Paul Schrimpf

Market entry

Paul Schrimpf

UBC Economics 565

February 6, 2025

Paul Schrimpf

Introduction

Bresnahan and Reiss (1991)

Magnolfi et al. (2024)

Eliason (2021)

Other applicatior

References

Part I

Overview of market entry

Paul Schrimpf

Introduction

Bresnahan and Reiss (1991)

Magnolfi et al. (2024)

Eliason (2021)

Other applications

References

1 Introduction Starc (2014)

2 Bresnahan and Reiss (1991)

Magnolfi et al. (2024)
 Background and Data
 Entry Model
 Results

Eliason (2021)
 Motivating Evidence
 Model
 Estimation
 Results

Paul Schrimpf

Introduction

Bresnahan and Reiss (1991)

Magnolfi et al. (2024)

Eliason (2021)

Other applications

References

• Reviews:

- Aguirregabiria (2021) chapter 5
- Sutton (1991) theory
- Aradillas-López (2020), Kline, Pakes, and Tamer (2021) econometrics
- Levin (2009)
- Key papers:
 - Bresnahan and Reiss (1991)

References

Paul Schrimpf

Introduction

Bresnahan and Reiss (1991)

Magnolfi et al. (2024)

Eliason (2021)

Other applications

References

Section 1

Introduction

Paul Schrimpf

Introduction

Starc (2014)

Bresnahan and Reiss (1991)

- Magnolfi et al. (2024)
- Eliason (2021)
- Other applications
- References

Introduction 1

- Models of entry:
 - Dependent variable = firm decision to operate or not in a market
 - Enter industry, open new store, introduce new product, release a new movie, bid in an auction
 - Sunk cost from being active in market
 - Payoff of being active depends on how many other firms are in the market (game)

$$a_{im} = \mathbf{1} \{ \prod_{im} (N_m, X_{im}, \epsilon_{im}) \geq \mathbf{0} \}$$

- Estimate □ using revealed preference
- Static models: entry \approx being in active in market; not transition in/out

Paul Schrimpf

Introduction

- Starc (2014)
- Bresnahan and Reiss (1991)
- Magnolfi et al. (2024)
- Eliason (2021)
- Other applications
- References

Why estimate models of entry?

- Why not just estimate payoff function using demand and production estimation techniques?
 - Answers new questions: source of market power
 - Efficiency: entry conditions provide additional information about payoffs, so using them can give us more precise estimates
 - Identification: some parameters (e.g. fixed costs) can only be identified from entry
 - Requires less data: price and quantity data not needed for some entry models
 - Controlling for selection

Paul Schrimpf

Introduction Starc (2014)

- Bresnahan an Reiss (1991)
- Magnolfi et al. (2024)
- Eliason (2021)
- Other applications
- References

Starc (2014) 1

- What are the sources and consequences of insurer market power?
- Sutton (1991):
 - Model with price competition & fixed costs implies number of firms $\rightarrow \infty$ as market size $\rightarrow \infty$
 - Model with price competition & endogenous fixed costs implies number of firms \rightarrow constant as market size $\rightarrow \infty$
 - Illustrative simplified model from Schmalensee (1992)
 - Exogenous, p, c, endogenous A; (advertising)

$$\pi_i = (p-c)Srac{A_i^e}{\sum_{j=1}^N A_j^e} - A_i - \sigma$$

• Symmetric Nash equilibrium:

 $0 = (1/N^*)(1-e) + (1/N^*)^2 e - (\sigma/S)(1/(P-c))$

if $e \in (1, 2]$, then $N^* \rightarrow e/(e-1)$ as $S \rightarrow \infty$

Paul Schrimpf

Introduction Starc (2014)

- Bresnahan and Reiss (1991)
- Magnolfi et al. (2024)
- Eliason (2021)
- Other applications
- References

- Entry model:
 - Mutual of Omaha: fixed cost of entry (including advertising) in market *m* is Θ_{Mm}
 - Assume:
 - **1** Mutual of Omaha is profitable $\Pi_{Mm}(1, 1) \Theta_{Mm} \ge 0$
 - 2 It is not profitable for another firm to mimic Mutual of Omaha and enter $\Pi_{Mm}(1, 2) \Theta_{Mm} \leq 0$
 - implies $E[\Pi_{Mm}(2, 1)] \le E[\theta_{Mm}] \le E[\Pi_{Mm}(1, 1)]$
 - Similar for United Health, but they pay a single national suck cost Φ_U each year and

$$\mathsf{E}[\sum_{m} \Pi_{Um}(\mathbf{2}, \mathbf{1})] \leq \mathsf{E}[\Phi_{U}] \leq \mathsf{E}[\sum_{m} \Pi_{Um}(\mathbf{1}, \mathbf{1})]$$

Paul Schrimpf

Introduction Starc (2014)

Bresnahan and Reiss (1991)

Magnolfi et al. (2024)

Eliason (2021)

Other application

References

Source of market power

TABLE A7 Fixed and Sunk Cost Estimates

	Lower Bound	Upper Bound		
Sunk cost,	\$99, 261, 645.01	\$487, 935, 210.41		
UnitedHealth	(\$1, 530, 902, 861, 706.31)	(\$23, 031, 614, 127.02)		
Fixed cost,	\$445,010.32	\$796, 342.56		
Mutual of Omaha	(\$225, 593.04)	(\$3, 578, 033.82)		

TABLE A8 Marketing Expenditure and Advertising Value

	United Health	Mutual of Omaha
L.B. of sunk (fixed) cost/consumer	\$23.65	\$8.37
U.B. of sunk (fixed) cost/consumer	\$73.09	\$14.81
Average marginal cost/consumer	\$98.27	\$238.67
L.B. of total marketing cost/consumer	\$121.92	\$247.05
U.B. of total marketing cost/consumer	\$171.36	\$253.48

Notes: Compensating variation is calculated as the average across consumers within a market using the standard log-sum formula; the number reported is the median across markets.

Paul Schrimpf

Introduction

Bresnahan and Reiss (1991)

Magnolfi et al. (2024)

Eliason (2021)

Other application

References

Section 2

Bresnahan and Reiss (1991)

Paul Schrimpf

Introduction

Bresnahan and Reiss (1991)

- Magnolfi et al. (2024)
- Eliason (2021)
- Other applications
- References

Bresnahan and Reiss (1991)

- Can learn a lot from market entry with very limited data
- Cross-section of isolated markets where we observe
 - Number of firms
 - Some market characteristics (prices and quantities not needed)
- Identify:
 - Fixed costs
 - Degree of competition: payoffs = *f*(number of firms)

Paul Schrimpf

Motivating theory

FIG. 1.—Breakeven firm demand and margins

Paul Schrimpf

Introduction

Bresnahan and Reiss (1991)

- Magnolfi et al. (2024)
- Eliason (2021)
- Other application
- References

Motivating theory

• Demand = d(P) S

market size

• Monopolist entry:

$$0 = (P_1 - AVC(q_1))d(P_1)S_1 - F$$

$$S_1 = \frac{F}{(P_1 - AVC(q_1))d(P_1)}$$

 Symmetric market with *n* firms, demand per firm = *d*(*P*)*S*/*n*, entry threshold for *n*th firm

$$S_n = \frac{F}{(P_n - AVC(q_n))d(P_n)}$$

- *P_n*, *q_n*, depend on "competitive conduct" (form of competition, residual demand for firm who deviates from equilibrium *P_n*)
- As $n \to \infty$, $S_n/n \to s_\infty$ = minimal market size per firm to support entry when *P*, *q* competitive
- S_{n+1}/S_n measures how competitive conduct changes

