symmetric if a Kb implies b Ra,

antisymmetric if a Kband bR a impliesa = b,

complete if either a Rbor b2 a or both Va,b € A.

Exercise 2.1. As an exercise, you may want to work out which of the above properties
=, <, and < on R have.

Slightly confusingly, symmetric and antisymmetric are not opposites. The usual equality
in R, = is both symmetric and antisymmetric.

Example 2.2 (Preference relation). A consumer’s preference relation, >, is a relation
on her consumption set, X. x > y means that the consumer likes the bundle of goods
x at least as much of the bundle of goods y. We will assume that preference relations
are complete, transitive.

Exercise 2.2. Show that any complete and transitive order is also reflexive.

2.1. Equivalence relations. An equivalence relation is a relation that is reflexive, transi-
tive, and symmetric. If ~ is an equivalence relation on X, then the equivalence class of x
is~(x)={a € X:a~x}. Since x ~ x, all x € X must be in some equivalence class. Also,
since equivalence relations are symmetric, each x € X is in only one equivalence class.

Example 2.3 (Indifference). Let > be a preference relation on X. Then we can define
an equivalence relation by x ~ y if x > y and y > x. This relation is called the
indifference relation. The equivalence classes of ~ are called indifference classes.
You are probably familiar with graphs of indifference curves. Indifference curves are
indifference classes.
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Example 2.4 (Isoquants). Consider a production function f : R"—R. We can define
an equivalence relation on R"” by x ~ z iff f(x) = f(z). The equivalence classes of this
preference relation are the isoquants of the production function.

2.2. Order relations. A relation that is transitive and reflexive but not symmetric is called
an order. Preference relations are orders. Any order < induces another relation < defined
by x < yif x < y and y £ x. The reflexive order < is often called a non-strict order, and
the non-reflexive < is called a strict order.

The usual order on R, < has two additional properties that a generic order need not
have. First, any set in R with an upper bound has a least upper bound. y is an upper
bound of A C R, if y > x for all x € A. y is the least upper bound of A if there is no
z < y that is also an upper bound of A. Least upper bounds in R are unique. Among
other things, uniqueness of least upper bounds is important for ensuring that optimization
problems are well-defined. A partial order is a relation that is transitive, reflexive, and
antisymmetric. Not all elements of a partially ordered set need to be comparable.

Example 2.5. Let S be set. The power set of S (set of all subsets) is partially ordered
by C.

Example 2.6. A partial order on R" can be defined by x < y if x; < y; for all i.

A preference relation is not a partial order because it allows indifference between goods
that are not the same.

Another aspect of the usual < order on R is that all elements are comparable, i.e. it is
complete. A relation that is complete, transitive, and reflexive is called a (non-strict) weak
order (or sometimes just an ordering). Preference relations are weak orders.°

2.3. Pareto order. “In this subsection we will derive an interesting economic result —
Arrow’s impossibility theorem — purely by thinking about orders. Suppose we have n
individuals each with some preference, >; on set X. Think of X as some set of outcomes
for society. For example, each element of X could specify how much consumption to give
each individual. The Pareto order on X is defined as

x>Pyifx > yforalli=1,...,n

We say that x Pareto dominates y if x > y. x is Pareto optimal (or Pareto efficient) if there
is no y such that y > x.

Exercise 2.3. Which of the properties of a relation does the Pareto order have?

Remember that any relation on X can be represented by R € X x X. If R; is the set
associated with >;, i.e. R; = {(x,y) : x >; y}, then x >P yif(x,y) € N R;. Similarly,

¢The “weak” refers to the fact that x < y and ¥ < x does not imply x = y. This is somewhat confusing
because in economics we might read x < y as “y is weakly preferred to x”, where weakly refers to allowing
indifference, not the fact that preference relations are weak orders.
"Based on example 1.4.3 of Carter (2001).
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x =P yif (x,y) € NI_ RS, If (x, y) is in neither of these two intersections, then x and y are
not Pareto comparable.

The Pareto order depends on the #n individual preferences. In other words the Pareto
order is a function of individual preferences. Since each individual preference can be
represented by a subset of X X X, we can think of the Pareto order as a function P(X X
X)"—=P(XxX). Thinking of orders as subsets of X X X (equivalently elements of (X x X))
may not feel natural, but it is essential to remember that the Pareto order is a function of
individual preferences.

