DYNAMIC DECISION MODELING: REPLICATION OF RUST AND ROTHWELL (1995)

PAUL SCHRIMPF

This assignment will attempt to replicate the result of ().

Problem 1: Start by reading (). You may also want to read the very related
(). There is nothing to hand in for this question.

Problem 2 (Explore the data): The file loadRRdata.R downloads Rust and Rothwell’s data, loads
it into R, and creates the state and action variables described in the paper. To check that the data
is correct, reproduce Table I and Figures 3, 4, and 7. If you’d like you could also try to recreate
some of the other figures from either () or ().

There are many ways to create Table I. You could use the data.table package. You could also
use the “aggregate” function. For example, to create the first three rows:

df <- plantData

df$percent.time.operating <- df$hrs.operating/df$hrs.total

df$percent.time.refueling <- df$hrs.refuel/df$hrs.total

df $percent.time.forced.out <- df$hrs.forced.out/df$hrs.total

df$percent.time.planned.out <- df$hrs.plan.out/df$hrs.total

df$era <- "1975-79"

df$eral[df$year>=80] <- "1980-83"

df$eral[df$year>=84] <- "1984-93"

tabl <- aggregate(. ~ era, df[,c("era", "percent.time.operating",
"percent.time.refueling", "percent.time.forced.out",
"percent.time.planned.out")], FUN=mean)

I suggest using ggplot2 to create the figures. For example, for Figure 3,

fig3 <- ggplot(data=aggregate(. ~ year, plantData, mean),
aes (x=year ,y=num.forced.out)) + geom_line()

If the results do not match the paper, comment on whether you think the differences are impor-
tant. You could also double check the loadRRdata.R code for whether all the variables are being
defined correctly. I did not make any deliberate mistakes, but I may have overlooked something.

Problem 3 (Transition probabilities): The first step in estimating the dynamic model is to estimate
the state transition probabilities, which are denoted by p(x’|x,a,®) in the paper. The details of
how this is done are described more clearly in () than in

(). The transitions of duration (d; in their paper, duration in my code) and spell type (r;
in their paper, spelltype in my code) are deterministic. The only thing that is stochastic is the
signal received by the power plant operator (f; in their paper, npp.signal in my code). If a plant
is currently refueling, it can only go back to operating if it does not receive a “continue refueling”
signal (fy = 2 or npp.signal=cont.refuel). This happens with probability p,(x). In the paper
they allow py, to depend on the duration of the current refueling spell and the age of the power
plant. We will ignore age to simplify. The timing of decisions is as follows:

e Period begins state is (r¢,d;). The signal, f+ and shocks €; are observed
e Action, a;, is chosen based on signal, shocks, and state
e Next state, (7¢41,d¢+1), is determined based on action

Date: Due: March 6th, 2018.

https://bitbucket.org/paulschrimpf/econ565/src/master/assignments/rustRothwell1996/loadRRdata.R

DYNAMIC DECISION MODELING: REPLICATION OF RUST AND ROTHWELL (1995)

e Proceed to time t +1

loadRRdata.R follows this timing convention.

Forced outage signals can occur next period during either spell type, unless the current signal is
“continue refueling” and the current spell is “refueling.” We will estimate the probability of a forced
outage signal given the duration of the current spell using a logit. Be careful with your treatment
of what () call “major problem spells” (see pages 2 and 47).

The R command for estimating a logit is glm, which stands for generalized linear model. The
following code estimates the probability of a forced signal and then plots the results.

estimate P(forced outage | duration)
pof.glm <- glm((npp.signal=="forced.outage") ~ as.factor(dur.cens),
family=binomial (link=logit) ,
data=subset (plantData ,npp.signal!="cont.refuel"))
plot estimated probability along with 957 confidence bands
md <- max(subset(plantData,npp.signal!="cont.refuel")$dur.cens)
df <- data.frame(dur.cens=1:md)
tmp <- predict(pof.glm,newdata=df,type="response", se.fit=TRUE)
df$p <- tmp$fit
df$se.p <- tmp$se.fit
df$lo <- df$p - df$se.p*1.96
df$hi <- df$p + df$se.p*x1.96
figl0.of <- ggplot(data=df, aes(x=dur.cens, y=p)) +
geom_line() + geom_line(aes(y=lo),linetype="dashed") +
geom_line (aes(y=hi),linetype="dashed")
rm(df , tmp)

