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Introduction

▶ Interstate natural gas pipelines in US
▶ Regulated price of transmission set by rate-of-return
▶ Investment must be approved by regulator (FERC)

▶ How do the investment incentives faced by pipelines compare to the
marginal value of investment?

▶ Estimate pipelines’ perceived marginal value of investment from Euler
equations

▶ Use differences in prices between trading hubs on pipeline network to
measure marginal social value of investment
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Natural gas is large and growing
revenue
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Suggestive evidence of over-investment

▶ Rate-of-return regulation – Averch-Johnson effect
▶ Pipeline owners can raise their prices by increasing capital costs

▶ Rate of return allowed by FERC is high
▶ von Hirschhausen (2008) : regulated rates of return average 11.6% for

projects between 1996 and 2003
▶ FERC approves nearly all pipeline expansion projects – only two

rejected application between 1996 and 2016
▶ Some empirical evidence supporting overcapitalization (Oliver,

Mason, and Finnoff, 2014; Hausman and Muehlenbachs, 2019)
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Suggestive evidence of under-investment

▶ Prices of natural gas at different locations sometime diverge
▶ Cuddington and Wang (2006), Marmer, Shapiro, and MacAvoy (2007),

Brown and Yücel (2008), Park, Mjelde, and Bessler (2008)
▶ Gas marketers, not pipeline owners, earn profits from arbitrage
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Daily natural gas prices
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Contributions

▶ Construct a detailed pipeline dataset from FERC and EIA filings
▶ Estimate pipelines’ investment costs (including regulatory costs) from

Euler Equations
▶ Nonparametrically identified
▶ Simple to estimate
▶ Key assumption : information set of pipeline is observed or estimable

▶ Examine relationship between investment cost and pipeline network
bottlenecks

▶ Areas of pipeline congestion have:
▶ Lower regulatory marginal investment cost
▶ Lower expected marginal product of capital
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Natural gas from production to
consumption

1. Production at well-head
2. Gas purchased at well-head by marketer
3. Marketer pays pipeline to transport gas
4. Gas sold to :

▶ Other marketer at hub
▶ Local distribution company
▶ Power plant or large industrial user

5. Local distribution company delivers gas to industrial and residential
consumers
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Contracts between pipelines and
marketers

▶ Long term (average 9.1 years) contracts for firm transportation
service

▶ Guaranteed right to transport a specified volume of gas along a
pipeline per day

▶ Large reservation charge
⋆ Set by FERC using rate of return to cover capital costs

▶ Small additional charge per unit used
⋆ Set by FERC to cover marginal operating cost

▶ Unused capacity sold as interruptible transportation service
▶ Price ≤ reservation + utilization price of FTS
▶ Open access short term auctions through online bulletin boards
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Building or expanding a pipeline

1. Obtain binding agreements from gas marketers to purchase 5-10 year
FTS contracts for 80+% of planned capacity

2. File application with FERC
3. Public hearings, environmental assesments, etc
4. FERC approves 99% of applications
▶ Takes 1-3 years for new pipelines, much less for smaller projects
▶ Decommissioning and sales also need to be approved
▶ Streamlined for small projects

▶ Automatic (<$11,400,000) notify landowners 45 days in advance
▶ Prior notice (<$32,400,000) file plan with FERC, automatically

approved after 60 days if no objection

Pipeline investment Regulatory framework and industry background 10 / 45



Pipeline network has failed to integrate
regional markets
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Northeast is the primary physical
bottleneck

2002 2022
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Investment model
▶ Pipeline j choosing investment at time t
▶ Bellman equation:

V(kt, st) = max
it

π(kt, st) − c(it, kt, st) + β E [V(kt + it, st+1) | st, kt + it]

s .t. R(it, kt, st) ≤ 0 .