The Pareto order will usually not be complete. For example take n = 2. Let elements
of X be consumption bundles for person 1 and 2, (x1, x2), such that x; + x2 = ¢, for some
constant c¢. Then we would expect that (c,0) >; (0, c) and (0, ¢) > (c,0),so (c,0) and (0, ¢)
are not Pareto comparable.

Social choice theory is about how best to combine individual preferences to make social
decisions. It would be great if we could somehow complete the Pareto order, because then
we could just choose the maximal outcome under the completed Pareto order. Arrow
(1950) showed that this is impossible to do in an appealing manner. To precisely state
Arrow’s result, we first need a couple more definitions.

A social choice rule is a rule for combining individual preferences >; into a single weak
order >. In other words, a social choice rule is a function from the set of n individual
preferences to the set of weak orders. Just like the Pareto order, a social choice rule is
a function of individual preferences. That is, a social choice rule is a function : P(X X
X)"—=P(X x X). Unlike the Paretor order, a social choice rule is required to be complete
(weak orders are complete).

We will denote the social ordering by F(>1, ..., >,) ==. A social choice rule F completes
the Pareto order if > is complete and for all x, y such that x >* y, the social order agrees
x > y. Although not made explicit by this notation, it is important to keep in mind that
both the Pareto order, >, and the social order, >, are functions of individual preferences.

A social choice rule satisfies the independence of irrelevant alternatives (IIA) if for
every A C X, if >; and >/ are two sets of individuals preferences that agree on A,

x>y & x>, yVx,y€Aforeachi

then >= F(>y,...,>,) and >'= F(>], ..., >}) also agree on A. Independence of irrelevant
alternatives says that the question of whether society likes apples better than bananas
should not depend on what anyone thinks about the comparison between apples and
oranges (or oranges and kiwis, etc). It is an intuitively desirable feature of a social choice
rule.

One social choice rule that completes the Pareto order is the dictatorial ordering. That
is, we let any one person’s preference be society’s preference. Of course, this is not a very
desirable social ordering.

Theorem 2.1 (Arrow’s impossibility theorem). It is impossible to complete the non-strict Pareto

ordering in a way that is not dictatorial and is independent of irrelevant alternatives when |X| > 4.
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Feldman (1974) contains a very concrete proof for when n = 2 and |X| = 3. We will
prove the general theorem, but if you find the general argument confusing (and it is a bit
difficult), then reading Feldman (1974) might be helpful.

Proof. Suppose we have a social choice rule, F that is consistent with the Pareto order and
obeys the irrelevance of independent alternatives. We will prove the theorem in three
steps, but first a definition will be useful.

A group of individuals, S C {1,--- ,n} is decisive over x, y € X if for any individual
preference relations if x >; y for all i € S implies x > y, where >= F(>1, ..., >,). Being
decisive is a property of the subgroup S and the decision rule F. It is something that holds
for all possible individual preferences.

(1) Field expansion lemma: Suppose |X| > 4 and that there is one pair of alternatives, x
and y such that some group S is decisive over x, y. We will show that S must also
be decisive over all other pairs of alternatives. Let z, w € X and suppose that for
alli € S, w >; z. We want to show that w > z.

By the irrelevance of independent alternatives, as long as we hold all individuals
preferences over w and z constant, the social choice rule must give the same
ordering between w and z. This means that if for any configuration of individual
preferences over other outcomes, we can show w > z, then we know w > z for
any set of preferences. In other words, for any individual preferences >/ such that
w >; z if and only if w >; z for all i, it must be that w > z if and only if w >’ z,
where >'= F(>], ..., >})and >= F(>1, ..., >,). This means that we can freely change
preferences among alternatives as long as we hold the preference between w and
z fixed.

Consider preferences such that w >;. x and y >; z for all j, and x >} y for all

i €S. Theny > zand w > x. Since the social order must agree with the Pareto
order, we also have y >’ z and w >’ x. By assumption S is decisive over x and y,
so x >" y. By transitivity w >’ z. Like we argued earlier, by the independence of
irrelevant alternatives, it must also be that w > z, i.e. S is also decisive over w and
z

(2) Group contraction lemma: We will show that if S is decisive and |S| > 2, then there
exists S’ C S such that S’ is decisive.

