Estimating regulatory distortions of natural gas pipeline investment incentives

Paul Schrimpf and Phil Solimine

UBC

March 27, 2025

Introduction

Interstate natural gas pipelines in US

- Regulated price of transmission set by rate-of-return
- Investment must be approved by regulator (FERC)
- How do the investment incentives faced by pipelines compare to the marginal value of investment?
- Estimate pipelines' perceived marginal value of investment from Euler equations
- Use differences in prices between trading hubs on pipeline network to measure marginal social value of investment

Natural gas is large and growing

Suggestive evidence of over-investment

- Rate-of-return regulation Averch-Johnson effect
 - Pipeline owners can raise their prices by increasing capital costs
- Rate of return allowed by FERC is high
 - von Hirschhausen (2008) : regulated rates of return average 11.6% for projects between 1996 and 2003
- FERC approves nearly all pipeline expansion projects only two rejected application between 1996 and 2016
- Some empirical evidence supporting overcapitalization (Oliver, Mason, and Finnoff, 2014; Hausman and Muehlenbachs, 2019)

Suggestive evidence of under-investment

- Prices of natural gas at different locations sometime diverge
 - Cuddington and Wang (2006), Marmer, Shapiro, and MacAvoy (2007), Brown and Yücel (2008), Park, Mjelde, and Bessler (2008)
- Gas marketers, not pipeline owners, earn profits from arbitrage

Daily natural gas prices

Contributions

- Construct a detailed pipeline dataset from FERC and EIA filings
- Estimate pipelines' investment costs (including regulatory costs) from Euler Equations
 - Nonparametrically identified
 - Simple to estimate
 - ► Key assumption : information set of pipeline is observed or estimable
- Examine relationship between investment cost and pipeline network bottlenecks
- Areas of pipeline congestion have:
 - Lower regulatory marginal investment cost
 - Lower expected marginal product of capital

Natural gas from production to consumption

- 1. Production at well-head
- 2. Gas purchased at well-head by marketer
- 3. Marketer pays pipeline to transport gas
- 4. Gas sold to :
 - Other marketer at hub
 - Local distribution company
 - Power plant or large industrial user
- 5. Local distribution company delivers gas to industrial and residential consumers

Contracts between pipelines and marketers

- Long term (average 9.1 years) contracts for firm transportation service
 - Guaranteed right to transport a specified volume of gas along a pipeline per day
 - Large reservation charge
 - $\star\,$ Set by FERC using rate of return to cover capital costs
 - Small additional charge per unit used
 - $\star\,$ Set by FERC to cover marginal operating cost
- Unused capacity sold as interruptible transportation service
 - Price \leq reservation + utilization price of FTS
 - Open access short term auctions through online bulletin boards

Building or expanding a pipeline

- 1. Obtain binding agreements from gas marketers to purchase 5-10 year FTS contracts for 80+% of planned capacity
- 2. File application with FERC
- 3. Public hearings, environmental assesments, etc
- 4. FERC approves 99% of applications
- ► Takes 1-3 years for new pipelines, much less for smaller projects
- Decommissioning and sales also need to be approved
- Streamlined for small projects
 - ► Automatic (<\$11,400,000) notify landowners 45 days in advance
 - Prior notice (<\$32,400,000) file plan with FERC, automatically approved after 60 days if no objection

Pipeline network has failed to integrate regional markets

Northeast is the primary physical bottleneck

Investment model

- Pipeline j choosing investment at time t
- Bellman equation:

$$V(k_t, s_t) = \max_{i_t} \frac{\pi(k_t, s_t) - c(i_t, k_t, s_t)}{R(i_t, k_t, s_t) \leq 0} + \beta E[V(k_t + i_t, s_{t+1}) | s_t, k_t + i_t]$$
Expectation over future state, given current state and capital regulatory constraint

Gross operating profit

- i_{jt} = dollars of investment
- s_{jt} = vector of observed and unobserved variables affecting profits, e.g.
 - k_{-jt} , details of pipeline network, gas prices
- $\beta = \text{discount factor}$