Paul Schrimpf

Introduction

Bresnahan and Reiss (1991)

- Magnolfi et al. (2024)
- Eliason (2021)
- Other applications
- References

• Questions:

- Degree of competition: how fast profits decline with n_m
- How many entrants needed to achieve competitive equilibrium (contestable markets)
- Data:
 - Retail and professional industries (doctors, dentists, pharmacies, car dealers, etc.), treat each industry separately
 - M markets
 - *n_m* firms per market
 - S_m market size
 - *x_m* market characteristics

Setting

Paul Schrimpf

Introduction

Bresnahan and Reiss (1991)

- Magnolfi et al. (2024)
- Eliason (2021)
- Other application
- References

• *N* potential entrants

- Profit of each firm when *n* active = $\prod_m(n)$
 - Π_m decreasing in *n*
- Equilibrium:

$$\exists_m(n_m) \ge 0$$
 and $P_m(n_m+1) < 0$

• Profit function:

$$\Pi_{m}(n) = \underbrace{V_{m}(n)}_{\text{variable}} - \underbrace{F_{m}(n)}_{\text{fixed}}$$
$$= S_{m} v_{m}(n) - F_{m}(n)$$
$$= S_{m} \left(x_{m}^{D} \beta - \alpha(n) \right) - \left(x_{m}^{c} \gamma + \delta(n) + \epsilon_{m} \right)$$

where

• $\alpha(1) \leq \alpha(2) \leq \cdots \leq \alpha(N)$

Model 1

Model 2

Market entry

Paul Schrimpf

Introduction

Bresnahan and Reiss (1991)

- Magnolfi et al. (2024)
- Eliason (2021)
- Other application
- References

- $\delta(1) \leq \delta(2) \leq \cdots \leq \delta(N)$
 - Entry deterrence, firm heterogeneity, real estate prices
- Key difference between variable and fixed profits is that variable depend on *S_m*, fixed do not

Paul Schrimpf

Introduction

Bresnahan and Reiss (1991)

Magnolfi et al. (2024)

Eliason (2021)

Other applications

References

• Parameters $\theta = (\beta, \gamma, \alpha, \delta)$ • MLE $\hat{\theta} = \arg \max_{\theta} \sum_{m=1}^{M} \log P(n_m | x_m, S_m; \theta)$

• Assume $\epsilon_m \sim N(0, 1)$, independent of x_m , S_m

$$P(n|x_m, S_m; \theta) = P(\Pi_m(n) \ge 0 > \Pi_m(n+1))$$

$$= P\left(\begin{cases} S_m x_m^D \beta - x_m^C \gamma - S_m \alpha(n) - \delta(n) \ge \epsilon \\ \epsilon > S_m x_m^D \beta - x_m^C \gamma - S_m \alpha(n+1) - \delta(n+1) \end{cases} \right)$$

$$= \Phi\left(S_m x_m^D \beta - x_m^C \gamma - S_m \alpha(n) - \delta(n) \right) - - \Phi\left(S_m x_m^D \beta - x_m^C \gamma - S_m \alpha(n+1) - \delta(n+1) \right)$$

Estimation 1

Paul Schrimpf

Introduction

Bresnahan and Reiss (1991)

- Magnolfi et al. (2024)
- Eliason (2021)
- Other applications
- References

• 202 isolated local markets

- Population 500-75,000
- \geq 20 miles from nearest town of 1,000+
- \geq 100 miles from city of 100,000+
- 16 industries: retail and professions, each estimated separately

Data

Paul Schrimpf

Introduction

Bresnahan and Reiss (1991)

Magnol (2024)	fi	et	al
Fliason	(7	02	1)

application

References

TABLE 3

SAMPLE MARKET DESCRIPTIVE STATISTICS

Variable	Name	Mean	Standard Deviation	Min	Max
	i tunic	meun	Deviation		mux
Firm counts:	DOCC	0.4	~ .	0	15.0
Doctors	DOCS	3.4	5.4	.0	45.0
Dentists	DENTS	2.6	3.1	.0	17.0
Druggists	DRUG	1.9	1.5	.0	11.0
Plumbers	PLUM	2.2	3.3	.0	25.0
Tire dealers	TIRE	2.6	2.6	.0	13.0
Population variables (in thousands):					
Town population	TPOP	3.74	5.35	.12	45.09
Negative TPOP growth	NGRW	06	.14	-1.34	.00
Positive TPOP growth	PGRW	.49	1.05	.00	7.23
Commuters out of the					
county	OCTY	.32	.69	.00	8.39
Nearby population	OPOP	.41	.74	.01	5.84
Demographic variables:					
Birth + county population	BIRTHS	.02	.01	.01	.04
65 years and older ÷					
county population	ELD	.13	.05	.03	.30
Per capita income					
(\$1.000's)	PINC	5.91	1.13	3.16	10.50
Log of heating degree					
davs	LNHDD	8.59	.47	6.83	9.20
Housing units ÷ county					
population	HUNIT	.46	.11	.29	1.40
Fraction of land in farms	FFRAC	.67	.35	.00	1.27
Value per acre of farm- land and buildings					
(\$1,000's) Median value of owner-	LANDV	.30	.23	.07	1.64
(\$1,000's)	HVAI	39.01	14 90	0.00	106.0
(@1,000 8)	IIVAL	52.91	14.29	9.90	100.0

SOURCE —Firm counts' American Business Lists, Inc.; population variables: U.S. Bureau of the Census (1983) and Renud McNally Commercial Atlas and Marketing Guide (annual); demographic variables: U.S. Bureau of the Census (1983).

FIG. 2.-Number of towns by town population

FIG. 3.—Dentists by town population

Paul Schrimpf

Introduction

Bresnahan and Reiss (1991)

- Magnolfi et al. (2024)
- Eliason (2021)
- Other applications
- References

• For most industries, $\alpha(n)$ and $\delta(n)$ increase with n

• Define S(n) =minimal S such that *n* firms enter

$$S(n) = \frac{x_m^C \gamma + \delta(n)}{x_m^D \beta - \alpha(n)}$$

Varies across industries

•
$$\frac{S(n)}{n} \approx \text{constant for } n \geq 5$$

• Contestable markets (Baumol, Panzar, and Willig, 1982) : an industry can be competitive even with few firms if there is easy entry

Results

Paul Schrimpf

Introduction

Bresnahan and Reiss (1991)

Magnolfi et al. (2024)

Eliason (2021)

Other applications

References

TABLE 5

A. ENTRY THRESHOLD ESTIMATES

		Entry Thresholds (000's)					Per Firm Entry Threshold Ratios		
PROFESSION	<i>S</i> ₁	S_2	S ₃	S4	S_5	s_2/s_1	s_{3}/s_{2}	s_4/s_3	s_{5}/s_{4}
Doctors	.88	3.49	5.78	7.72	9.14	1.98	1.10	1.00	.95
Dentists	.71	2.54	4.18	5.43	6.41	1.78	.79	.97	.94
Druggists	.53	2.12	5.04	7.67	9.39	1.99	1.58	1.14	.98
Plumbers	1.43	3.02	4.53	6.20	7.47	1.06	1.00	1.02	.96
Tire dealers	.49	1.78	3.41	4.74	6.10	1.81	1.28	1.04	1.03

B. LIKELIHOOD RATIO TESTS FOR THRESHOLD PROPORTIONALITY

Profession	Test for $s_4 = s_5$	Test for $s_3 = s_4 = s_5$	Test for $s_2 = s_3 = s_4 = s_5$	Test for $s_1 = s_2 = s_3 = s_4 = s_5$
Doctors	1.12 (1)	6.20 (3)	8.33 (4)	45.06* (6)
Dentists	1.59 (1)	12.30* (2)	19.13* (4)	36.67* (5)
Druggists	.43 (2)	7.13 (4)	65.28* (6)	113.92* (8)
Plumbers	1.99 (2)	4.01 (4)	12.07 (6)	15.62* (7)
Tire dealers	3.59 (2)	4.24 (3)	14.52* (5)	20.89* (7)

NOTE-Estimates are based on the coefficient estimates in table 4. Numbers in parentheses in pt. B are degrees of freedom.