Gross operating profit
Investment cost

Regulatory constraint

Expectation over future state,
given current state and capital

where

▶ kjt = capital
▶ ijt = dollars of investment
▶ sjt = vector of observed and unobserved variables affecting profits, e.g.

k−jt, details of pipeline network, gas prices
▶ β = discount factor
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Investment model: Euler Equation

▶ Euler equation:

∂c
∂i (it, kt, st) + λt

∂R
∂i (it, kt, st) =

βE

 ∂π
∂k (kt+1, st+1) +

∂c
∂i (it+1, kt+1, st+1)+

+λt+1
∂R
∂i (it+1, kt+1, st+1)+

− ∂c
∂k (it+1, kt+1, st+1)− λt+1

∂R
∂k (it+1, kt+1, st+1)

∣∣∣st, kt+1

 .

▶ Define cr(i, k, s) ≡ c(i, k, s) + λR(i, k, s)

∂cr
∂i (it, kt, st) =βE

[
∂π
∂k (kt+1, st+1) +

∂cr
∂i (it+1, kt+1, st+1)+

−∂cr
∂k (it+1, kt+1, st+1)

∣∣∣st, kt+1

]
.
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Identification of ∂cr
∂i

▶ st, kt+1 observed, so E[·|kit+1, st] is identified
▶ Substantitive assumption: econometrician observes all information used

by firms to form expectations
▶ Observe πjt = π(kjt, xjt) + ϵjt so

E[πjt|kjt, xjt] = π(kjt, xjt

▶ Only remaining unknown in Euler equation is marginal cost
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Pipeline data

▶ FERC Form 2/2a annual data on pipeline companies
▶ 1996-2019
▶ 96-123 companies each year
▶ detailed information about evenue, expenses, capital, transmission

volume, etc
▶ limited information about pipeline locations and connections

▶ EIA form 176 has information on each pipelines’ mileage and flow
within each state and capacities between states

▶ 1997-2019
▶ merged with FERC data by company name — 3% of pipeline mileage

unmatched
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Evolution of capital

0.0e+00

5.0e+09

1.0e+10

1.5e+10

1995 2000 2005 2010 2015 2020
year

ca
pi

ta
l

Pipeline investment Data 17 / 45



Distribution of investment
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Schematic pipeline network in 1996

Pipeline investment Data 19 / 45



Schematic pipeline network in 2001
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Schematic pipeline network in 2006
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Schematic pipeline network in 2011
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Schematic pipeline network in 2016
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Estimation from Euler equation
▶ First order condition and envelope theorem, and the boundary

condition, give the Euler equation:

∂c
∂i (it, kt, st) − β E

[
∂c
∂i (it+1, kt+1, st+1)

∣∣st, kt+1

]
= β E

[
∂π

∂k (kt+1, st+1)
∣∣st, kt+1

]
,

▶ Estimation procedure:
1. Estimate E[ ∂

∂kπt+1|kt+1, st] using an average derivative estimator
based on Auto-DML details

2. Estimate E
[
·
∣∣st, kt+1

]
with a Reproducing Kernel Hilbert Space

(RKHS) embedding
3. Invert the conditional expectation onto the profit function to

estimate ∂c
∂i
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Auto-DML problem statement

▶ The problem of predicting future profits is very high dimensional

▶ Modern machine learning methods are really good at this type of
prediction. Deep learning in particular for dynamic economic problems
(Kahou et al. 2025). Especially when paired with regularization.

▶ Regularization creates bias in the estimator. It fits the profit function
better, but would bias our estimates of the derivative
θ0 = E[ ∂

∂kπt+1|kt+1, st].
▶ Goal, estimate θ0 in such a way that it is robust to small

perturbations of the nuisance parameters (ζ) of the ML estimator
▶ Neyman orthogonality: ∂ζE

[
∂
∂k π̂

ζ
t+1|kt+1, st

]∣∣
ζ
= 0
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Auto-DML for profit estimation

Xt

π̂t+1

α̂

Inputs Shared Layer

Regression Layers

Riesz Regression

Future Profit

Riesz Representer

Figure: Graphical description of the Auto-DML architecture used to recover and
debias the profit function.