Investment model: Euler Equation

Euler equation:

$$\frac{\partial c}{\partial i}(i_t, k_t, s_t) + \lambda_t \frac{\partial R}{\partial i}(i_t, k_t, s_t) = \beta \mathbf{E} \begin{bmatrix} \frac{\partial \pi}{\partial k}(k_{t+1}, s_{t+1}) + \frac{\partial c}{\partial i}(i_{t+1}, k_{t+1}, s_{t+1}) + \\ +\lambda_{t+1}\frac{\partial R}{\partial i}(i_{t+1}, k_{t+1}, s_{t+1}) + \\ -\frac{\partial c}{\partial k}(i_{t+1}, k_{t+1}, s_{t+1}) - \lambda_{t+1}\frac{\partial R}{\partial k}(i_{t+1}, k_{t+1}, s_{t+1}) \end{bmatrix}$$

• Define $c_r(i, k, s) \equiv c(i, k, s) + \lambda R(i, k, s)$

$$\frac{\partial c_r}{\partial i}(i_t, k_t, s_t) = \beta \mathbf{E} \begin{bmatrix} \frac{\partial \pi}{\partial k}(k_{t+1}, s_{t+1}) + \frac{\partial c_r}{\partial i}(i_{t+1}, k_{t+1}, s_{t+1}) + \\ -\frac{\partial c_r}{\partial k}(i_{t+1}, k_{t+1}, s_{t+1}) \end{bmatrix} \cdot \mathbf{E} \begin{bmatrix} \frac{\partial \pi}{\partial k}(k_{t+1}, s_{t+1}) + \frac{\partial c_r}{\partial k}(i_{t+1}, s_{t+1}) \end{bmatrix} \mathbf{E} \begin{bmatrix} \frac{\partial \pi}{\partial k}(k_{t+1}, s_{t+1}) + \frac{\partial c_r}{\partial k}(i_{t+1}, s_{t+1}) \end{bmatrix} \mathbf{E} \begin{bmatrix} \frac{\partial \pi}{\partial k}(k_{t+1}, s_{t+1}) + \frac{\partial c_r}{\partial k}(i_{t+1}, s_{t+1}) \end{bmatrix} \mathbf{E} \begin{bmatrix} \frac{\partial \pi}{\partial k}(k_{t+1}, s_{t+1}) + \frac{\partial c_r}{\partial k}(i_{t+1}, s_{t+1}) + \frac{\partial c_r}{\partial k}(i_{t+1}, s_{t+1}) \end{bmatrix} \mathbf{E} \begin{bmatrix} \frac{\partial \pi}{\partial k}(k_{t+1}, s_{t+1}) + \frac{\partial c_r}{\partial k}(i_{t+1}, s_{t+1}) \end{bmatrix} \mathbf{E} \begin{bmatrix} \frac{\partial \pi}{\partial k}(k_{t+1}, s_{t+1}) + \frac{\partial c_r}{\partial k}(i_{t+1}, s_{t+1}) \end{bmatrix} \mathbf{E} \begin{bmatrix} \frac{\partial \pi}{\partial k}(k_{t+1}, s_{t+1}) + \frac{\partial c_r}{\partial k}(i_{t+1}, s_{t+1}) \end{bmatrix} \mathbf{E} \begin{bmatrix} \frac{\partial \pi}{\partial k}(k_{t+1}, s_{t+1}) + \frac{\partial \pi}{\partial k}(k_{t+1}, s_{t+1}) \end{bmatrix} \mathbf{E} \begin{bmatrix} \frac{\partial \pi}{\partial k}(k_{t+1}, s_{t+1}) + \frac{\partial \pi}{\partial k}(k_{t+1}, s_{t+1}) \end{bmatrix} \mathbf{E} \begin{bmatrix} \frac{\partial \pi}{\partial k}(k_{t+1}, s_{t+1}) + \frac{\partial \pi}{\partial k}(k_{t+1}, s_{t+1}) \end{bmatrix} \mathbf{E} \begin{bmatrix} \frac{\partial \pi}{\partial k}(k_{t+1}, s_{t+1}) + \frac{\partial \pi}{\partial k}(k_{t+1}, s_{t+1}) \end{bmatrix} \mathbf{E} \begin{bmatrix} \frac{\partial \pi}{\partial k}(k_{t+1}, s_{t+1}) + \frac{\partial \pi}{\partial k}(k_{t+1}, s_{t+1}) \end{bmatrix} \mathbf{E} \begin{bmatrix} \frac{\partial \pi}{\partial k}(k_{t+1}, s_{t+1}) + \frac{\partial \pi}{\partial k}(k_{t+1}, s_{t+1}) \end{bmatrix} \mathbf{E} \begin{bmatrix} \frac{\partial \pi}{\partial k}(k_{t+1}, s_{t+1}) + \frac{\partial \pi}{\partial k}(k_{t+1}, s_{t+1}) + \frac{\partial \pi}{\partial k}(k_{t+1}, s_{t+1}) \end{bmatrix} \mathbf{E} \begin{bmatrix} \frac{\partial \pi}{\partial k}(k_{t+1}, s_{t+1}) + \frac{\partial \pi}{\partial k}(k_{t+1}, s_{t+1}) \end{bmatrix} \mathbf{E} \begin{bmatrix} \frac{\partial \pi}{\partial k}(k_{t+1}, s_{t+1}) + \frac{\partial \pi}{\partial k}(k_{t+1}, s_{t+1}) \end{bmatrix} \mathbf{E} \begin{bmatrix} \frac{\partial \pi}{\partial k}(k_{t+1}, s_{t+1}) + \frac{\partial \pi}{\partial k}(k_{t+1}, s_{t+1}) \end{bmatrix} \mathbf{E} \begin{bmatrix} \frac{\partial \pi}{\partial k}(k_{t+1}, s_{t+1}) + \frac{\partial \pi}{\partial k}(k_{t+1}, s_{t+1}) \end{bmatrix} \mathbf{E} \begin{bmatrix} \frac{\partial \pi}{\partial k}(k_{t+1}, s_{t+1}) + \frac{\partial \pi}{\partial k}(k_{t+1}, s_{t+1}) \end{bmatrix} \mathbf{E} \begin{bmatrix} \frac{\partial \pi}{\partial k}(k_{t+1}, s_{t+1}) + \frac{\partial \pi}{\partial k}(k_{t+1}, s_{t+1}) \end{bmatrix} \mathbf{E} \begin{bmatrix} \frac{\partial \pi}{\partial k}(k_{t+1}, s_{t+1}) + \frac{\partial \pi}{\partial k}(k_{t+1}, s_{t+1}) \end{bmatrix} \mathbf{E} \begin{bmatrix} \frac{\partial \pi}{\partial k}(k_{t+1}, s_{t+1}) + \frac{\partial \pi}{\partial k}(k_{t+1}, s_{t+1}) \end{bmatrix} \mathbf{E} \begin{bmatrix} \frac{\partial \pi}{\partial k}(k_{t+1}, s_{t+1}) + \frac{\partial \pi}{\partial k}(k_{t+1}, s_{t+1}) \end{bmatrix} \mathbf{E} \begin{bmatrix} \frac{\partial \pi}{\partial k}(k_{t+1}, s_{t+1}) + \frac{\partial \pi}{\partial k}(k_{t+1}, s_{t+1}) \end{bmatrix} \mathbf{E} \begin{bmatrix} \frac{\partial \pi}{\partial k}(k_{t+1}, s_{t+1}) + \frac{\partial \pi}{\partial k}(k_{t+1}, s_{t+1}) \end{bmatrix} \mathbf{E} \begin{bmatrix} \frac{\partial \pi}{\partial k}(k_{t+1}$$