This code allows p,f(d) to be a completely flexible function of d (the as.factor(dur.cens) puts
in dummies for each duraction length). Based on (), it looks like Rust and
Rothwell specified p,¢(d) to be a quadratic function of d. You can choose to specify p,r(d) however
you think is best.

(1) Similarly estimate py,(d). For this you will only want to use the observation when the spell
type is "refueling” and the outcome is getting a signal other than ”cont.refuel.”

Problem 4 (Calculating the likelihood): Equations (4) and (5) of () are the
key ingredients in the likelihood. Equation (4) gives the conditional choice probabilities implied by
the model given the choice-specific value function. Equation (5) defines the choice specific value
function. Equation (5) is

vt(x,a)zu(x,a,¢)+ﬁ/log[Y, exp(oa(x,a)| pldx'|x,a,¢) (1)

a'cA(x")
To calculate this we need to:

e Find the flow utility given a state, x, actions a, and parameters ¢.
o Take the sum over feasible actions in a given state to calculate) yca(x)
e Take the sum over states that are reachable given action a and state x to calculate the
integral
e Use our estimates of py,(d) and po¢(d) to calculate p(dx’|x,a,)
You may choose to organize your code however you would like. I suggest writing a function that
given ¢ calculates a number of states X number of actions matrix of u(x,a;¢). Something like:

flow.utility <- function(phi) {
u <- matrix(0,nrow=n.states,ncol=n.actions)
colnames (u) <- levels(plantData$action)
Add code to calculate u

return (u)

DYNAMIC DECISION MODELING: REPLICATION OF RUST AND ROTHWELL (1995)

}

For the value function, I would write a function that returns a T x number of states X number

of actions array that contains the choice specific value function. The function could be something
like:

Calculate choice specific value function
v(t,x,a) = u(x,a) + beta*E[max_{a'} v(t+1,x',a') + e(a') | x, al
choice.value <- function(u, discount, p.x, T) {

v <- array(dim=c(T,nrow(u),ncol(u)))

Add code to calculate v

return (v)

}

Given the above two functions, the likelihood can be calculated as

likelihood <- function(phi) {
u <- flow.utility(phi)
v <- choice.value(u, discount, P, 480)
#v <- choiceValue(u,feasible.action, discount, P, 480)
sumExpV <- matrix (NA,nrow=dim(v) [1] ,ncol=dim(v)[2]) # T by S
for(t in 1:dim(v)[1]) {
sumExpV[t,] <- rowSums(exp(v[t,,])*feasible.action)
}
ccp <- exp(v[cbind(plantData$age, plantData$state.index,
plantData$action.index)]) /
sumExpV[cbind (plantData$age,plantData$state.index)]
return(sum(log(ccp) ,na.rm=TRUE))
}

For organizing states and actions into array indices, it is useful to assign each state vector and
combination of actions a scalar index. Actions are already a scalar, so it’s easy for them, but states
are a vector so some works is needed. The following code implements a mapping from state vector
to indices and vice-versa. It may be useful for writing the flow.utility and choice.value functions.

