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1. INTRODUCTION

These notes cover dynamic structural models. In these models, agents are forward looking and
maximize expected payoffs. The models are structural in that they describe agents’ preferences.
Agents’ preferences will be estimated using the principle of revealed preference.

1.1. Notation. We will use the same notation as Aguirregabiria and Mira (2010). Time is discrete
and indexed by t. Agents are indexed by i. The time horizon, T, may be finite or infinite. sit ∈ S
is a vector of state variables that are known at time t. The state variables could include time to
allow for non-stationary models (we must include t in the finite horizon case). The state variables
can also include time-invariant individual characteristics. ait ∈ A is an action chosen at time t.
Preferences are additively separable over time and discounted at rate β. That is, preferences over
possible sequences of s and a are given by

∞

∑
j=0

βjU(ai,t+j, si,t+j).

Agent’s have rational expectations about the evolution of state variables. State variables follow
a controlled Markov process, so that the distribution of si,t+1 given all information at time t only
depends on si,t and ai,t. Let F(si,t+1|ait, sit) denote the transition distribution. Each period, the
agent chooses ait to maximize expected utility.

ait ∈ arg max
a∈A

E

[
∞

∑
j=0

βjU(ai,t+j, si,t+j)|ait = a, sit

]
.

The Bellman equation for this problem is

V(sit) = max
a∈A

U(a, sit) + βE[V(si,t+1)|a, sit]

It will also be useful to define the choice specific value function,

v(a, sit) = U(a, sit) + βE[V(si,t+1)|a, sit].

In the finite horizon case, the value function, V, exists under very weak conditions, see Rust (1994)
(essentially we just need the maximization problem at each time to have a solution). Note that the
value functions must depend on time when the horizon is finite. We have made this dependence
implicit by including t in sit. We will let

α(s) ∈ arg max
a∈A

U(a, sit) + βE[V(si,t+1)|a, sit]

denote the policy function.
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1.2. Existence and properties of value and policy functions. When T is infinite, the existence of
the value function requires some assumptions. The easiest case to prove is when U is bounded and
continuous. Let C(S) be the space of bounded continuous function from S to R. C(S) is complete
under the sup norm. Then T : C(S)→C(S) defined by

T( f )(s) = max
a∈A

U(s, a) + βE[ f (s′)|a, s]

is a contraction mapping. Since C(S) is complete, T has a unique fixed point. It is easy to show
that unique fixed point solves the original non-recursive problem, see Rust (1994).

V(sit) = max
a∈A

E

[
∞

∑
j=0

βjU(ai,t+j, si,t+j)|ait = a, sit

]
.

This result is nice, but in typical applications U is not bounded. There are similar results for some
unbounded U, see Rust (1994) or Stokey and Lucas (1989). Additionally, we will need the policy
function,

α(s) ∈ arg max
a∈A

U(a, sit) + βE[V(si,t+1)|a, sit]

to be nonrandom and to be approximable in the sense that Vn→V implies that αn→α where

αn ∈ arg max
a∈A

U(a, sit) + βE[Vn(si,t+1)|a, sit].

This and other properties of α follow from appropriate assumptions about U and A. See Stokey
and Lucas (1989) for details.

1.3. Data. We have panel data on N individuals, each observed for Ti periods. We observe actions,
ait, and a sub-vector of the state variable, xit. The unobserved state variable will be ϵit, so sit =

(xit, ϵit). We also observe some payoff variable,

yit = Y(ait, xit, ϵit),

that contains information about U(s, a), but is not one of the state variables. For example, yit could
be revenues of a firm, or an individual’s earnings.

1.4. Examples. The following examples are taken from Aguirregabiria and Mira (2010).

Example 1.1 (Retirement). Consider the choice of when to retire. Let ait = 1 if an agent is working
and ait = 0 if retired. Suppose T is the age at death. The payoff function could be

U(ait, xit, ϵit) = E[cθ1
it |ait, xit] exp

(
θ2 + θ3hit + θ4

t
1 + t

)
− θ5ait + ϵ(ait)

where cit is consumption, θ1 is the coefficient of relative risk aversion, hit is health, and the expres-
sion in the exp captures the idea that the marginal utility of consumption could vary with health
and age. −θ5ait captures the disutility of working.