* Significant at the 5 percent level.

Paul Schrimpf

Introduction

Bresnahan and Reiss (1991)

Magnolfi et al. (2024)

Eliason (2021)

Other application:

References

Further evidence - prices

TABLE 10

TIRE PRICE SAMPLE DESCRIPTIVE STATISTICS

	Number of Tire Dealers in the Market						
	1	2	3	4	5	1.5	Urban
Candidate phone listings	39	66	48	64	75	*	200+
Surveyed by us	36	22	19	28	21	20	19
At listed number	32	19	19	24	21	17	18
Would respond	28	19	19	23	20	14	17
Total prices quoted	76	52	50	64	49	36	62
Usable price quotations	42	31	40	57	45	17	59
	Sample Means						
Price	54.9	55.7	54.4	51.6	52.0	53.8	45.6
Tire mileage rating (000)	44.5	47.0	47.7	45.4	43.8	43.0	45.3
	Sample Medians						
Price	53.9	55.0	52.9	50.9	49.8	51.7	43.2
Tire mileage rating (000)	45	45	50	40	40	40	45

* Unknown.

Paul Schrimpf

Further evidence - prices

Tire Price Regressions (N = 282)

	Ordina Squ	LEAST ABSOLUTE	
Variable Name	(1)	(2)	(3)
Constant term	26.4	29.9	29.5
	(4.69)	(4.87)	(4.43)
Monopoly market dummy	1.88	.26	.54
	(2.12)	(2.33)	(2.12)
Duopoly market dummy	1.88	62	.96
		(2.42)	(2.30)
Triopoly market dummy	-1.80	-2.60	-2.12
	(2.05)	(2.34)	(2.11)
Quadropoly market dummy	-1.80	-3.36	-2.53
		(2.21)	(2.01)
Quintopoly market dummy	-1.80	-1.99	-2.00
		(2.22)	(2.01)
Urban market dummy	-12.1	-11.0	-11.4
	(2.62)	(2.62)	(2.38)
Mileage rating	.43	.38	.39
	(.05)	(.05)	(.05)
County retail wage	1.00	.62	.74
	(.53)	(.53)	(.49)
Other dummy variables	Michelin brand	11 brands	11 brands
Regression R ²	.43	.51	
F or χ^2 hypothesis tests:			
$\alpha_1 = \alpha_2$.01	.01	1.1
$\alpha_3 = \alpha_4 = \alpha_5$.68	.70	2.3
$\alpha_1 = \alpha_2 = \alpha_3 = \alpha_4 = \alpha_5$	2.82*	2.86*	448*

NOTE.—The omitted category is all towns not satisfying our monopoly market definition. The numbers in parentheses are asymptotic standard errors.

* Significant at the 5 percent level.

Introduction Bresnahan and Reiss (1991)

Magnolfi et al.

Paul Schrimpf

Introduction

Bresnahan and Reiss (1991)

Magnolfi et al. (2024)

Background and Dat Entry Model Results

Eliason (2021)

Other application

References

Section 3

Magnolfi et al. (2024)

Paul Schrimpf

Introduction

Bresnahan and Reiss (1991)

Magnolfi et al. (2024)

Background and Dat Entry Model Results

Eliason (2021)

Other applications

References

"The Rise of Urgent Care Centers: Implications for Competition and Access to Health Care"

Magnolfi et al. (2024)

Paul Schrimpf

Introduction

Bresnahan and Reiss (1991)

Magnolfi et al. (2024)

Background and Da Entry Model Results

Eliason (2021)

Other applications

Growth in Urgent Care Centers

Note: Data for UCCs come from the Your Economy Time Series (YTS) database, which contains establishment-level information on all businesses in the United States, matched to Solv Health. Data for hospitals come from CMS' Hospital Compare, which contains all Medicare-certified hospitals.

Introduction

Market entry

Paul Schrimpf

Introduction

Bresnahan and Reiss (1991)

Magnolfi et al. (2024)

Background and Dat Entry Model Results

Eliason (2021)

Other applications

References

• Questions:

- to what degree UCCs compete with each other and with hospitals and their affiliated UCCs
- whether UCCs' location decisions expand access in underserved markets
- Entry model of hospitals and UCCs
 - in spirit of Bresnahan and Reiss (1991)
 - Variation in Certificate-of-Need laws to identify effect of hospitals
 - Compare entry thresholds in typical to underserved markets

Paul Schrimpf

Introduction

- Bresnahan and Reiss (1991)
- Magnolfi et al. (2024)
- Background and Data Entry Model Results
- Eliason (2021)
- Other applications
- References

What are Urgent Care Centers?

- Urgent Care Centers:
 - Walk-in
 - Extended hours
 - imaging, testing, diagnostics, screening
 - physicians, nurses, radiology technicians
 - Entry requirements: physician licensing, malpractice insurance
- Hospitals:
 - Emergency: 2/3 of visits for conditions also treated by UCCs
 - Certificate-of-Need required for entry (regulations vary by state)
- Retail clinics:
 - Respiratory infections, vaccinations
 - Within retail store (CVS, Walmart) with normal business hours
 - Nurse practitioners

Paul Schrimpf

Introduction

Bresnahan and Reiss (1991)

Magnolfi et al. (2024)

Background and Data Entry Model Results

Eliason (2021)

Other applications

References

• YE Time Series establishments for US since 1997

• Hospital Compare database from CMS

• Demographics from ACS

Data

Paul Schrimpf

Introduction Bresnahan and Reiss (1991)

Magnolfi et al. (2024) Background and Data Entry Model Results

	Full sample	Number of UCCs				
		0	1	2	>=3	
Population (1,000s)	47.9 (73.9)	18.5(21.5)	46.2 (38.7)	64.3(51.2)	146.7(124)	
Rural	0.38(0.42)	0.51(0.44)	0.25(0.34)	0.20(0.31)	0.10(0.19)	
Per cap. Income (\$10K)	3.04(1.14)	2.91(1.11)	3.09(1.17)	3.23(1.16)	3.36(1.11)	
Hispanic	0.11(0.16)	0.09(0.14)	0.11(0.16)	0.13(0.16)	0.16(0.17)	
Black	0.01 (0.07)	0.02(0.09)	0.01(0.04)	0.01 (0.03)	0.01 (0.02)	
High school or more	0.46(0.06)	0.45(0.06)	0.46(0.06)	0.47(0.05)	0.47(0.05)	
Age 65 and over	0.18(0.06)	0.19(0.06)	0.17(0.06)	0.17(0.05)	0.16(0.05)	
Uninsured	0.09(0.05)	0.09(0.06)	0.09(0.05)	0.09(0.05)	0.09(0.05)	
CMS wage index	0.97(0.17)	0.96(0.16)	0.99(0.18)	0.99(0.19)	1.00(0.18)	
Any hospital	0.53(0.50)	0.42(0.49)	0.59(0.49)	0.66(0.47)	0.80(0.40)	
Any AUCC	0.16(0.37)	0.07 (0.26)	$0.16\ (0.37)$	0.24(0.43)	$0.46\ (0.50)$	
T	6,696	4,010	994	581	1,111	

TABLE 1: Market Characteristics by Number of UCCs

Note: Table presents means and, in parentheses, standard deviations, of market characteristics in the full sample and in subsamples conditional on the number of UCCs, and total number of markets in the final row. Rural, Hispanic, Black, high school or more, age 65 and over, and uninsured are proportions of total population. Any hospital is the fraction of markets in the sample with at least one hospital. Any AUCC is the fraction of markets in the sample with at least one hospital-affiliated UCC.

