
Reproducing Grieco & McDevitt (2017)

Paul Schrimpf

Due: February 6th, 2018

In this problem set, we will attempt to reproduce the main results of Grieco and McDevitt
(2017).

Problem 1: http://tryr.codeschool.com/ is an interactive introduction to R. Please work
through it if you have not used R before. If you’re already familiar with R, then you can skip
this.

If you’re new to R, here is some advice about additional tools to use. R itself comes with either
no GUI nor text-editor (on Linux) or a basic GUI with a limited text editor, (on Windows and
I’d guess on Mac, but I don’t know). There are numerous programs that provide a nicer way of
working with R. The most popular is RStudio. It gives nice syntax highlighting, easier debugging,
etc; it is somewhat similar to Matlab’s GUI. A potentially useful, but not essential, tool for this
assignment is the rmarkdown package. It lets you combine R code and text into a single document
and produces nice looking output in multiple formats. I often use it for preliminary data work
that I’m just looking at or sharing with coauthors and still making changes frequently. For more
complete papers, I prefer to keep my code and the text of the paper separate.

1 Explore the data
I downloaded the data for this problem set from https://dialysisdata.org/content/dialysis-facility-report-data.
As in Grieco and McDevitt (2017) the data comes from Dialysis Facility Reports (DFRs) created
under contract to the Centers for Medicare and Medicaid Services (CMS). However, there are
some differences. Most notably, this data covers 2006-2014, instead of 2004-2008 as in Grieco and
McDevitt (2017).

We will begin our analysis with some exploratory statistics and figures. There are at least two
reasons for this. First, we want to check for any anomalies in the data, which may indicate an error
in our code, our understanding of the data, or the data itself. Second, we should try to see if there
are any striking patterns in the data that deserve extra attention.

The script downloadDialysisData.R downloads, combines, and cleans the data from https://
dialysisdata.org/content/dialysis-facility-report-data. You can run this script yourself
if you’d like, but it will take some time and download 825M of data. The result of the script is
dialysisFacilityReports.Rdata, an R data file containing most of the variables used by Grieco and
McDevitt (2017).

Load the data into R by typing
load("dialysisFacilityReport.R")

1

http://tryr.codeschool.com/
http://rmarkdown.rstudio.com/
https://dialysisdata.org/content/dialysis-facility-report-data
https://bitbucket.org/paulschrimpf/econ565/src/master/assignments/production-R/dialysis/downloadDialysisData.R
https://dialysisdata.org/content/dialysis-facility-report-data
https://dialysisdata.org/content/dialysis-facility-report-data
http://faculty.arts.ubc.ca/pschrimpf/565/dialysisFacilityReports.Rdata

1. EXPLORE THE DATA

You could enter this directly into R’s command line, but it is always better to write your commands
in a script (or rmarkdown document) and run the script. You are bound to make mistakes, and it
will be easier to fix them if you save your commands in a file instead of entering them one by one.

Your workspace should now contain a data frame named “dialysis.” Data frames are how R
stores data. A data frame is basically a matrix where the columns represent variables and the rows
are observations. The variables/columns have names. To list the names of a data frame, run

names(df)

The meanings of these variables are listed in Table 1.
The raw data contains information on many variables in each of the previous 4 years. Staffing

variables with no suffic are staff as of January 31, year as reported in year + 1. Staffing variables
with “.l1” are staff as of January 31, year - 1 as reported in year + 1. If there were no reporting
errors, the .l1 variables would equal the lag of the ones without .l1. However, you might find that
this is not the case.

As explained in downloadDialysisData.R, data collected in year Y has information on most
variables in years Y-1, Y-2, Y-3, and Y-4. However, for some variables and survey years, only
information in years Y-2, Y-3, Y-4 is included. For such variables, at year Y-1, I use the value
reported in survey year Y if it is available. If not, I use the value reported in survey year Y+1.
The variables ending with “.p3” instead use the convention to use use Y-2 values if available and
the Y-1 ones if not. Again, if there were no reporting errors the variables with and without .p3
would be the same.

Not all variables used Grieco and McDevitt (2017) are included here. Some variables will need
to be transformed to be comparable to what is in the paper. For example, net investment in stations
in year t is the difference between the number of stations in year t + 1 and year in t.