Example 1.2 (Entry/exit). A firm is deciding whether to operate in a market. Its per-period profits
are

U(ait) = ait

(
θR log(St)− θN log

(
1 + ∑

j ̸=i
ajt

)
− θF − θE(1 − ai,t−1) + ϵit

)
where ait is whether the firm operates at time t. St is the size of the market, ∑j ̸=i ajt is the number
of other firms operating. θF is a fixed operating cost, and θE is an entry cost.
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2. IDENTIFICATION

2.1. General non-identification. Rust (1994) shows that without some restrictions, the above model
is not identified. In the data, we observe

α(s) = arg max
a∈A

v(a, s).

Rust (1994) calls this the reduced form of a Markov decision problem. The structure of the a
Markov decision problem is the mapping, Λ : {β, U, F}→α defined by

α(s) = arg max
a∈A

v(a, s)

where
v(a, s) = U(a, s) + βE[max

a′∈A
v(a′, s′)|a, s].

Our goal is to identify the structure, (β, U, F).

Definition 2.1. Primitives (β, U, F) and (β̃, Ũ, F̃) are observationally equivalent if

Λ(β, U, F) = Λ(β̃, Ũ, F̃).

It’s clear that Λ(β, U, F) = Λ(β, aU + b, F), so we can at most identify U up to a linear transfor-
mation. Rust (1994) shows that we can identify even less.

Lemma 2.1. Let f be any measurable function of s. Define:

Ũ f (a, s) = U(a, s) + f (s)− βE[ f (s′)|a, s]

. Then
Λ(β, U, F) = Λ(β, Ũ f , F).

Proof. Let v(a, s) be the choice specific value function for (β, U, F). We can guess and verify that

ṽ f (a, s) = v(a, s) + f (s)

is the choice specific value function for (β, Ũ f , F).

ṽ f (a, s) =Ũ f (a, s) + βE[max
a′∈A

ṽ f (a′, s′)|a, s]

=U(a, s) + f (s)− βE[ f (s′)|a, s] + βE[max
a′∈A

v(a′, s′) + f (s′)|a, s]

=U(a, s) + f (s) + βE[max
a′∈A

v(a′, s′)|a, s]

=v(a, s) + f (s).

Since f (s) does not depend on a,

arg max
a∈A

v(a, s) = arg max
a∈A

v(a, s) + f (s),

so
α(s) = α̃ f (s)

and the models are observationally equivalent. □

This lemma shows that given any U, there are many observationally equivalent Ũ f . Even know-
ing β and F, U is not identified. Rust (1994) also shows that given any reduced form policy func-
tion, there is a U that generates it.
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Lemma 2.2. Let α : S→A and A be discrete. Then U(a, s) = 1{a = α(s)} − β along with any F and β

results in
Λ(β, U, F) = α.

Proof. Guess and verify that v(a, s) = 1{a = α(s)}. □

This lemma shows that having a Markov decision problem places no restrictions on the ob-
served policy function (other than it being Markovian).

2.2. Identification in dynamic discrete decision models . Magnac and Thesmar (2002) expand
on the non-identification result of Rust (1994), and give conditions under which identification is
possible. Magnac and Thesmar (2002) specifically focus on dynamic discrete decision models that
satisfy the following assumptions. These assumptions have been used in most applications.

A1 (Discrete actions). A is discrete and finite.

A2 (Additive separability). Instantaneous utility functions are given by

U(a, x, ϵ) = u(a, x) + ϵ(a)

where
E[ϵ(a)|x] = 0

for each a ∈ A. The cdf of ϵ, denoted G, is absolutely continuous with respect to Lebesgue measure in R|A|.

A3 (Conditional independence). For any t ̸= t′, ϵit and ϵit′ are independent conditional on x and a.

As a result of these assumptions,

v(a, x, ϵ) =U(a, x, ϵ) + βE[max
a∈A

v(a′, x′, ϵ′)|x, a, ϵ]

=u(a, x) + ϵ(a) + βE[max
a∈A

ṽ(a, x) + ϵ(a)|x, a]

=ṽ(a, x) + ϵ(a)

Magnac and Thesmar (2002) assume that the support of x is discrete and finite as well. However,
this assumption is unnecessary, as shown by Bajari, Chernozhukov, Hong, and Nekipelov (2009).
In any case, let

P(a|x) = P (a ∈ arg max ṽ(a, x) + ϵ(a)) .