Paul Schrimpf

Introduction

Bresnahan and Reiss (1991)

Magnolfi et al. (2024)

Background and Data Entry Model Results

Eliason (2021)

Other applications

References

Note: Data come from the Your Economy Time Series (YTS) database, which contains establishment-level information on all businesses in the United States.

Paul Schrimpf

Introduction

Bresnahan and Reiss (1991)

Magnolfi et al. (2024) Background and Data Entry Model Results

• UCC profits:

UCC Entry
Hospital Entry

• Cost shifter for hospitals excluded from UCC cost

Market entry

Paul Schrimpf

Introduction

Bresnahan and Reiss (1991)

Magnolfi et al. (2024) Background and Data Entry Model

Eliason (2021)

Other applications

References

Paul Schrimpf

Reiss (1991)

Magnolfi et al. Entry Model

Equilibrium and Entry Thresholds

Number of UCCs

$$\pi(n_t, n_t^h) \ge 0 \ge \pi(n_t + 1, n_t^h)$$

• *n_t* firms requires size

$$S_t \geq \frac{F(n_t, w_t)}{v(n_t, n_t^h, x_t)}$$

• Minimal size per firm for *n* firms in market with average characteristics:

.

$$\tau_n = \frac{1}{n} \frac{F(n, \bar{w}_n)}{v(n, \bar{n}^h, \bar{x}_n)}$$

Paul Schrimpf

Introduction

- Bresnahan and Reiss (1991)
- Magnolfi et al. (2024) Background and Data Entry Model
- Eliason (2021)
- Other applications
- References

• Profit Function parameterization

$$\pi_{t}(n_{t}, n_{t}^{h}) = S_{t} \left(x_{t} \theta_{x} + n_{t}^{h} \delta + \theta_{1} - \sum_{i=2}^{n_{t}} \theta_{i} \right) - w_{t} \gamma_{w} - \gamma_{1} + \sum_{i=2}^{n_{t}} \gamma_{i} + \epsilon_{t}$$
$$\pi_{t}^{h}(n_{t}^{h}) = S_{t} \left(x_{t} \theta_{x}^{h} + \theta_{1}^{h} \right) - w_{t} \gamma_{w}^{h} - z_{t} \gamma_{z}^{h} - \gamma_{1}^{h} + \epsilon_{t}^{h}$$
$$\left(\frac{\epsilon_{t}}{\epsilon_{t}^{h}} \right) \sim N \left(0, \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix} \right)$$

- $z_t = CON_t$ important for identification, especially ρ vs δ (exclusion in nonlinear simultaneous equations)
- Estimate by maximum likelihood

Estimation

Paul Schrimpf

Introduction

Bresnahan and Reiss (1991)

Magnolfi et al. (2024) Background and Data Entry Model Results

Eliason (2021)

Other applications

Sample restricted to isolated markets

APPENDIX TABLE 2: Market Characteristics by Number of UCCs

	Main sample	Number of UCCs				
		0	1	2	>=3	
Population (1,000s)	96.0 (139)	15.2(13.1)	55.6 (48.5)	81.7 (73.8)	219 (177)	
Rural	0.34(0.35)	0.52(0.38)	0.34(0.29)	0.29(0.28)	0.13(0.18)	
Per cap. Income (\$10K)	2.74(0.63)	2.61(0.60)	2.59(0.50)	2.78(0.52)	2.98(0.69)	
Hispanic	0.15(0.18)	0.14(0.18)	0.15(0.21)	0.12(0.15)	0.15(0.18)	
Black	0.04(0.13)	0.08(0.19)	0.02(0.06)	0.02(0.04)	0.01 (0.01)	
High school or more	0.44(0.05)	0.43(0.06)	0.43(0.05)	0.45(0.04)	0.46(0.04)	
Age 65 and over	0.18(0.06)	0.19(0.06)	0.18(0.05)	0.17(0.04)	0.15(0.04)	
Uninsured	0.10(0.05)	0.11(0.06)	0.11(0.05)	0.09(0.04)	0.10(0.04)	
CMS wage index	0.95(0.14)	0.96(0.11)	0.94(0.15)	0.94(0.13)	0.95(0.16)	
Any hospital	0.90(0.30)	0.81(0.39)	0.96(0.19)	0.97(0.17)	0.96(0.19)	
Any AUCC	0.35(0.48)	$0.13\ (0.33)$	$0.30\ (0.46)$	$0.51 \ (0.50)$	$0.59\ (0.49)$	
Т	673	273	111	65	224	

Note: Table presents means and, in parentheses, standard deviations, of market characteristics in the main estimation sample and in subsamples conditional on the number of UCCs, and total number of markets in the final row. Rural, Hispanic, Black, high school or more, age 65 and over, and uninsured are proportions of total population. Any hospital is the fraction of markets in the sample with at least one hospital. Any AUCC is the fraction of markets in the sample with at least one hospital-affiliated UCC.

Pau

Breis

Resu

TABLE 2: Entry Model Estimates

lSchrimnf			Univariate		1	Bivariate			
i seminipi					Hos	pitals		UCCs	
oduction			coef	se	coef	se	coef	se	$_{\rm sim}$
nohon and			(1)	(2)	(3)	(4)	(5)	(6)	(7)
s (1991)	Variab	le Profit Parameters:							
10 11	δ	Additional hospital presence	-23.6	(14.4)			-67.0	(19.2)	-20.5
(noin et al.	θ_x, θ_x^h	Rural	52.2	(43.5)	117.5	(45.4)	59.5	(42.8)	4.0
4) ground and Data		Income per capita	-39.9	(11.3)	0.6	(8.9)	-33.2	(11.1)	-9.8
Model		Hispanic	-69.3	(51.0)	-102.9	(32.6)	-77.7	(48.6)	-5.9
lts		Black	-300.9	(242.3)	422.1	(242.0)	-239.0	(240.7)	-13.5
on (2021)		High school or more	382.8	(232.6)	-206.2	(156.4)	315.5	(225.8)	3.7
5011 (2021)		Age 65 or more	308.0	(189.5)	356.2	(154.0)	294.3	(184.3)	3.7
er		Uninsured	93.7	(192.6)	101.4	(151.6)	111.0	(185.5)	1.5
lications	θ_n, θ_n^h	θ_1	373.4	(104.6)	143.4	(66.5)	390.0	(102.0)	
rences		θ_2	279.5	(37.5)	_		254.8	(39.1)	
		θ_3	5.4	(10.8)			3.4	(10.0)	
	Fixed (Cost Parameters:							
	γ_w, γ_w^h	CMS wage index	0.2	(0.5)	0.9	(0.5)	0.3	(0.5)	-0.3
	γ_z	CON Laws			0.7	(0.2)			
	γ_n, γ_n^h	γ_1	1.3	(0.5)	0.4	(0.5)	1.3	(0.5)	
		γ_2	0.0	(0.1)			0.1	(0.1)	
		γ_3	0.5	(0.1)			0.5	(0.1)	
	ρ						0.4	(0.1)	
	Т		6	73	6	73	6	73	

Note: Coefficients and standard errors of the univariate ordered probit of UCC entry are reported in columns 1 and 2, respectively. Coefficients and standard errors for the bivariate ordered probit are reported in columns 3 and 4 for hospitals, and in columns 5 and 6 for UCCs. Column 7 reports the simulated percent change in the mean number of UCCs across markets in the bivariate model due to a standard deviation increase in that covariate (or due to setting all hospital or rural indicators to 1).