Given vector of variables that define a state, create a function
that returns an index for each unique combination of them, and a
function that given an index returns a state vector.
The two resulting functions are inverses of one another
vector.index.converter <- function(data, state.vars) {
nv <- rep(NA,length(state.vars))
state.levels <- list()
for (s in 1:length(state.vars)) {
state.levels[[s]] <- sort(unique(datal,state.vars[s]]))
nv[s] <- length(state.levels[[s]])
}
si <- function(state) {
stopifnot (length(state)==1length(nv))
sn <- as.numeric(state)
fac <- 1
index <- 0
for (i in 1:length(av)) {
index <- index + (sn[i]-1)=*fac
fac <- fac*nvl[i]
}

return(index+1)

sv <- function(index) {

DYNAMIC DECISION MODELING: REPLICATION OF RUST AND ROTHWELL (1995)

stopifnot(index<=n.states)
state <- datal[l,state.vars]
1i <- rep(NA,length(state.vars))
fac <- prod(av)
index <- index - 1
for (i in 1:length(nv)) {
1i[i] <- index %% nv[i]l + 1
index <- index %/% nv[il
state[[i]] <- state.levels[[i]]1[1i[ill]
}
state[[1]] <- state.levels[[1]][1i[1]]
return(state)
}
return(list (index=si, vector=sv))

}

state.fn <- vector.index.converter(plantData,state.vars)
action.fn <- vector.index.converter (plantData, action.vars)

state.fn$vector(i) returns a state vector with index i
state.fn$index(state) returns index for state vector

(1) Check the value function by verifying that the choice specific value varies sensibly with the
state and action. You can use the value of ¢ estimated by Rust and Rothwell. (Their esti-
mates include month dummies, but we will leave them out). You should recreate something
like figures 13 and 14.

(2) Your initial code for the likelihood function might be very slow. To identify what part of
the code is taking the most time, we can use R’s profiler.

Rprof ("rrLike.prof", line.profiling=TRUE) # start the profiler
likelihood (phi.post)
Rprof (NULL) # stop the profiler

summaryRprof ("rrLike.prof") # show the results

What part of the likelihood function is slow? Can you speed it up? https://csgillespie.
github.io/efficientR/performance.html and https://www.r-bloggers.com/strategies-to-speedu
provide some good suggestions for speeding up R code.
o When all else fails, time consuming portions of R code can be rewritten in C++,

which can be much faster. A speedup of 100x is not unusual. I wrote a version of the

choice.value function in C++ in the file choiceValue.cpp. You need not understand this

code. To compile the code on Windows, you must first install (separately not as an R

package) the Rtools program. The following code snipper compiles the C++ code and

makes it callable from R.

library (Rcpp)
Sys.setenv (PKG_CXXFLAGS="-03")
sourceCpp ("choiceValue.cpp",showOutput=TRUE, verbose=TRUE, rebuild=TRUE)

It creates a function choiceValue(u,feasible.action,discount,P,T) which should
give the same result as the choice.value function written in R.
(3) Profile the likelihood using your optimised code. Compare the results with your original
code.

Problem 5 (Estimation): Now with a likelihood that hopefully does not take too long to evaluate,
we can try to maximize the likelihood. For example,
4

https://csgillespie.github.io/efficientR/performance.html
https://csgillespie.github.io/efficientR/performance.html
https://www.r-bloggers.com/strategies-to-speedup-r-code/
https://bitbucket.org/paulschrimpf/econ565/src/master/assignments/rustRothwell1996/choiceValue.cpp
http://cran.r-project.org/bin/windows/Rtools/

DYNAMIC DECISION MODELING: REPLICATION OF RUST AND ROTHWELL (1995)

library("nloptr") # library for optimization

phi

.names <-

c("exit","refuel","f.r","duration","shutdown","runl.25","run26.50","runb51.75","

run76.99","run100",
"f.s","f.lOO")

parameter estimates from Rust & Rothwell (1995)

phi

.pre <- c(0,-1.82, -2.33, -0.05, -0.04, -1.82, -0.96, -0.15, 1.52,

2.93, -4.03, -3.44)

names (phi.pre) <- phi.names

phi

.post <- c(0, -3.44, -3.09, -0.06, -0.54, -2.12, -1.58, -0.74,

0.54, 2.93, -4.04, -5.89)