Identification of $\frac{\partial c_r}{\partial i}$

▶ s_t, k_{t+1} observed, so $E[\cdot|k_{it+1}, s_t]$ is identified

 Substantitive assumption: econometrician observes all information used by firms to form expectations

• Observe
$$\pi_{jt} = \pi(k_{jt}, x_{jt}) + \epsilon_{jt}$$
 so

$$\mathbf{E}[\pi_{jt}|k_{jt},x_{jt}]=\pi(k_{jt},x_{jt})$$

Only remaining unknown in Euler equation is marginal cost

Pipeline data

▶ FERC Form 2/2a annual data on pipeline companies

- 1996-2019
- 96-123 companies each year
- detailed information about evenue, expenses, capital, transmission volume, etc
- Iimited information about pipeline locations and connections
- EIA form 176 has information on each pipelines' mileage and flow within each state and capacities between states
 - 1997-2019
 - merged with FERC data by company name 3% of pipeline mileage unmatched

Evolution of capital

Distribution of investment

Estimation from Euler equation

First order condition and envelope theorem, and the boundary condition, give the Euler equation:

$$\frac{\partial c}{\partial i}(i_t, k_t, s_t) - \beta \mathbf{E} \left[\frac{\partial c}{\partial i}(i_{t+1}, k_{t+1}, s_{t+1}) | s_t, k_{t+1} \right] = \beta \mathbf{E} \left[\frac{\partial \pi}{\partial k}(k_{t+1}, s_{t+1}) | s_t, k_{t+1} \right]$$

- Estimation procedure:
 - 1. Estimate $E[\frac{\partial}{\partial k}\pi_{t+1}|k_{t+1}, s_t]$ using an average derivative estimator based on Auto-DML details

Estimation from Euler equation

First order condition and envelope theorem, and the boundary condition, give the Euler equation:

$$\frac{\partial c}{\partial i}(i_t, k_t, s_t) - \beta \mathbf{E} \left[\frac{\partial c}{\partial i}(i_{t+1}, k_{t+1}, s_{t+1}) | s_t, k_{t+1} \right] = \beta \mathbf{E} \left[\frac{\partial \pi}{\partial k}(k_{t+1}, s_{t+1}) | s_t, k_{t+1} \right]$$

Estimation procedure:

- 1. Estimate $E[\frac{\partial}{\partial k}\pi_{t+1}|k_{t+1}, s_t]$ using an average derivative estimator based on Auto-DML details
- 2. Estimate $E\left[\cdot | s_t, k_{t+1}\right]$ with a Reproducing Kernel Hilbert Space (RKHS) embedding
- 3. Invert the conditional expectation onto the profit function to

Auto-DML problem statement

- ► The problem of predicting future profits is very high dimensional
- Modern machine learning methods are really good at this type of prediction. Deep learning in particular for dynamic economic problems (Kahou et al. 2025). Especially when paired with regularization.
- Regularization creates bias in the estimator. It fits the profit function better, but would bias our estimates of the derivative θ₀ = E[∂/∂k π_{t+1}|k_{t+1}, s_t].
- Goal, estimate θ₀ in such a way that it is robust to small perturbations of the nuisance parameters (ζ) of the ML estimator

• Neyman orthogonality:
$$\partial_{\zeta} E \left[\frac{\partial}{\partial k} \hat{\pi}_{t+1}^{\zeta} | k_{t+1}, s_t \right] \Big|_{\zeta} = 0$$

Figure: Graphical description of the Auto-DML architecture used to recover and debias the profit function.

back to slides

Pipeline investment

• Goal is to estimate $\theta_0 = \operatorname{E}[m(k_{t+1}, s_t; \pi(\cdot), k_{t+1}, s_t)] = \operatorname{E}[\frac{\partial}{\partial k} \pi_{t+1} | k_{t+1}, s_t]$

- Goal is to estimate $\theta_0 = \operatorname{E}[m(k_{t+1}, s_t; \pi(\cdot), k_{t+1}, s_t)] = \operatorname{E}[\frac{\partial}{\partial k} \pi_{t+1} | k_{t+1}, s_t]$
- First stage: estimate π̂ = arg min_π E[(π_{t+1} − π₀)² | k_{t+1}, s_t] using deep neural net

- Goal is to estimate $\theta_0 = \operatorname{E}[m(k_{t+1}, s_t; \pi(\cdot), k_{t+1}, s_t)] = \operatorname{E}[\frac{\partial}{\partial k} \pi_{t+1} | k_{t+1}, s_t]$
- First stage: estimate π̂ = arg min_π E[(π_{t+1} − π₀)² | k_{t+1}, s_t] using deep neural net
- ► Use a hidden layer of the deep network as inputs to another deep network to estimate $\hat{\alpha} = \arg \min_{\alpha} E[(\alpha \alpha_0)^2 | k_{t+1}, s_t]$
 - α_0 is the Riesz representer of the moment function. Exists by linearity of m
 - e.g. a function such that $E[m(k_{t+1}, s_t, \pi_{t+1}; g(\cdot)) \mid k_{t+1}, s_t] = E[\alpha_0(k_{t+1}, s_t)g(k_{t+1}, s_t) \mid k_{t+1}, s_t]$
 - ▶ substitute the above into the loss function for $\hat{\alpha}$, gives $\hat{\alpha} = \arg \min_{\alpha} \mathbb{E}[\alpha(X)^2 2m(W, \alpha)]$, new objective does not depend on α_0 .
 - Add some elastic net regularization