Hotz and Miller (1993) show that these equations can be inverted to yield

ṽ(a, x)− ṽ(0, x) = q(a, P(·|x); G)

where 0 ∈ A is some reference action, and q depends on the distribution of ϵ, G. In many applica-
tions, it is assumed that ϵ(a) has an extreme value distribution,

Ga(ϵ) =
eϵ

1 + eϵ
.

In this case,
ṽ(a, x)− ṽ(0, x) = log(P(a|x))− log(P(0|x)).

Regardless, we can write

ṽ(0, x) =u(0, x) + βE[max
a′∈A

ṽ(a′, x′) + ϵ(a′)|a, x]

=u(0, x) + βE[max
a′∈A

ṽ(a′, x′)− ṽ(0, x′) + ϵ(a′)|0, x] + βE[ṽ(0, x′)|0, x]
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The middle term is some function of G and the observed choice probabilities, say

M(x, P(·|x), G) = βE[max
a′∈A

ṽ(a′, x′)− ṽ(0, x′) + ϵ(a′)|0, x].

Suppose we normalize u(0, x) = 0. Then we have

ṽ(0, x) =M(x, P(·|x), G) + βE[ṽ(0, x′)|0, x]

If the model is stationary (in particular the supports of x and x′ coincide), then it is easy to show
that this equation has a unique solution for ṽ(0, x). If the model is not stationary, then in the finite
horizon case, we can begin with t = T and set ṽ(0, x) = M(x, P(·|x), G). In either case, ṽ(0, x) is
identified if M, which depends on G and observable data, and β are known.

Lemma 2.3. Suppose G and β are known, and u(0, x) = 0, then ṽ(0, x) is identified.

Finally, observe that

ṽ(a, x) =u(a, x) + βE[max
a′∈A

ṽ(a′, x′) + ϵ(a′)|a, x]

u(a, x) =ṽ(a, x)− βE[max
a′∈A

ṽ(a′, x′) + ϵ(a′)|a, x]

so u is also identified.

Theorem 2.1 (Identification). If assumptions A1-A3 hold, and G, β, and u(0, x) = 0 are known, and
the model is infinite horizon and stationary, or finite horizon and we observe all time period, then u(a, x) is
identified.

This theorem shows that assuming errors are additively separable with a known distribution,
knowing the discount factor, and normalizing u(0, x) is sufficient for identification. Magnac and
Thesmar (2002) show that given assumptions A1-A3, knowing G, β, and u(0, x) is also necessary
in that G′ ̸= G or β′ ̸= β or u(0, x)′ ̸= u(0, x), there exists observationally equivalent u(a, x). It is
easy to see this result from our discussion above. Every step that we took was constructive. We
explicitly found u(a, x) given β, G, and u(0, x). If we change any of those three things, we will still
end up with some u(a, x), but it will be different.

2.3. Identification in dynamic decision models with continuous actions. Schrimpf (2011) gives
an analogous identification result for dynamic games with continuous actions.

3. ESTIMATION

Given the above identification results, we will begin by focusing on estimating models that sat-
isfy assumptions A1, A2, and A3. We will also assume that the distribution of ϵ, G, is known. Let’s
also suppose that the payoff function has been parametrically specified, u(a, x; θu), and the transi-
tion distribution is also parametrically specified, so that in particular, the conditional expectation
of any function of x′ and a′ given x and a can be written as E[·|x, a; θp]. Given data on ait and xit
we want to estimate θu and θp. To begin with, we will treat θu and θp as finite dimensional pa-
rameters, but we will discuss nonparametric estimation later (i.e. allow θp and/or θu to be infinite
dimensional). Throughout, we will focus on infinite horizon problems.

3.1. Nested fixed point. This subsection is largely based on Rust (1994). The nested fixed point
algorithm is a maximum likelihood estimator for θ. It is computationally intensive because it
requires numerically maximizing the likelihood, and each time the likelihood is evaluated, the
value function is solved for. Thus there are nested fixed points being solve. The inner fixed point
is the value function, the outer one is the maximization of the likelihood.
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3.1.1. Solving for the value function. For any given value of θ = (θu, θp), we can compute the value
function by solving the Bellman equation. There are many ways to do this. The most straightfor-
ward method is value function iteration. That is, begin with some guess for the value function,
say V0(x, ϵ; θ). Then update the guess by setting

V1(x, ϵ; θ) = max
a∈A

u(a, x; θu) + ϵ(a) + βE[V0(x′, ϵ′; θ)|x, a; θp] (1)

Repeat until convergence. This method of computing V is called value function iteration. Value
function iteration is stable and globally convergent, but only converges at a geometric rate equal
to β.