back to slides
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Auto-DML for profit estimation
▶ Goal is to estimate

θ0 = E[m(kt+1, st;π(·), kt+1, st)] = E[ ∂
∂kπt+1|kt+1, st]

▶ First stage: estimate π̂ = argminπ E[(πt+1 − π0)2 | kt+1, st] using
deep neural net

▶ Use a hidden layer of the deep network as inputs to another deep
network to estimate α̂ = argminα E[(α− α0)2 | kt+1, st]

▶ α0 is the Riesz representer of the moment function. Exists by linearity
of m

▶ e.g. a function such that
E[m(kt+1, st, πt+1; g(·)) | kt+1, st] = E[α0(kt+1, st)g(kt+1, st) | kt+1, st]

▶ substitute the above into the loss function for α̂, gives
α̂ = argminα E[α(X)2 − 2m(W, α)], new objective does not depend on
α0.

▶ Add some elastic net regularization
▶ Doubly robust estimator

θ̂ = E[ ∂
∂k π̂(kt+1, st) + α̂(kt+1, st)(πt+1 − π̂(kt+1, st)) | kt+1, st]

▶ 5-fold cross-fitting: split data into 5 folds. Repeat: train π̂ and α̂ on
4 folds, estimate θ̂ on the 5th fold back to slides
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Estimation of regulatory cost
▶ Suppose that ∂cr

∂i ∈ H, a reproducing kernel Hilbert space
▶ with kernel k : S × S → R
▶ inner product ⟨·, ·⟩
▶ elements of H are functions from state space S to R
▶ ⟨f, k(s, ·)⟩ = f(s)

▶ Goal is to estimate a Riesz representer µ(x, ·) such that
E[f(s′) | s = x] = ⟨f, µ(x, ·)⟩

▶ Note that

E
[(

f(s′)− ⟨f, µ(s, ·)⟩
)2
]
=E

[
⟨f, k(s′, ·)− µ(s, ·)⟩2]

≤∥f∥2E[∥k(s′, ·)− µ(s, ·)∥2].

▶ Estimate µ by solving

min
µ

1
N(T − 1)

N∑
i=1

T−1∑
t=1

∥k(sit+1, ·)− µ(sit, ·)∥2 + λ∥µ2∥
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Estimation of regulatory cost
▶ The minimizer is

µ̂(s, s′) = k(s, st) (K + λI)−1 k(st+1, s′)

▶ K is an N(T − 1)× N(T − 1) matrix with entries k(sit, sjr)
▶ k(s, st+1) is a 1 × N(T − 1) vector with elements k(s, sit+1)
▶ k(st, s′) is a N(T − 1)× 1 vector with elements k(sit, s′).

▶ With this µ̂, the estimate of the conditional expectation is then
̂E[f(s′)|s] =⟨f, µ̂(s, ·)⟩

=k(s, st) (K + λI)−1 f(st+1).

▶ Standardize each component of s to have zero mean and unit variance
▶ Gaussian kernel, k(s, s′) = e−∥s−s′∥2 , and set λ = 1.

▶ Represent ∂cr
∂i by a neural network, minimize Euler residuals

min
∂cr
∂i

1
N(T − 1)

N,T−1∑
i,t

(
∂cr
∂i

(sit) − βk(sit, st) (K + λI)−1 ∂c
∂i

(st+1) −
̂

E
[
∂π

∂k
(kt+1, st+1)

∣∣st, kt+1

])2
.
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Marginal product of capital hovers around
previous estimates
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Northeast has the highest regulatory costs
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Figure: Investment projects in the Northeast are profitable, so investment
distortion is driven primarily by increased regulatory costs.
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Unbalanced distribution of costs
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Figure: Investment costs in the northeast are lowest for investments that are likely
to be the most profitable.
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Prices and social value

▶ How do these estimated regulatory costs compare to the optimal
regulation?