- Goal is to estimate $\theta_0 = \operatorname{E}[m(k_{t+1}, s_t; \pi(\cdot), k_{t+1}, s_t)] = \operatorname{E}[\frac{\partial}{\partial k} \pi_{t+1} | k_{t+1}, s_t]$
- First stage: estimate π̂ = arg min_π E[(π_{t+1} − π₀)² | k_{t+1}, s_t] using deep neural net
- ► Use a hidden layer of the deep network as inputs to another deep network to estimate $\hat{\alpha} = \arg \min_{\alpha} E[(\alpha \alpha_0)^2 | k_{t+1}, s_t]$
 - α_0 is the Riesz representer of the moment function. Exists by linearity of *m*
 - e.g. a function such that $E[m(k_{t+1}, s_t, \pi_{t+1}; g(\cdot)) \mid k_{t+1}, s_t] = E[\alpha_0(k_{t+1}, s_t)g(k_{t+1}, s_t) \mid k_{t+1}, s_t]$
 - ▶ substitute the above into the loss function for $\hat{\alpha}$, gives $\hat{\alpha} = \arg \min_{\alpha} \mathbb{E}[\alpha(X)^2 - 2m(W, \alpha)]$, new objective does not depend on α_0 .
 - Add some elastic net regularization

27 / 45

Estimation of regulatory cost

- Suppose that $\frac{\partial c_r}{\partial i} \in \mathcal{H}$, a reproducing kernel Hilbert space
 - with kernel $k: S \times S \rightarrow \mathbb{R}$
 - inner product $\langle \cdot, \cdot \rangle$
 - elements of $\mathcal H$ are functions from state space S to $\mathbb R$
 - $\flat \langle f, k(s, \cdot) \rangle = f(s)$
- Goal is to estimate a Riesz representer $\mu(x, \cdot)$ such that $E[f(s') | s = x] = \langle f, \mu(x, \cdot) \rangle$
- Note that

$$\begin{split} & \operatorname{E}\left[\left(f(s') - \langle f, \mu(s, \cdot) \rangle\right)^2\right] = \operatorname{E}\left[\langle f, k(s', \cdot) - \mu(s, \cdot) \rangle^2\right] \\ & \leq \|f\|^2 \operatorname{E}[\|k(s', \cdot) - \mu(s, \cdot)\|^2]. \end{split}$$

Estimate µ by solving

$$\min_{\mu} \frac{1}{N(T-1)} \sum_{i=1}^{N} \sum_{t=1}^{T-1} \|k(s_{it+1}, \cdot) - \mu(s_{it}, \cdot)\|^2 + \lambda \|\mu^2\|$$

Estimation of regulatory cost

The minimizer is

$$\hat{\mu}(s,s') = k(s,\mathbf{s}_t) (K + \lambda I)^{-1} k(\mathbf{s}_{t+1},s')$$

- K is an $N(T-1) \times N(T-1)$ matrix with entries $k(s_{it}, s_{jr})$
- $k(s, \mathbf{s}_{t+1})$ is a $1 \times N(T-1)$ vector with elements $k(s, s_{it+1})$
- ▶ $k(\mathbf{s}_t, s')$ is a $N(T-1) \times 1$ vector with elements $k(s_{it}, s')$.

• With this $\hat{\mu}$, the estimate of the conditional expectation is then

$$\begin{split} \mathbf{E}[\widehat{f(s')}|s] &= \langle f, \hat{\mu}(s, \cdot) \rangle \\ &= k(s, \mathbf{s}_t) \left(K + \lambda I \right)^{-1} f(\mathbf{s}_{t+1}). \end{split}$$

- Standardize each component of s to have zero mean and unit variance
- Gaussian kernel, $k(s, s') = e^{-\|s-s'\|^2}$, and set $\lambda = 1$.

▶ Represent $\frac{\partial c_r}{\partial i}$ by a neural network, minimize Euler residuals

$$\min_{\frac{\partial c_{T}}{\partial i}} \frac{1}{N(T-1)} \sum_{i,t}^{N,T-1} \left(\frac{\partial c_{r}}{\partial i}(s_{it}) - \beta k(s_{it},s_{t}) \left(K + \lambda I\right)^{-1} \frac{\partial c}{\partial i}(s_{t+1}) - \mathrm{E}\left[\widehat{\frac{\partial \pi}{\partial k}(k_{t+1},s_{t+1})} \middle| s_{t},k_{t+1} \right] \right)^{2}.$$

Pipeline investmen

Marginal product of capital hovers around previous estimates

Northeast has the highest regulatory costs

Figure: Investment projects in the Northeast are profitable, so investment distortion is driven primarily by increased regulatory costs.