Let z € X, z # x, y. Partition S into two groups. That is, let S; U S, = S where
51N Sy =0,and S; and S, are not empty. Consider preferences >; such that x >; y
foralli € S. S is decisive, so then, x > y as well.

If S is not decisive, then from the previous part, S is not decisive over any
pair. In particular, S; is not decisive over z and x. This means that we can find
preferences x >; z for all i € S; such that the social order >= F(>1, ..., >7) prefers z
to x, z > x. Moreover, by the independence of irrelevant alternatives, we can make
these preferences be such that x >; y >; z forall i € 51.

If S; is also not decisive, then S; is not decisive over any pair, including z and
y. Thus, far we have placed assumptions about preferences between z and x and

x and y. We have not said anything about preferences between z and y. By the
9
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independence of irrelevant alternatives, we are free to specify preferences between
z and y which will still satisfy all the conditions about z and x above. This means
that we can find preferences such that z >; y for all i € S, but the social order
(weakly) prefers y to z, y > z. To summarize, assuming neither S; nor S; is
decisive, we have constructed preferences such that

e foralli € S1,x >; y >; z,but z > x, and

e foralli € S,z >; yandx >; y,buty > z
However, S being decisive implies x > y, which contradicts y > z > x. Therefore,
either S1 or S, must be decisive.

(3) To conclude the proof, notice that the set S of everyone is decisive for any social
ordering that agrees with the Pareto ordering. By the group contraction lemma,
there is a decisive proper subset S’. We can apply the group contraction lemma
again and again until we get to a decisive set with one element, i.e. a dictator.

O
So what does this theorem mean? One implication is that any non-dictatorial social

choice rule that agrees with the Pareto order must either (i) not actually be a weak order
(usually not trnsitive) or (ii) violate the independence of irrelevant alternatives.

Example 2.7 (Binary voting). Suppose n is odd (to avoid ties) and the social choice
rule is determined by majority vote. That is,

x>y < x z;yforatleast (n +1)/2 individuals .

Voting is complete, agrees with the Pareto order, and is non-dictatorial. Voting also
obeys the independence or irrelevant alternatives. Whether x > y only depends on
individual preferences between x and y. So, how can this be possible? Well, voting
does not always lead to a transitive order, so it does not qualify as a social choice rule.
One of the requirements of a social choice rule is that it is a weak order (given any
individual preferences), so it must be transitive. Transitivity was essential at the end

of step 2 of our proof of the impossibility theorem.

We could also try to construct social choice rules through other voting arrangements.

Example 2.8 (Majority voting). Suppose the social choice rule is to let each person
vote on their most preferred outcome. Then outcomes are ranked by the number
of votes received. This social choice rule is transitive and complete (so it is a weak
order), but it does not obey the independence of irrelevant alternatives. We see this
often in elections with 3 candidates, where the presence of a third fringe candidate
can influence which of two mainstream candidates wins.

AprPENDIX A. NUMBERS

We have been assuming familiarity with the natural numbers, integers, rationals, and
real numbers. This section explores some properties of these sets of numbers and heuristi-
cally describes how these sets of numbers are constructed. It may appear silly and slightly

confusing to try to be “rigorous” about something like real numbers that we already feel
10
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like we understand. Much of mathematics is about finding and describing patterns that
apply to abstract objects. Many of the abstract objects that we will study are similar to the
real numbers in some ways, but different in others. Examples of things that are similar to
the real numbers include complex numbers, vector spaces, matrices, and sets of functions.
Some of these things we will be able to add and multiple just like real numbers, but not
all of them. A natural sort of question is: this class of objects shares properties X, Y, and Z
with the real numbers; what theorems that we know about the real numbers will also be
true of this class of objects? Before answering this sort of question we have to be precise
about what properties the real numbers have.

We will take for granted that we understand what the natural numbers are. Note,
however, that it is possible to rigorously construct the natural numbers from a simple list
of assumptions using logic or set theory. We will also take for given that we know how to
add and multiply natural numbers. Addition has the following nice properties.

1 Closureifa,b € N,soisa+b
2 Associativea + (b +c) = (a+Db) +c.

If we demand that addition also has

3 Identity 30s.t. a +0 = a,
4 InverseVa,dbst.a+b =0

then we must expand the natural numbers to include the integers, Z. Multiplication also
satisfies these four analogous properties:

1" Closureifa,b € A, sois ab
2" Associative a(bc) = (ab)c.