▶ To find out, make a further assumption that there is a continuum of
marketers (marketers are perfectly competitive).

▶ Under this assumption, prices arise from the optimal dispatch problem
with a flow constraint (similar to the model used in Cremer, Gasmi
and Laffont, 2003)
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Optimal dispatch

max
q,d,Φ

n∑
i=1

( ui(di) − ce
i (qi) )−

n∑
i=1

n∑
j=1

cij ϕij

subject to qi, di ≥ 0, ∀i ∈ A

0 ≤ ϕij ≤ κij , ∀i, j ∈ A

qi +
n∑

ℓ=1
ϕiℓ =

n∑
ℓ=1

ϕℓi + di , ∀i ∈ A.

Demand Supply
Flow of gas from
state i to state j

Capacity constraint

Conservation of flow constraint

▶ A social planner wants to choose where to expand capacity
constraints κij

▶ Key finding: The Lagrange multiplier on the capacity constraint is
equal to the difference in prices across a state border details
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Social planner invests to minimize pricegaps
▶ Envelope theorem: ∂v

∂κij
= λij = max {pi − pj − cij, 0}. Under the same

boundary condition, Euler can be written as

∂c
∂i

(it, kt, st) − βE
[
∂c
∂i

(it+1, kt+1, st+1)
∣∣∣ st, kt+1

]
= β

12∑
m=1

n∑
j=1

n∑
ℓ=1

E
[
∂κjℓ
∂k

max{pjmt+1 − pℓmt+1 − cjℓ, 0}
∣∣∣ st, kt+1

]
.

▶ This is identical to the firm’s Euler equation, except:
1. The objective on the right hand side is marginal social value of capital,

instead of marginal profit
2. c, not c, on the left hand side. (c does not contain the extra regulatory

cost)

▶ Right hand side can be estimated using a similar Auto-DML
procedure.
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Measuring social value

▶ Subtract planner’s Euler from firms’ to obtain the PDE for optimal
regulation

βE
[
λt+1

∂R∗

∂i
(it+1, kt+1, st+1) − λt+1

∂R∗

∂k
(it+1, kt+1, st+1)

∣∣∣st, kt+1

]
− λt

∂R∗

∂i
(it, kt, st) =

βE

 12∑
r=1

n∑
j=1

n∑
ℓ=1

∂κjℓ
∂k

max{pj − pℓ − cjℓ, 0}

−
∂π

∂k
(kt+1, st+1)

∣∣∣ st, kt+1

 .

▶ Note: If the right hand side is negative, capital is overincentivized
and at least some additional regulation must be used to get optimal
investment

▶ Denote the right hand side difference as ∆. Estimate ∆̂ using the
same debiased method used to recover profits
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Negative delta indicates there is need for
regulation
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Figure: Delta is consistently negative – fixed rates universally exceed social value
so some regulation is needed to realign incentives
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Regulatory costs are too stringent in New
England
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Figure: In the northeast, firms are not incentivized to invest under the current
regime; but there may be overinvestment in parts of the midcoast and mountain
west Pipeline investment Social Value of Pipeline Capacity 39 / 45



How well targeted is investment
regulation?
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Figure: Regulation costs have risen in the northeast and are decreasing in parts of
the southern and mountain regions
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Summary
▶ We set out to investigate whether the regulatory incentives for

pipeline development are distorting the growth of the natural gas
pipeline network.

▶ Develop a structural model to estimate firm investment incentives
▶ Novel method uses deep networks and RKHS embeddings to estimate

network investment incentives from firm Euler equations
▶ Estimated on firm-level administrative data from FERC Form 2A and

EIA Form 176

▶ Solve a benchmark model of optimal pipeline investment by a social
planner

▶ Social planner would place new capacity in areas with large price gaps,
instead of those with potential profit

▶ Regulator can realign incentives by limiting investment through a costly
approval process
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