Paul Schrimpf

Introduction

Bresnahan and Reiss (1991)

Magnolfi et al. (2024) Background and Data Entry Model Results

Eliason (2021

Other applications

References

- Column (1) takes hospital entry as fixed, column (5) models hospital entry
- Column (3) as first stage
- Column (7) percent change in number UCCs from 1 standard deviation change in variables

Results

Paul Schrimpf

Introduction

Bresnahan and Reiss (1991)

Magnolfi et al. (2024) Background and Data Entry Model Results

Eliason (2021)

Other applications References

Entry Thresholds

	Univariate			Biva	riate	
			Hos	pitals	U	CCs
	coef	se	coef	se	coef	se
	(1)	(2)	(3)	(4)	(5)	(6)
Thresholds:						
$ au_1$	30.83	(1.51)	55.47	(2.90)	31.16	(1.51)
$ au_2$	37.04	(1.84)			36.24	(1.69)
$ au_3$	37.99	(1.49)			38.77	(1.46)
Ratios:						
τ_2/τ_1	1.20	(0.08)			1.16	(0.08)
τ_3/τ_2	1.03	(0.03)			1.07	(0.03)
Т	6	73	6	73	6	73

TABLE 3: Per-Firm Entry Thresholds and Ratios

Note: Table reports entry thresholds and entry ratios for UCCs from the univariate ordered probit in columns (1) and (2) and the bivariate ordered probit in columns (5)-(6). Columns (3) and (4) present the entry threshold for a monopoly hospital from the bivariate ordered probit. Entry thresholds are measured in 1,000s of people per-firm. Standard errors based on the delta method are reported in parenthesis.

Paul Schrimpf

Introduction

Bresnahan and Reiss (1991)

- Magnolfi et al. (2024) Background and Data Entry Model Results
- Eliason (2021)

Other applications

References

Entry Thresholds

- Ratios decreasing, but > 1, implies more entry increases competition, but even with 3 still have market power
- Hospitals make UCCs more competitive (next table)

Paul Schrimpf

Introduction

Bresnahan and Reiss (1991)

Magno

Results

.991)			Number of hospitals					
in et al.		<	=1	>1				
nd and Data del	Thresholds:							
	$ au_1$	30.31	(1.44)	34.91	(2.28)			
(2021)	$ au_2$	32.18	(1.87)	44.09	(3.12)			
	$ au_3$	30.97	(1.93)	44.01	(2.55)			
tions	Ratios:							
ices	τ_2/τ_1	1.06	(0.07)	1.26	(0.10)			
	$ au_3/ au_2$	0.96	(0.03)	1.00	(0.04)			
	T	4	38	2	35			

Note: Table reports entry thresholds and entry ratios for UCCs from the bivariate ordered probit conditional on the number of hospitals and evaluated at the full sample means of demographics and CMS wage index. Entry thresholds are measured in 1,000s of people per-firm. Standard errors based on the delta method are reported in parenthesis.

TABLE 4: Per-Firm Entry Thresholds and Ratios, Conditional on Number of Hospitals

Paul Schrimpf

Introduction

Bresnahan and Reiss (1991)

Magnolfi et al. (2024) Background and Data Entry Model Results

Eliason (2021)

Other application

Access to Care

TABLE 5: Per-Firm Entry Thresholds and Ratios in Demographic Subsamples

	Percent 1	ininsured	Per capita income		S	VI
	High	Low	Low	High	High	Low
Thresholds:						
$ au_1$	29.74	33.09	30.56	32.06	31.44	31.51
	(1.95)	(2.34)	(1.69)	(2.73)	(2.04)	(2.32)
$ au_2$	35.08	35.58	31.37	36.96	31.24	39.01
	(2.60)	(2.25)	(1.98)	(2.67)	(1.96)	(2.82)
τ_3	29.88	39.71	32.93	38.35	31.95	40.81
	(2.19)	(1.96)	(1.67)	(2.41)	(1.93)	(2.50)
Ratios:						
$ au_2/ au_1$	1.18	1.08	1.03	1.15	0.99	1.24
	(0.13)	(0.09)	(0.09)	(0.11)	(0.09)	(0.13)
τ_3/τ_2	0.85	1.12	1.05	1.04	1.02	1.05
	(0.04)	(0.05)	(0.03)	(0.07)	(0.04)	(0.08)
Т	336	337	337	336	336	337

Note: Table reports entry thresholds and ratios for UCCs from bivariate ordered probits estimated from subsamples of PCSAs: below median income, above median income, above median percent uninsured, below median percent uninsured, above median Social Vulnerability Index (SVI), and below median SVI. Entry thresholds are measured in 1,000s of people per-firm. Standard errors in parentheses.

Paul Schrimpf

Access to Care

Introduction

Bresnahan and Reiss (1991)

Magnolfi et al. (2024) Background and Data Entry Model Results

Eliason (2021)

Other applications

References

• Entry thresholds about the same in subsamples

Paul Schrimpf

Introduction

Bresnahan and Reiss (1991)

Magnolfi et al. (2024) Background and Data Entry Model Results

Eliason (2021)

Other applications

References

Robustness

- Market definition
- Model hospital affiliated UCCs separately

Paul Schrimpf

Introduction

Bresnahan and Reiss (1991)

- Magnolfi et al. (2024) Background and Data Entry Model Results
- Eliason (2021)

Other applications

References

Conclusions

- Growth of UCCs has expanded access to care
- Evidence that UCCs have market power
- Future work: quality, cost savings, welfare

Paul Schrimpf

Introduction

Bresnahan and Reiss (1991)

Magnolfi et al. (2024)

Eliason (2021)

Motivating Evident Model Estimation Results

Other applications

References

Section 4

Eliason (2021)

Paul Schrimpf

Introduction

Bresnahan and Reiss (1991)

Magnolfi et al. (2024)

Eliason (2021)

Motivating Evident Model Estimation Results

Other applications

References

"Price Regulation and Market Structure: Evidence from the Dialysis Industry"

• Eliason (2021), revised version of Eliason (2017)

Paul Schrimpf

Introduction

Bresnahan and Reiss (1991)

Magnolfi et al. (2024)

Eliason (2021)

Motivating Evidence Model Estimation Results

Other applications

References

- 80% of dialysis patients in Medicare
- Medicare price regulation affects:
 - Short run: quality competition
 - Longer run: entry & investment (market structure)

Paul Schrimpf

Introduction

Bresnahan and Reiss (1991)