∥Vi+1 − V∥ ≲ β ∥Vi − V∥
As a result, when β is near one we may need many iterations before convergence.

If x or ϵ are continuous, we cannot represent V(x, ϵ; θ) in a computer. Instead, we can only
work with some approximation of V. The most common approach is to discretize x and ϵ. That is,
divide the support of x and ϵ into a finite number of bins, and approximate V as being constant in
each of those bins. Then V can be represented by a vector consisting of the values of V(x, ϵ; θ) for
each x, ϵ bin. V could also be approximated by a series or kernel.

Once you have chosen an way to approximate V, the Bellman equation 1 becomes a system of
non-linear equations. Rather than using value function iteration, you could solve this system of
equation using Newton’s method. Newton’s method locally converges quadratically, so it theo-
retically requires fewer iterations. That is, if Vi is close enough to V, then

∥Vi+1 − V∥ ≲ ∥Vi − V∥2 .

However, Newton’s method need not be globally convergent, so if the initial V0 is far from, V, it
can take longer than value function iteration.

One method that is equivalent to Newton’s method is policy iteration. In policy iteration, you
begin with an initial guess for the policy function, α0(x, ϵ). Then you compute the corresponding
value function,

Vα(x, ϵ; θ) = u(α(x, ϵ), x; θu) + ϵ(α(x, ϵ)) + βE[V0(x′, ϵ′; θ)|x, α(x); θp].

This is much easier than solving the Bellman equation, because there is no maximization. Given a
way of approximating V, this equation can often be written as

Vα = U(θu) + βP(θp)Vα

where V and U(θu) are vectors and P(θp) is a square matrix. You can then solve for Vα as

Vα = (I − βP(θp))
−1U(θu).

After solving for Vα, you update the policy function by setting

α1(x, ϵ) = arg max
a∈A

u(x, a; θ) + ϵ(a) + βE[Vα0(x′, ϵ′)|x, a],

and repeat until convergence. Like Newton’s method, policy function iteration locally converges
quadratically, but is not globally convergent or stable. In practice, it is often effective to begin with
value iteration and then switch to policy iteration.

There are many details that we have left unspecified in this discussion. It is difficult to get a
good understanding of how solving dynamic programs works without going through some exam-
ples in detail. On homework 6, you will solve a dynamic program by discretizing the state space.
On my website, http://faculty.arts.ubc.ca/pschrimpf/14.170/programming.html, there is
an example that uses series functions to approximate the value and policy functions.

6
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3.1.2. The likelihood. Once we have computed V(x, ϵ; θ), we can easily compute the likelihood. The
probability of a conditional on x is

P(a|x; θ) = Eϵ

[
1{a = arg max

ã∈A
u(a, x; θu) + ϵ(a) + βE[V(x′, ϵ′; θ)|ã, x; θp]}

]
. (2)

Then the log likelihood is

L(θ) = 1
N

N

∑
i=1

Ti

∑
t=1

log P(ait|xit; θ)

We estimate θ by maximizing the likelihood. Rust (1994) suggests using either the BHHH [Brendt,
Hall, Hall, and Hausman (1974)] or BFGS algorithm to maximize the likelihood. Both of these
algorithm are quasi-Newton methods that do not require explicitly calculating the Hessian, but
still converge at a faster than linear (although not quite quadratic rate). The BHHH approximates
the Hessian using the outer-product of the gradient. From the information equality, we know
that this approximation will be exact in an infinite sample. The BFGS algorithm approximates the
Hessian by the change in the gradient at various evaluations of the likelihood.

3.1.3. Two and three step nested fixed point. The nested fixed point algorithm is computationally
intensive. One way to slightly reduce the amount of computation is to first estimate θp. Recall
that θp enters E[·|x, a; θp]. Since x and a are observed, this conditional expectation functional can
be estimated without using the full model. Thus, we can first estimate θp, and then maximize the
likelihood with respect to θu only. This maximization should require fewer iterations because it can
search over a lower dimensional space. The resulting two-step estimates will not be as efficient as
the one-step estimates. However, they will be consistent. As always with consistent estimates, we
can then perform one (or more) Newton step(s) of the full likelihood to obtain efficient estimates.