#' Create lags for panel data.
#'
#' This function creates lags (or leads) of panel data variables.
#' Input data should be sorted by i, t --- e.g.
#' df <- df[order(i,t),]
#' @param x Vector or matrix to get lags of.
#' @param i unit index
#' @param t time index
#' @param lag How many time periods to lag. Can be negative if leading
#' values are desired.
#' @return Lagged copy of x.
panel.lag <- function(x, i, t, lag=1) {

if (!identical(order(i,t),1:length(i))) {
stop("inputs not sorted.")

}
if (is.matrix(x)) {

return(apply(x,MARGIN=2,FUN=function(c) { panel.lag(c,i,t,lag) }))
}
if (length(i) != length(x) || length(i) != length(t)) {

stop("Inputs not same length")
}
if (lag>0) {

x.lag <- x[1:(length(x)-lag)]
x.lag[i[1:(length(i)-lag)]!=i[(1+lag):length(i)]] <- NA
x.lag[t[1:(length(i)-lag)]+lag!=t[(1+lag):length(i)]] <- NA
val <- (c(rep(NA,lag),x.lag))

} else if (lag<0) {
lag <- abs(lag)
x.lag <- x[(1+lag):length(x)]
x.lag[i[1:(length(i)-lag)]!=i[(1+lag):length(i)]] <- NA
x.lag[t[1:(length(i)-lag)]+lag!=t[(1+lag):length(i)]] <- NA

2

1. EXPLORE THE DATA

Table 1: Variable definitions
Variable Definition
provfs provided identifier
year year of data
city city of provider
name provider name
state state of provider
network network number∗
chain.name name of chain if provider is part of one
profit.status whether for profit or non-profit
comorbities average number of patient comorbidities
hemoglobin average patient hemoglobin level
std.mortality standardized mortality ratio
std.hosp.days standardized hospitalization days
std.hosp.admit standardized hospitalization admittance rate
pct.septic percent of patients hospitalized due to septic infection
n.hosp.admt number of hospitalizations
stations number of dialysis stations
total.staff total staff
dieticiansFT full-time renal dieticians
dieticiansPT part-time renal dieticians
nurseFT full-time nurses (> 32 hours/week)
nursePT part-time nurses (< 32 hours/week)
ptcareFT full-time patient care technicians
ptcarePT part-time patient care technicians
social.workerFT full-time social workers
social.workerPT part-time social workers
patient.months number of patient-months treated during the year
pct.fistula the percentage of patient months in which the patient received dialysis through arteriovenous (AV) fistulae
pct.female percent of female patients
patient.age average age of patients
patient.esrd.years average number of years patients have had end stage renal disease
treatment.type types of treatment provided at facility
inspect.date date of most recent inspection
inspect.result result of most recent inspection
inspect.cfc.cites number of condition for coverage deficiencies in most recent inspection
inspect.std.cites number of standard deficiencies in most recent inspection
days.since.inspection days since last inspection

∗ I am unsure of the meaning of these variables. You could try checking the data guides and/or dictionaries on
https://dialysisdata.org/content/dialysis-facility-report-data to find out.

3

https://dialysisdata.org/content/dialysis-facility-report-data

1. EXPLORE THE DATA

val <- (c(x.lag,rep(NA,lag)))
} else { # lag=0

return (x)
}
if (class(x)=="Date" & class(val)=="numeric") {

stopifnot(0==as.numeric(as.Date("1970-01-01")))
val <- as.Date(val, origin="1970-01-01")

}
return(val)

}
dialysis <- dialysis[order(dialysis$provfs, dialysis$year),]
dialysis$change.stations <- panel.lag(dialysis$stations, dialysis$provfs,

dialysis$year, lag=-1) - dialysis$stations

Net hiring can similarly be created. State inspection rates can be created as
dialysis$inspected.this.year <- (dialysis$days.since.inspection >=0 &

dialysis$days.since.inspection <365)
dialysis$state.inspect.rate <- with(dialysis,

ave(inspected.this.year,state,
year, FUN=function(x) {mean(x,na.rm=TRUE)})

)

Chain dummies and number of other facilities in the same city could also be created.