Magnolfi et al. (2024)

Eliason (2021)

Motivating Evidence Model Estimation Results

Other applicatior

References

Dialysis Growth

Figure 1: Industry Growth

Paul Schrimpf

Introduction

Bresnahan and Reiss (1991)

Magnolfi et al. (2024)

Eliason (2021)

Motivating Evidence Model Estimation Results

Other application

References

Spatial Dispersion

Figure 2: Dialysis Centers Per Capita (65+)

Paul Schrimpf

Introduction

Bresnahan and Reiss (1991)

Magnolfi et al. (2024)

Eliason (2021)

Motivating Evidence Model Estimation

Other application:

References

Measuring Quality

$$y_{ijt} = X_{it}\beta + \mu_{jt} + \epsilon_{ijt}$$
$$Q_{jt} = \bar{X}\hat{\beta} + \hat{\mu}_{jt}$$

Paul Schrimpf

Introduction

Bresnahan and Reiss (1991)

Magnolfi et al. (2024)

Eliason (2021)

Motivating Evidence Model Estimation Results

Other application

References

Quality Variation

Table 1: Facility Quality

	Mean	St. Dev		
Unadjuste	ed Mean Outcom	es		
Survival Rate	83.01	(9.01)		
Hospitalizations (Count)	1.74	(0.56)		
Hosp. for Infection Rate	7.52	(7.45)		
Dialysis Adequacy Rate	87.91	(9.64)		
Risk-Adjusted Quality Scores				
Survival Rate	83.18	(8.15)		
Hospitalizations (Count)	1.72	(53.89)		
Hosp. for Infection Rate	6.79	(5.77)		
Dialysis Adequacy Rate	88.14	(9.50)		
Correlation between Quality Score and Logged Patient Count				
Survival Rate	0	.043		
Hospitalizations (Count)	-0	.045		
Hosp. for Infection Rate	-0	.024		
Dialysis Adequacy Rate	0	.028		

Notes. The top panel includes summary statistics for average facility-year outcomes. The middle panel includes facility-year quality scores recovered from estimating Equation 1. The bottom

Paul Schrimpf

Introduction

Bresnahan and Reiss (1991)

Magnolfi et al. (2024)

Eliason (2021)

Motivating Evidence Model Estimation Results

Other application

References

Competition Increases Quality

Table 2: Determinants of Quality, Risk-Adjusted Survival

	(1)	(2)	(3)	(4)	(5)	(6)
	OLS	OLS	OLS	IV	IV	IV
Log(Patients)	-0.654***	-0.652***	-0.723***	-1.624***	-1.470***	-2.896***
	(0.113)	(0.113)	(0.136)	(0.274)	(0.262)	(0.416)
Log(Stations)	0.637^{**}	0.720***	1.344***	1.826***	1.722***	3.413***
	(0.195)	(0.197)	(0.199)	(0.383)	(0.370)	(0.430)
Has Rival within		0.574^{**}	0.533^{*}		0.570**	1.167**
10 miles		(0.186)	(0.232)		(0.188)	(0.359)
Year FE	Y	Y	Y	Y	Y	Y
Chain FE	Ν	Ν	Y	Ν	Ν	Y
Market FE	Ν	Ν	Y	Ν	Ν	Y
Additional Controls	Ν	Ν	Υ	Ν	Ν	Y
Dependent Var Mean	83.18(pp)	83.18(pp)	83.18(pp)	83.18(pp)	83.18(pp)	83.18(pp)
First Stage F-Statistic				598.8	596.4	82.5
Observations	38,264	38,264	38,239	38,264	38,264	38,239

Notes: $^+$, * , ** and *** indicate significance at the 10%, 5%, 1% and 0.1% level, respectively. Standard errors are clustered at the facility level and shown in parentheses. An observation is a facility-year pair. Observations with a dependent variable more than three standard deviations from the mean are excluded. Additional controls include log of facility age, for-profit status, an indicator for freestanding facility, share of patients

Market entry	
Paul Schrimpf	Model
Introduction	
Bresnahan and Reiss (1991)	
Magnolfi et al. (2024)	
Eliason (2021) Motivating Evidence	Figure 3: Model Timing
Model	
Estimation	
Results	Curality Offening
Other	Information Quality Oliering
applications	
approactions	
References	Entry and Demand allocated.
	Capacity Decision Profits realized
	Fronts realized

Paul Schrimpf

Introduction

Bresnahan and Reiss (1991)

Magnolfi et al. (2024)

Eliason (2021)

Motivating Evidence

Estimation

Other applications

References

• Patient *i* chooses facility $j \in \tilde{\mathcal{J}}_i$ from firm f

$$j = \arg\max_{j \in \tilde{\mathcal{J}}_i} u_{ijf} + \epsilon_{ijf}$$

3. Demand

where $u_{ijf} = \begin{cases} g(d_{ijf}, \mathcal{I}_i) + \Gamma(\mathcal{I}_i)\mathcal{H}_{if} + \xi_{if} & \text{if } j \neq 0 \\ \lambda(\mathcal{I}_i) & \text{otherwise} \\ & \text{individual characteristics} \end{cases}$

Market shares

$$S_{jf} = \sum_{i} \underbrace{\frac{e^{u_{ijf}}}{\sum_{j' \in \mathcal{J}_i} e^{u_{ij'}f'}}}_{\equiv s_{ijf}(\mathcal{H}, \mathcal{M}, \bar{\zeta}; \beta)}$$

Paul Schrimpf

Introduction

Bresnahan and Reiss (1991)

Magnolfi et al. (2024)

Eliason (2021)

Motivating Evidence Model Estimation

Other

References

2. Quality Competition

• Firm chooses quality of its facilities

$$\max_{\mathcal{Q}_{if} \in [0, \bar{\mathcal{Q}}]} \sum_{r \in \mathcal{J}_f} \sum_{i} \left(P_i - MC_{rf}(\mathcal{H}_{rf}, v_{rf}; \alpha) \right) s_{irf}(\mathcal{H}, \mathcal{M}, \xi; \beta)$$

• Expected profits = $\tilde{\pi}_{jf}(\mathcal{Q}_{jf}^*)$

Paul Schrimpf

Introduction

Bresnahan and Reiss (1991)

Magnolfi et al. (2024)

Eliason (2021) Motivating Evidence Model Estimation

Other application

References

3. Entry & Capacity

- Firm has set of potential facilities \mathcal{J}_f
- Chooses capacity $\mathcal{K}_{rf} \ge 0$ for each potential facility
- Non-entry $\equiv \mathcal{K}_{rf} = 0$
- Capacity affects marginal costs and demand (included in \mathcal{H}_{jf})

$$\max_{\{\mathcal{K}_{jf}\}_{j\in\mathcal{J}_{f}}} \mathsf{E}\left[\sum_{r\in\mathcal{J}_{f}} \tilde{\pi}_{rf}(\mathcal{Q}_{rf}^{*}) - fc(\kappa_{rf};\gamma) + \eta_{r}^{\kappa_{rf}}\right]$$

Paul Schrimpf

Introduction

Bresnahan and Reiss (1991)

Magnolfi et al. (2024)

Eliason (2021) Motivating Evidence Model

Estimation

Other applications

References

• Estimate demand (micro-BLP)