Unbalanced distribution of costs

Figure: Investment costs in the northeast are lowest for investments that are likely to be the most profitable.

Prices and social value

How do these estimated regulatory costs compare to the optimal regulation?

Prices and social value

- How do these estimated regulatory costs compare to the optimal regulation?
- To find out, make a further assumption that there is a continuum of marketers (marketers are perfectly competitive).

Prices and social value

- How do these estimated regulatory costs compare to the optimal regulation?
- To find out, make a further assumption that there is a continuum of marketers (marketers are perfectly competitive).
- Under this assumption, prices arise from the optimal dispatch problem with a flow constraint (similar to the model used in Cremer, Gasmi and Laffont, 2003)

Optimal dispatch

- A social planner wants to choose where to expand capacity constraints κ_{ij}
- ► Key finding: The Lagrange multiplier on the capacity constraint is equal to the difference in prices across a state border details

Pipeline investment

Social Value of Pipeline Capacity

Social planner invests to minimize price gaps

► Envelope theorem: $\frac{\partial v}{\partial \kappa_{ij}} = \lambda_{ij} = \max \{ p_i - p_j - c_{ij}, 0 \}$. Under the same boundary condition, Euler can be written as

$$\frac{\partial c}{\partial i}(i_t, k_t, s_t) - \beta \mathbf{E} \left[\frac{\partial c}{\partial i}(i_{t+1}, k_{t+1}, s_{t+1}) \mid s_t, k_{t+1} \right] = \beta \sum_{m=1}^{12} \sum_{j=1}^n \sum_{\ell=1}^n \mathbf{E} \left[\frac{\partial \kappa_{j\ell}}{\partial k} \max\{p_{jmt+1} - p_{\ell mt+1} - c_{j\ell}, 0\} \mid s_t, k_t \in \mathbb{C} \right]$$

- This is identical to the firm's Euler equation, except:
 - 1. The objective on the right hand side is marginal social value of capital, instead of marginal profit
 - 2. *c*, not *c*, on the left hand side. (*c* does not contain the extra regulatory cost)
- Right hand side can be estimated using a similar Auto-DML procedure.

Figure: Assuming that the regulator's Euler equation holds on average point-identifies the discount factor at 0.99

Measuring social value

 Subtract planner's Euler from firms' to obtain the PDE for optimal regulation

$$\begin{split} \beta & \mathbf{E} \left[\lambda_{t+1} \frac{\partial \mathbf{R}^*}{\partial i} (i_{t+1}, k_{t+1}, \mathbf{s}_{t+1}) - \lambda_{t+1} \frac{\partial \mathbf{R}^*}{\partial k} (i_{t+1}, k_{t+1}, \mathbf{s}_{t+1}) \Big| \mathbf{s}_t, k_{t+1} \right] - \lambda_t \frac{\partial \mathbf{R}^*}{\partial i} (i_t, k_t, \mathbf{s}_t) = \\ \beta & \mathbf{E} \left[\left(\sum_{r=1}^{12} \sum_{j=1}^n \sum_{\ell=1}^n \frac{\partial \kappa_{j\ell}}{\partial k} \max\{ p_j - p_\ell - c_{j\ell}, 0\} \right) - \frac{\partial \pi}{\partial k} (k_{t+1}, \mathbf{s}_{t+1}) \Big| \mathbf{s}_t, k_{t+1} \right]. \end{split}$$

- Note: If the right hand side is negative, capital is overincentivized and at least some additional regulation must be used to get optimal investment
- Denote the right hand side difference as Δ. Estimate using the same debiased method used to recover profits

Negative delta indicates there is need for regulation

Figure: Delta is consistently negative – fixed rates universally exceed social value so some regulation is needed to realign incentives

Pipeline investment

Social Value of Pipeline Capacity

Regulatory costs are too stringent in New England

Figure: In the northeast, firms are not incentivized to invest under the current regime; but there may be overinvestment in parts of the midcoast and mountain

How well targeted is investment regulation?