3" Identity 31 s.t. al = a,

4’ InverseVa #0,3Ab s.t. ab =1

However, if we want multiplicative inverses to exist for all z € Z, then we must further
expand our set of numbers to the rationals, Q. Addition and multiplication are also

5 Commutativea +b =b+a
6 Distributive a(b + ¢) = ab + ac

To summarize: if we start with the natural numbers, and then demand that multiplication
and addition have these six properties, we end up with the rational numbers.

More generally, we could study a set A combined with one or two operations that satisty
certain properties. The branch of mathematics that studies these sort of objects is abstract
algebra. We will not be studying algebra in detail, but it may be useful to be familiar with
some basic terms. A group is a set and operation, (A, ®) such that A is closed under @,
® is associative, there exists an identity, and inverses exist under @ (i.e. properties 1-4).
If @ is also commutative, we call (A, ®) an abelian (or commutative) group. Examples of
groups include (Z, +) and (Q, -). A ring is a set with two operations, (A, ®, ©) such that
(A, ®) is a group, and O has properties 1-3 and 6. (Z, +,) is a ring. One ring that will
come up repeatedly in this course is the set of all n by n matrices with the usual matrix
addition and multiplication. A field is a set with two operations such that 1-6 hold for
both operations. (Q, +,-) is a field. Another field that you may have encountered is the

complex numbers with the usual addition and multiplication. If you're interested you
11
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may want to verify that the integers modulo any number is a ring, and the integers modulo
any prime number if a field.

A.1. Real numbers. The rational numbers are pretty nice; they're a field with the six
properties listed above. However, Q does not contain all the numbers that we think it
should. For example,

Theorem A.1. V2 ¢ Q

Proof. Suppose V2 € Q. Then V2 = p/q where p and g are not both even. If we square
both sides, we get

2=p*/q°
2¢% =p*.

Hence, p? must be even. From the review, then p must also be even, say p = 2m. Then we
have

2¢% =2(2m?)
g2 =2m?,
which means g must also be even, contrary to our starting assumption. m|

Apparently, the rationals have some holes in them that we should fill in. To do so in
a unique way, we need to define another property of the rational numbers. A totally
ordered set is a set, A, and a relation, <, such that (i) (total) Va,b € A eithera < bora =b
or a > b; and (ii) (transitive) if 2 < b and b < c then a < c. An ordered field is a field that
is a totally ordered set and addition and multiplication preserve the ordering in that (i) if
b<cthena+b<a+c(i)ifa>0and b > 0thenab > 0.

We need one more definition. Simon and Blume state that one property of real numbers
that will be used throughout the book is the least upper bound property. It turns out that
this property is not only useful; it lies at the foundation of the real numbers. Let S be an
ordered setand A C S. s € S is an upper bound of A if s > aVa € A. s is a least upper
bound (aka supremum) of A if s is an upper bound of A and if r < s, then r is not an
upper bound of A. S has the least-upper-bound property (aka complete or Dedekind
complete) if whenever A C S has an upper bound, A has a least upper bound. Given that
V2 ¢ Q, it should not be surprising that the rational numbers are not complete.

Theorem A.2 (Real numbers). There exists an ordered field, R, that has the least upper bound
property. R contains Q. Moreoever, R is “unique”.

The proof of this is surprisingly long, so we will not go over it in detail. Existence can
be proven by construction. One method involves constructing real numbers as Dedekind
cuts. A Dedekind cut is a nonempty subset of the rationals, A C Q, such that (i) if p € A,
g€ Qandg <p, theng € A and (ii) if p € Athenp < r for some r € A (ie. A
has no greatest element. For example, the Dedekind cut associated with V2 would be

{p € Q: p? < 2}). We would then define addition, multiplication, and ordering of these
12
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cuts in the natural way and verify that all the properties above are satisfied. See Rudin
(1976) for details if you are interested.

The “uniqueness” is harder to prove. R is unique in the sense that any two ordered fields
with the least-upper-bound property are isomorphic (there exists a bijection between them
that preserves multiplication, addition, and ordering). The proof proceeds by supposing
that R and F are two ordered fields with the least-upper-bound property and then shows
that there is an isomorphism between them.
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