4

1. EXPLORE THE DATA

1.1 Descriptive statistics
Show some summary statistics with

summary(dialysis)

The builtin summary command is easy to use, but it does not quite provide all the information
that we might want. For example, it does not show the standard deviation of each variable. We
can calculate the standard deviation of a single variable with

sd(dialysis$patient.months, na.rm=TRUE)

or, we could calculate the standard deviation of all variables using the apply command,
apply(dialsys, 2, FUN=function(x) { sd(x, na.rm=TRUE) })

We can use the apply command to create something similar to part of Table 1 of Grieco and
McDevitt (2017).

dialysis$for.profit <- dialysis$profit.status=="For Profit"
var.names <- c("days.since.inspection","for.profit")
tab1 <- t(apply(dialysis[,var.names], 2,

function(input) {
x <- as.numeric(input)
c(mean(x,na.rm=TRUE), sd(x,na.rm=TRUE), sum(!is.na(x)))

}))
colnames(tab1) <- c("Mean", "St. Dev.", "N")
tab1

There are multiple R packages for converting R matrices (like tab1) into a nicely formatted table.
The stargazer package provides latex and html tables. Install it by typing

install.packages("stargazer")

You only need to install it once, but you need to load it in R session before you use it. Load it with
library(stargazer)

You could make a latex table with
stargazer(tab1,type="latex")

There are other packages for other formats. Here is a list of a few.

Problem 2: Create a table or tables containing similar information as Tables 1, 2, and 3 of
Grieco and McDevitt (2017). Not all variables from the paper are available here, but include
what you can. You could also choose to display additional summary statistics or variables.
Comment on any large differences from the paper or other anomalies.

I did not make any intentional mistakes while creating the dialysis data frame from the raw
data in the dialysis facility reports, but I am also not certain that there are not errors or omis-
sions. If you suspect there is a problem, you can look at the downloadDialysisData.R code and
the documentation at https://dialysisdata.org/content/dialysis-facility-report-data
to figure out what might be wrong, and change downloadDialysisData.R to fix the problem.

1.2 Descriptive plots
Let’s make some plots of the data. Here’s a histogram of patient months

hist(dialysis$patient.months)

Here’s a scatter plot of total staff and patient months

5

http://rmarkdown.rstudio.com/lesson-7.html
https://dialysisdata.org/content/dialysis-facility-report-data

2. PRODUCTION FUNCTION ESTIMATION

plot(x=dialysis$total.staff, y=dialysis$patient.months)

The builtin R plotting commands are convenient, but the ggplot2 package can create nicer looking
figures. Creating nicer figures is not without a cost; the syntax for ggplot2 is far more verbose than
the builtin plotting commands.

The following uses ggplot2 to show the state inspection rates vs year.
library(ggplot2) ## install.packages("ggplot2")
plot state inspection rates vs year
fig.df <- aggregate(inspected.this.year ~ state*year, data=dialysis , FUN=mean)
fig <- ggplot(data=fig.df, aes(x=year, y=inspected.this.year,

colour=state)) +
geom_point() +
theme_minimal()

print(fig)

The plotly package can convert ggplot2 figures into interactive webpages. Among other things, it
lets you hover over any point in a scatter plot and see the underlying data.

library(plotly) ## instack.packages("plotly")
ggplotly(fig)

Problem 3: Create scatter plots of output, labor, capital, and quality. Consider creating other
exploratory plots as well. Try to be creative. Are there any strange patterns or other obvious
problems with the data?

1.3 Infection rate and incentive shifters
The command for regression in R is “lm”, which stands for linear model. For fixed effects regression,
there is “felm”. Here’s an example:

library(lfe)
tab4.col1 <- felm(pct.septic ~ I(days.since.inspection/365) +

patient.age + pct.female + patient.esrd.years + pct.fistula +
comorbidities + hemoglobin | provfs, clustervar="provfs",

data=dialysis)
summary(tab4.col1)

Problem 4: Reproduce results similar to table 4 of Grieco and McDevitt (2017). Not all
columns with be reproducible since our data does not have referrals, or HSAs. Comment on
notable differences.

2 Production function estimation

Problem 5: Reproduce columns 2,3, 5, and 6 of table 5. Use the lm() command for OLS and
felm() for fixed effects.