Figure: Regulation costs have risen in the northeast and are decreasing in parts of the southern and mountain regions

- We set out to investigate whether the regulatory incentives for pipeline development are distorting the growth of the natural gas pipeline network.
- Develop a structural model to estimate firm investment incentives
 - Novel method uses deep networks and RKHS embeddings to estimate network investment incentives from firm Euler equations
 - Estimated on firm-level administrative data from FERC Form 2A and EIA Form 176

- We set out to investigate whether the regulatory incentives for pipeline development are distorting the growth of the natural gas pipeline network.
- Develop a structural model to estimate firm investment incentives
 - Novel method uses deep networks and RKHS embeddings to estimate network investment incentives from firm Euler equations
 - Estimated on firm-level administrative data from FERC Form 2A and EIA Form 176
- Solve a benchmark model of optimal pipeline investment by a social planner
 - Social planner would place new capacity in areas with large price gaps, instead of those with potential profit
 - Regulator can realign incentives by limiting investment through a costly approval process

- Find that investment incentives of pipelines were not aligned with social value of investment over the time period from 1996-2019
 - Large investment overall but has not improved the bottleneck into New England

- Find that investment incentives of pipelines were not aligned with social value of investment over the time period from 1996-2019
 - Large investment overall but has not improved the bottleneck into New England
- Most of the variation in investment is driven by the costly approval process, as opposed to varying rates.
- Using our model, characterized the importance of costly investment approvals as a secondary control.
 - Over this time period, investment costs in New England were too high
 - In the lower east coast and parts of the mountain west, there is overinvestment relative to social value. Regulation could be tightened in these areas

References |

Brown, Stephen P.A. and Mine K. Yücel. 2008. "Deliverability and regional pricing in U.S. natural gas markets." *Energy Economics* 30 (5):2441–2453. URL http://www.sciencedirect.com/science/article/ B6V7G-4RJYV73-1/2/86a83d6bd3fc982374752d82a6e84012.

- Cremer, Helmuth, Farid Gasmi, and Jean-Jacques Laffont. 2003. "Access to Pipelines in Competitive Gas Markets." *Journal of Regulatory Economics* 24 (1):5–33. URL http://dx.doi.org/10.1023/A:1023943613605.
- Cremer, Helmuth and Jean-Jacques Laffont. 2002. "Competition in gas markets." *European Economic Review* 46 (4-5):928-935. URL http://www.sciencedirect.com/science/article/ B6V64-44W42T9-3/2/1a1d33358e00c05f2810096d6933ae1b.

References II

Cuddington, John and Zhongmin Wang. 2006. "Assessing the Degree of Spot Market Integration for U.S. Natural Gas: Evidence from Daily Price Data." *Journal of Regulatory Economics* 29 (2):195–210. URL http://dx.doi.org/10.1007/s11149-006-6035-2.

Hausman, Catherine and Lucija Muehlenbachs. 2019. "Price Regulation and Environmental Externalities: Evidence from Methane Leaks." *Journal of the Association of Environmental and Resource Economists* 6 (1):73-109. URL https://doi.org/10.1086/700301.

Marmer, Vadim, Dmitry Shapiro, and Paul MacAvoy. 2007. "Bottlenecks in regional markets for natural gas transmission services." *Energy Economics* 29 (1):37–45. URL

http://www.sciencedirect.com/science/article/ B6V7G-4HDX6VY-1/2/e069f9ba66e375debda4f815264ba7eb.

References III

- Oliver, Matthew E., Charles F. Mason, and David Finnoff. 2014. "Pipeline congestion and basis differentials." *Journal of Regulatory Economics* 46 (3):261–291. URL
 - http://dx.doi.org/10.1007/s11149-014-9256-9.
- Park, Haesun, James W. Mjelde, and David A. Bessler. 2008. "Price interactions and discovery among natural gas spot markets in North America." *Energy Policy* 36 (1):290–302. URL http://www.sciencedirect.com/science/article/ B6V2W-4R05JDP-4/2/89dea50697b47c1417c9c498af8eb548.
- von Hirschhausen, Christian. 2008. "Infrastructure, regulation, investment and security of supply: A case study of the restructured US natural gas market." Utilities Policy 16 (1):1 - 10. URL http://www. sciencedirect.com/science/article/pii/S0957178707000598.