1 Individual level multinomial logit to estimate

$$u_{ijf} = \mathcal{I}_i \beta \mathcal{H}_{jf} + \delta_{jf}$$

2 SLS with predicted patients based on geography as instruments for quality and congestion

$$\hat{\delta}_{jt} = \mathcal{H}_{jf} \alpha + \xi_{jf}$$

Demand Estimation

Paul Schrimpf

Introduction

Bresnahan and Reiss (1991)

Magnolfi et al. (2024)

Eliason (2021) Motivating Evidence Model

Estimation Results

Other application:

References

Marginal costs

- Specify linear marginal cost function, use IV on firm first order conditions
- Predicted patients based on geography as instruments for quality and congestion

Paul Schrimpf

Introduction

Bresnahan and Reiss (1991)

Magnolfi et al. (2024)

Eliason (2021) Motivating Evidence Model Estimation

Results

Other application

References

Fixed Costs

- Model gives probability of entry and capacity choice
- Estimate fixed costs parameters by Pseudo-MLE

Table 4: Demand Estimates

Market entry Paul Schrimpf

Introduction

Bresnahan and Reiss (1991)

Magnolfi et al. (2024)

Eliason (2021)

Motivating Evidence Model Estimation Results

Other application

References

First Stage: Heterogeneous Prefer	rences	First Stage: Heterogeneous Preferences					
		Coefficient					
		(Std. Err.)					
Distance		-0.2258					
		(0.0149)					
Distance Squared		0.0016					
		(0.0003)					
Distance*Pop. Density		-0.0067					
		(0.0028)					
Distance*Private Insurance		0.0106					
		(0.0064)					
Distance*Employed		0.0160					
		(0.0049)					
Quality*Private Insurance		1.3387					
		(0.6399)					
Quality*Employed		0.6680					
		(0.4435)					
Congestion*Private Insurance		0.0608					
		(0.0177)					
Congestion*Employed		0.0631					
		(0.0178)					
Stations*Private Insurance		0.0037					
		(0.0048)					
Stations [*] Employed		0.0083					
		(0.0031)					
Outside Option [*] Private Insurance		1.7547					
		(0.6382)					
Outside Option [*] Employed		1.4368					
		(0.5936)					
Second Stage: Decomposition of Mea	n Utility						
	OLS	2SLS					
Quality	-1.9075	0.4854					
•	(0.6155)	(0.1384)					
Congestion (Patients per station)	0.2024	-0.3647					
	(0.0267)	(0.1414)					
Number of Dialysis Stations	0.0096	0.0427					
	(0.0047)	(0.0097)					
For-profit	-0.2622	0.1292					
	(0.1067)	(0.2176)					
σ_{ε}	1.0894	1.0671					
	(0.1451)	(0.1313)					
Chain FEs	Y	Y					
Outside Option \times Market FEs	Y	Y					

Note: Standard errors based on 100 bottrap iterations. Distance is the geodesic distance from the centrol of each patient's 2H code to the facility. Population density is the ratio of people (in thousands) to optimist the observations patient's 2H code. Congestion is measured as the ratio of patient so that patient's the start of the start

Paul Schrimpf

Introduction

Bresnahan and Reiss (1991)

Magnolfi et al. (2024)

Eliason (2021) Motivating Evidenc Model Estimation

Results

Other applications

References

Table 5: Mean Elasticities of Demand, Selected

	All Patients	Medicare Patients	Privately Insured Patients
Distance	-0.9223	-0.9234	-0.9022
	(0.0521)	(0.0531)	(0.0542)
Quality	$\begin{array}{c} 0.3510 \\ (0.1382) \end{array}$	$0.2970 \\ (0.1301)$	$1.1595 \\ (0.1271)$
Congestion	-0.6150	-0.6228	-0.4869
	(0.2512)	(0.2484)	(0.2374)

Notes: Standard errors based on 100 bootstrap iterations.

Paul Schrimpf

Introduction

Bresnahan and Reiss (1991)

Magnolfi et al. (2024)

Eliason (2021)

Motivating Evidence Model Estimation Results

Other applicatior

References

	Coefficient
	(Std. Err.)
Quality	$15,\!256.4$
	(5, 323.1)
$Quality^2$	-8,338.4
	(2,769.3)
Congestion	5,805.5
	(2,015.8)
Chain	436.5
	(381.2)
Congestion*Quality	-9,123.0
	(2,606.6)
${\rm Congestion}^*{\rm Quality}^2$	5,320.0
	(2,673.4)
Chain [*] Quality	-2,063.0
	(1,085.8)
Chain [*] Quality ²	1,431.0
	(737.6)
Constant	8,956.0
	(1,967.8)
σ_{ν}	$12,\!143.0$
	(82.1)

Notes: Standard errors based on 100 bootstrap iterations.

Table 6: Marginal Cost Estimates

Table 7: Fixed Cost Estimates

Paul Schrimpf			
		Estimates	(Dollars)
Introduction		(1)	(2)
Bresnahan and Reiss (1991)	Constant	956,591	
Magnolfi et al.		(358, 852)	
Eliason (2021)	Chain	$-254,\!900$	$-481,\!388$
Motivating Evidence		(108, 932)	(211, 135)
Model Estimation	Stations	81,515	$56,\!588$
Results		(3, 246)	(3,884)
other applications	Stations*Chain	-24,711	-14,106
References		(4, 112)	(3,238)
	Log(Median Income of ZIP)		$1,\!640,\!584$
			(65, 268)
	$\sigma_n \kappa$	1,369,986	856,104
		(325, 412)	(392, 979)
	Market Dummies	Ν	Y
	Standard errors based on tions.	100 boots	trap itera-

Paul Schrimpf

=

 Δ Welfare - Δ Expenditures (\$ Millions)

Cost Per Life-Year Saved (\$ Millions)

Expected Number of Life-Years Saved

Bresnahan and Reiss (1991)

Magnolfi et al.

Motivating Evidence Model Results

References

	Medicare Rate Increases									
	5%		10%		15%		100%			
	Partial (1)	Full (2)	Partial (3)	Full (4)	Partial (5)	Full (6)	Partial (7)	Full (8)		
			Percent C	bange,	Relative t	o Baselii	ne			
Number of Entrants	-	5.81	-	11.13	-	14.17	-	72.33		
Total Capacity	-	9.56	-	15.52	-	19.89	-	115.54		
Average Facility Congestion, Weighted by Patients	-0.20	-4.91	0.09	-9.84	0.24	-12.13	1.33	-45.84		
			Level Ch	anges, i	terative to	5 Daseim	e			
Average Risk Adj. Survival, Weighted by Patients	0.98	1.32	2.10	2.63	3.01	3.80	14.85	21.84		
Expenditures (\$ Millions)	417	417	833	833	1,250	1,250	8,335	8,335		
Total Welfare (\$ Millions)	335	442	679	1,039	1,020	1,489	6,791	$7,\!686$		
Producer Surplus (\$ Millions)	332	267	670	716	1,007	1,075	6,715	5,938		
Consumer Surplus (\$ Millions)	3	175	10	323	13	415	76	1,748		
Change in CS from:										
Distance	0	35	-2	73	-3	110	-16	316		
Congestion	0	82	-1	143	-3	177	-10	636		
Quality	4	9	13	18	18	27	90	150		

-82

3.364

0.124

-649

75,023

0.111

Expenditures include both private and Medicare spending. The components of the change in consumer surplus-distance, congestion, and quality-do not necessarily add up to the overall change in consumer surplus. Resorting of patients may result in changes beyond these factors.