3.2. Hotz and Miller’s CCP method. Even the two-step version of the nest fixed point algorithm
can be computationally infeasible for large problems. Hotz and Miller (1993) propose an estimator
that is much easier to compute. Suppose that the payoff function is linear in parameters,

u(a, x; θu) = z(a, x)′θu,

where z(a, x) is known. Then the choice specific value functions are given by

ṽ(a, x) =z(a, x)′θu + βE
[

max
a′∈A

ṽ(a′, x′) + ϵ(a)|a, x
]

=z(a, x)′θu + βE

[
∑

a′∈A
v(a′, x′)P(a′|x′)|a, x

]
+ βE[E[ϵ(a′)|α(x′, ϵ) = a′]|a, x]

=z(a, x)′θu + βE

[
∑

a′∈A
v(a′, x′)P(a′|x′)|a, x

]
+ βE[ ∑

a′∈A
E[ϵ(a′)|ṽ(a′, x′) + ϵ(a′) ≥ ṽ(a′′, x′) + ϵ(a′′)∀a′′ ∈ A]P(a′|x′)|a, x]

Let
e(a, x) = βE[ ∑

a′∈A
E[ϵ(a′)|ṽ(a′, x′) + ϵ(a′) ≥ ṽ(a′′, x′) + ϵ(a′′)∀a′′ ∈ A]|a, x].

Then it is clear that we can write

ṽ(a, x) = z̃(a, x)′θu + ẽ(a, x)

where
z̃(a, x) = z(a, x) + βE[ ∑

a′∈A
z̃(a′, x′)P(a′|x′)|a, x]
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and

ẽ(a, x) = e(a, x) + βE[ ∑
a′∈A

ẽ(a′, x′)P(a′|x′)|a, x].

Note that E[ϵ(a′)|ṽ(a′, x′) + ϵ(a′) ≥ ṽ(a′′, x′) + ϵ(a′′)∀a′′ ∈ A]|a, x] only depends on the distribu-
tion of ϵ, G, and ṽ(a′, x′)− ṽ(a′′, x′). As in the identification section, Hotz and Miller (1993) show
that

ṽ(a′, x′)− ṽ(a′′, x′) = q(a′, a′′, P(·|x), G)

for some known function q. P(a|x) can be estimated from the observed a and x. E[·|a, x] can also
be estimated from the observed a and x. Therefore, estimates of z̃ and ẽ can be formed before
estimating θ. Denote these by ẑ and ê. Once we have ẑ and ê, we can form estimates of the
probability of any action conditional on x given any θ.

P̂(a|x; θ) = P

(
a = arg max

a′∈A
ẑ(a′, x)′θ + ê(a′, x)

)

Hotz and Miller (1993) propose estimating θ by GMM using moment conditions of the form

N

∑
i=1

Ti

∑
t=1

f (xit)
(
1{ait = a} − P̂(a|xit; θ)

)
.

Aguirregabiria and Mira (2002) show that if you use the pseudo maximum likelihood to estimate
θ with pseudo-likelihood function,

L̃(θ) =
N

∑
i=1

Ti

∑
t=1

log P̂(ait|xit; θ),

then θ̂ has the same asymptotic distribution as when you use the two-step nested fixed point
estimator. However, Aguirregabiria and Mira (2010) describe Monte Carlo evidence that in finite
samples, this pseudo maximum likelihood estimator can have large bias.

• Nested pseudo likelihood.
• Using simulation.

4. DYNAMIC GAMES

The above methods can be applied to dynamic games as well as dynamic decision problems.
As above, let’s restrict our attention to games with discrete states and actions. Suppose there are N
players indexed by i. Each player chooses a discrete action ait ∈ A given the current observed state
xt = (x1t, ..., xNt) and a private shock ϵit. ϵit is only known to player i. xt is common knowledge
among all players. The payoff of player i depends on the actions of all players, at = (a1t, ..., aNt),
the state, xt, and the private shock, ϵit. Assume that payoffs are additively separable in ϵ,

Ui(at, xt, ϵit) = ui(at, xt) + ϵit(ait).

We will assume that ϵ is iid across time and players with CDF G. We also assume that the evolution
of xt does not depend on ϵ, F(xt+1|at, xt, ϵt) = F(xt+1|at, xt).