names (phi.post) <- phi.names

payoff of exit is set to O and runl00 to 2.93 as in RR

free.params <- c("refuel", "f.r", "duration", "shutdown", "runl.25",
"run26.50", "runb1.75","run76.99", "f.s","f.100")
bounds on parameters - for some parameter values can easily get
overflow in the value calculation from taking exp(v[t+1,,]),
bounding the parameters to a reasonable set ensures this doesn't
occur during maximization
phi.1lb <- phi.post
phi.1b[] <- -Inf
phi.ub <- phi.post
phi.ub[] <- Inf
phi.lb["exit"] <- O
phi.ub["exit"] <- 0
phi.ublc("f.r","f.s","f.100")] <- 0 # forced outages are costly
phi.ub[c("refuel")] <- O # refueling is costly
phi.ub["duration"] <- 0 # longer duration is costly
phi.ub[c("shutdown","runl.25","run26.50",
"run51.75","run76.99","run100")]<- 2.93 # no action pays
more than running 1007
mle.nm <- nloptr (xO=phi.post[free.params], eval_f=function(x) {

phi <- phi.post

phi[free.params] <- x
-likelihood.cpp(phi, subset(plantData,major.problem.spell==FALSE & spell.type!="

(1)

(2)

exit")) },
opts=1list (algorithm="NLOPT_LN_NELDERMEAD",
print_level=3,
maxeval=100000,
xtol_rel=le-6,
xtol_abs=1e-12),
lb=phi.lb[free.params],
ub=phi.ub[free.params])

Explore the sensitivity of the maximization to initial value and/or the choice of optimization
algorithm. How confident are you in the results? How do the results compare to those of
Rust and Rothwell (1995)?

Assess the fit the estimates by producing something like figures 11 and 12 of Rust and
Rothwell (1995).

DYNAMIC DECISION MODELING: REPLICATION OF RUST AND ROTHWELL (1995)

Problem 6 (Extensions): This problem is meant to be challenging. You should make an honest
attempt to complete at least one the parts. You need not answer more than one part.

(1) Inference: read carefully the section on inference in the solutions to assignment 1. Use one
or more methods to calculate confidence regions for the parameters of this model. Add
confidence bands to your versions of figures 11 and 12 of Rust and Rothwell (1995).

(2) Alternate estimation method: estimate this model using an alternative estimator. The
estimator used above in maximum likelihood with a nested fixed point. Possible estimation
approaches that have been discussed in lecture include: (i) discrete Euler equations, (ii) a 2-
step estimator for dynamic discrete choice, such as pseudo likelihood, (iii) MPEC. Compare
the results. Comment on any notable differences in programming difficulty or computation
time.

(3) New data: the NRC’s website contains daily “Power Reactor Status Reports” going back to
1999. https://www.nrc.gov/reading-rm/doc-collections/event-status/reactor-status/
Scrape this website to create a dataset similiar to the one used by Rust and Rothwell (1995).
Estimate the model using this updated data. Discuss the differences.

References

Rothwell, Geoffrey Scott and John Philip Rust. 1995. “A Dynamic Programming Model of U.S. Nu-
clear Power Plant Operations.” Microeconomics, EconWPA. URL http://EconPapers.repec.
org/RePEc:wpa:wuwpmi:9502001.

Rust, John and Geoffrey Rothwell. 1995. “Optimal response to a shift in regulatory regime: The case
of the US nuclear power industry.” Journal of Applied Econometrics 10:75. URL http://search.
proquest.com.ezproxy.library.ubc.ca/docview/2187516087accountid=14656. Name - Nu-
clear Regulatory Commission; Copyright - Copyright Wiley Periodicals Inc. Dec 1995; Last up-
dated - 2011-10-21; CODEN - JAECET; SubjectsTermNotLitGenreText - US.

https://www.nrc.gov/reading-rm/doc-collections/event-status/reactor-status/
http://EconPapers.repec.org/RePEc:wpa:wuwpmi:9502001
http://EconPapers.repec.org/RePEc:wpa:wuwpmi:9502001
http://search.proquest.com.ezproxy.library.ubc.ca/docview/218751608?accountid=14656
http://search.proquest.com.ezproxy.library.ubc.ca/docview/218751608?accountid=14656

	References