26

4,535

0.092

-154

7,216

0.116

205

9,018

0.092

-230

10,328

0.121

239

13,048

0.096

-1.614

51,011

0.163

Paul Schrimpf

Introduction

Bresnahan and Reiss (1991)

Magnolfi et al. (2024)

Eliason (2021) Motivating Evidence Model Estimation Results

Other application

References

Table 9: Counterfactual	: Medicare For	All Dialysis Patients
-------------------------	----------------	-----------------------

	M4A Dialysis		M4A Dialysis, Plus		
	Partial (1)	Full (2)	Partial (3)	Full (4)	
	Percent	Change,	Relative to	Baseline	
Number of Entrants	-	-5.94	-	0.73	
Total Capacity	-	-7.56	-	0.79	
Average Facility Congestion, Weighted by Patients	-0.28	3.44	0.06	-2.33	
	Level C	hanges, I	Relative to	Baseline	
Average Risk Adj. Survival, Weighted by Patients	-5.29	-5.01	-3.92	-3.20	
Expenditures (\$ Millions)	-577	-577	0	0	
Total Welfare (\$ Millions)	-462	-627	5	174	
Producer Surplus (\$ Millions)	-435	-451	26	174	
Consumer Surplus (\$ Millions)	-27	-175	-20	-0.3	
Change in CS from:					
Distance	10	-50	7	18	
Congestion	7	-45	6	25	
Quality	-36	-33	-25	-23	
Δ Welfare - Δ Expenditures (\$ Millions)	15	-497	5	174	
Expected Number of Life-Years Saved	-18,189	-17,211	-13,450	-11,011	
Savings Per Life-Year Lost (\$ Millions)	0.032	0.034	0.000	0.000	

Expenditures include both private and Medicare spending. The broken-out components of the change in consumer surplus—distance, congestion, and quality—do not add up to the overall change in consumer surplus. Resorting of patients may result in changes beyond these factors.

Paul Schrimpf

Introduction

Bresnahan and Reiss (1991)

Magnolfi et al. (2024)

Eliason (2021)

Other applications

References

Section 5

Other applications

Paul Schrimpf

Introduction

Bresnahan and Reiss (1991)

Magnolfi et al. (2024)

Eliason (2021)

Other applications

References

• Supermarkets:

- Bronnenberg, Dhar, and Dubé (2009)
- Jia (2008)
- Ellickson (2007)
- Airlines:
 - Berry (1992)
 - Ciliberto and Tamer (2009)
- Radio: Sweeting (2009)
- Urgent care: Magnolfi et al. (2024)

Other applications
Paul Schrimpf

Introduction

Bresnahan and Reiss (1991)

Magnolfi et al. (2024)

Eliason (2021)

Other applications

References

Aguirregabiria, Victor. 2021. "Empirical Industrial Organization: Models, Methods, and Applications." URL http:

//aguirregabiria.net/wpapers/book_dynamic_io.pdf.

Aradillas-López, Andrés. 2020. "The Econometrics of Static Games." Annual Review of Economics 12 (1):135–165. URL https://doi.org/10.1146/ annurev-economics-081919-113720.

Baumol, WJ, JC Panzar, and RD Willig. 1982. *Contestable markets and the theory of industry structure*. New York [etc.]: Harcourt Brace Jovanovich.

Berry, S.T. 1992. "Estimation of a Model of Entry in the Airline Industry." *Econometrica: Journal of the Econometric Society* :889–917URL

http://www.jstor.org/stable/10.2307/2951571.

Paul Schrimpf

Introduction

Bresnahan and Reiss (1991)

Magnolfi et al. (2024)

Eliason (2021)

Other applications

References

Bresnahan, Timothy F. and Peter C. Reiss. 1991. "Entry and Competition in Concentrated Markets." *Journal of Political Economy* 99 (5):pp. 977–1009. URL http://www.jstor.org/stable/2937655.

Bronnenberg, B.J., S.K. Dhar, and J.P.H. Dubé. 2009. "Brand history, geography, and the persistence of brand shares." *Journal of Political Economy* 117 (1):87–115. URL http://www.jstor.org/stable/10.1086/597301.

Ciliberto, F. and E. Tamer. 2009. "Market structure and multiple equilibria in airline markets." *Econometrica* 77 (6):1791-1828. URL http://onlinelibrary.wiley. com/doi/10.3982/ECTA5368/abstract.

Eliason, P. 2021. "Price Regulation and Market Structure: Evidence from the Dialysis Industry." Tech. rep., Working Paper. URL https://www.dropbox.com/s/ 6q4ya5051wxuvlg/ESRD_Eliason.pdf?dl=0.

Paul Schrimpf

Introductior

Bresnahan and Reiss (1991)

Magnolfi et al. (2024)

Eliason (2021)

Other applications

References

Eliason, Paul J. 2017. "Market Power and Quality: Congestion and Spatial Competition in the Dialysis Industry." URL https:

//api.semanticscholar.org/CorpusID:44200870.

Ellickson, P.B. 2007. "Does Sutton apply to supermarkets?" The RAND Journal of Economics 38 (1):43-59. URL http://onlinelibrary.wiley.com/doi/10.1111/j. 1756-2171.2007.tb00043.x/abstract.

Jia, P. 2008. "What Happens When Wal-Mart Comes to Town: An Empirical Analysis of the Discount Retailing Industry." *Econometrica* 76 (6):1263–1316. URL http://onlinelibrary.wiley.com/doi/10.3982/ ECTA6649/abstract.

Paul Schrimpf

Introduction

Bresnahan and Reiss (1991)

Magnolfi et al. (2024)

Eliason (2021)

Other applications

References

Kline, Brendan, Ariel Pakes, and Elie Tamer. 2021. "Chapter 5
- Moment inequalities and partial identification in
industrial organization." In Handbook of Industrial
Organization, Volume 4, Handbook of Industrial
Organization, vol. 4, edited by Kate Ho, Ali Hortaçsu, and
Alessandro Lizzeri. Elsevier, 345–431. URL
https://www.sciencedirect.com/science/article/
pii/S1573448X21000054.

Levin, Jonathan. 2009. "Entry and market structure." Lecture notes. URL http://www.stanford.edu/~jdlevin/Econ% 20257/Entry%20and%20Market%20Structure.pdf.

Magnolfi, Lorenzo, Corina Mommaerts, Natalia Serna, and Christopher Sullivan. 2024. "The Rise of Urgent Care Centers: Implications for Competition and Access to Health Care." *Journal of Political Economy Microeconomics* forthcoming (0):forthcoming. URL https://doi.org/10.1086/727821.

Paul Schrimpf

Introduction

Bresnahan and Reiss (1991)

Magnolfi et al. (2024)

Eliason (2021)

Other applications

References

Schmalensee, Richard. 1992. "Sunk Costs and Market Structure: A Review Article." The Journal of Industrial Economics 40 (2):125–134. URL http://www.jstor.org/stable/2950504.

Starc, Amanda. 2014. "Insurer pricing and consumer welfare: evidence from Medigap." *The RAND Journal of Economics* 45 (1):198–220. URL

http://dx.doi.org/10.1111/1756-2171.12048.

Sutton, J. 1991. Sunk costs and market structure: Price competition, advertising, and the evolution of concentration. MIT press.

Sweeting, Andrew. 2009. "The Strategic Timing Incentives of Commercial Radio Stations: An Empirical Analysis Using Multiple Equilibria." *The RAND Journal of Economics* 40 (4):pp. 710–742. URL http://www.jstor.org/stable/25593735.