Problem 6: Estimate α. I recommend using a polynomial to approximate the control function.
You can then estimate α from an IV regression. For example,

Create quality measure

6

2. PRODUCTION FUNCTION ESTIMATION

dialysis$quality <- -residuals(lm(pct.septic ~ pct.fistula +
pct.female + patient.age +
patient.esrd.years + hemoglobin +
comorbidities ,

data=dialysis , na.action=na.exclude))

poly() does not work well with NA's so subset the data accordingly
inc <- with(dialysis,stations >0 & labor>0 & patient.months >0 & hiring

!= 0 & !is.na(stations) & !is.na(labor) & !is.na(hiring) &
invest==0 & !is.na(std.mortality))

deg.phi <- 3
deg.iv <- 3
iv1 <- felm(log(patient.years) ~

I(hiring >0)*(poly(log(stations), log(labor), hiring,
state.inspect.rate, degree=deg.phi))*(for.profit +

comp.factor)
| 1 | (quality ~ std.mortality) | provfs,
data=subset(dialysis ,inc))

alpha <- coef(iv1)[grep("quality",names(coef(iv1)))]
Phi.step1 <- iv1$fitted.values - alpha*subset(dialysis ,inc)$quality
dialysis$Phi <- NA
dialysis[names(Phi.step1),"Phi"] <- Phi.step1

You may want to change some aspects of this specification to better match Grieco and McDevitt
(2017).

If you’d prefer, you can instead use the 3-step procedure based on Robinson (1988) that
Grieco and McDevitt (2017) describe. This procedure first partials out the control function,
and then estimates an IV regression using the residuals. There are multiple R packages for
local linear regression. I like the “np” package, but beware that it will be somewhat slow for
a dataset this large.

Problem 7: Estimate β. To do so, you most write an function that for a given β returns the
objective function. You then minimize this function. To compute η given β = b, you could do
the following:

eta.func <- function(b,alpha,df,degree) {
bx <- with(df,log(stations)*b[1] + log(labor)*b[2])
omega <- df$Phi - bx
omega.lag <- panel.lag(omega,i=df$provfs,t=df$year)
yhat <- with(df,log(patient.years) - alpha*quality - bx)
tmp <- data.frame(yhat=yhat,omega.lag=omega.lag)
rownames(tmp) <- rownames(df)
eta <- residuals(lm(yhat ~ poly(omega.lag,degree=degree),

na.action=na.exclude,
data=subset(tmp, is.finite(yhat) &

is.finite(omega.lag)))
)

tmp$eta <- NA
tmp[names(eta),"eta"] <- eta
return(tmp$eta)

}

To minimize your objective function, you can use the nloptr package.
library(nloptr)

7

REFERENCES

obj <- function(b) {
You have to write the body of this function

}

nloptr(x0=c(0.2,0.2), eval_f=obj, opts=list(algorithm="NLOPT_LN_BOBYQA",
print_level=3))

You may want to try changing algorithms and/or initial values

Optimization algorithms can fail and are often sensitive to initial values. Since we are mini-
mizing a function of two variables, it may be helpful to plot the objective.

library(rgl) ## For 3-d plots

bk <- seq(0,0.8,length.out=15)
bl <- seq(0,0.8,length.out=15)
grid <- expand.grid(b1=bk,

b2=bl)
grid$fval <- apply(grid,1,obj)

zlim <- range(grid$fval,na.rm=TRUE)
zlen <- zlim[2] - zlim[1] #+ 1
colorlut <- terrain.colors(100,alpha=1) # height color lookup table
col <- colorlut[floor(100*((grid$fval-zlim[1])/zlen))+1] # assign colors to

heights for each point
persp3d(bk, bl, matrix((grid$fval),nrow=length(bk),ncol=length(bl)),

xlab="bk",ylab="bl",zlab="fval", color=col,
alpha=0.8, shiniess=128)

Comment on your results. If your estimates are very different than those in Grieco and
McDevitt (2017), speculate as to why. Is it the different data? The changes in estimation
details? A bug in your code? Describe how you could isolate the source of the difference.

References
Grieco, Paul LE and Ryan C McDevitt. 2017. “Productivity and Quality in Health Care: Ev-

idence from the Dialysis Industry.” Review of Economic Studies (forthcoming) URL http:
//www.restud.com/wp-content/uploads/2016/08/MS17933manuscript.pdf.

8

http://www.restud.com/wp-content/uploads/2016/08/MS17933manuscript.pdf
http://www.restud.com/wp-content/uploads/2016/08/MS17933manuscript.pdf

	Explore the data
	Descriptive statistics
	Descriptive plots
	Infection rate and incentive shifters

	Production function estimation