We restrict our attention to Markov perfect equilibria, so strategies only depend on the current
state. Let α : (X × R)N→AN denote a vector of strategies. αi is the strategy of player i, and α−i is

8
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the strategy of the other players. Let Vα
i (xt, ϵit) be the value function for player i. The associated

integrated value function is

V̄α(x) =
∫

Vα
i (xt, ϵit)dG(ϵit)

=
∫ (

max
ait∈A

vα
i (xt, ait) + ϵit(ait)

)
dG(ϵit)

where vα
i is the choice specific integrated value function, which solves

vα
i (ait, xt) =Eϵ−i [ui(ait, α−i(xt, ϵ−it), xt) + βEx[V̄α

i (xt+1)|ait, α−i(xt, ϵ−it), xt]] (3)

where the outer expectation is over ϵ−it and the inner one is over xt+1. As in the single agent case,
we can define conditional choice probabilities,

Pα
i (ai|x) =P

(
ai = arg max

j∈A
vα

i (j, x) + ϵit(j)|x
)

=
∫

1

{
ai = arg max

j∈A
vα

i (j, x) + ϵit(j)

}
dG(ϵit).

In the single agent case, the restrictions of the model end here. The conditional choice probabilities
must be consistent with maximizing the value function. In a dynamic game, we have an additional
restriction: the conditional choice probabilities should form an equilibrium. To add this constraint,
rewrite the expectation over ϵ−i in (3) as

vα
i (ait, xt) ≡ vP

i (ait, xt) = ∑
a−i∈AN−1

P−i(a−i|xt) (ui(ait, a−i, xt) + βEx[V̄α
i (xt+1)|ait, a−i, xt]) (4)

where

P−i(a−i|x) =
N

∏
j ̸=i

P(aj|x).

Let

Λ(a|vP
i (·, xt)) =

∫
1

{
ai = arg max

j∈A
vP

i (j, x) + ϵit(j)

}
dG(ϵit).

Then the equilibrium condition is that

Pi(a|x) = Λ(a|vP
i (·, x))

or in vector form P = Λ(vP) where P is the vector of conditional choice probability functions for
all players, and Λ is similarly defined.

Viewed as a function of P, Λ is a mapping from [0, 1]N|X| to [0, 1]N|X|. Moreover, Λ is continuous,
and the unit cube in RN|X| is convex compact set, so by Brouwer’s fixed point theorem, there exists
at least one equilibrium. There are often multiple equilibria.

4.1. Identification. The identification argument for single-agent dynamic decision problems shows
that given G, β, and Eϵ[u(0, α−i(x, ϵ−i), xt)] = 0, we can identify the expectation over other
player’s actions of the payoff function,

Eϵ[u(ai, α−i(x, ϵ−i), x)] = ∑
a−i

P(a−i|x)u(ai, a−i, x)

When x and a are discrete, the left hand side of this equation takes |A||X| identified values. On
the right side, we know P(a−i|x) is known, but u(ai, a−i, x) is not, and it can take |A|N |X| values.
Therefore, we need some restriction if want to identify the payoff function. The usual approach
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is to assume that there are some state variables that enter the payoff of the other players, but not
player i’s payoff directly. Then P(a−i|x) depends on all state variable, but u(ai, a−i, xi) does not.
Then u is identified if the system of equations

Eϵ[u(ai, α−i(x, ϵ−i), x)] = ∑
a−i

P(a−i|x)u(ai, a−i, xi)

has a unique solution for u(ai, a−i, xi).

4.2. Estimation. Each of the estimation approaches described for single agent problems above can
also be used for dynamic games. As before, let θ = (θu, θp) be the parameters of the payoff function
and transition distribution. Let’s suppose we have data on M markets each with N players and
Tm time periods. We will assume that all of the data is generated by a single equilibrium. There
may be multiple equilibria given the parameters of the model, but we only observe one.

4.2.1. Maximum likelihood. The likelihood can be written

L(θ, P) =
M

∑
m=1

Tm

∑
t=1

N

∑
i=1

log Λ(aimt|vP
i (·, xmt; θ)).

The maximum likelihood estimator can be written

θ̂MLE = arg max
θ∈Θ

sup
P∈(0,1)N |X|

L(θ, P) s.t. P = Λ(vP(θ))

This estimator is often very difficult to compute. In addition to the difficulty of repeatedly solving
the dynamic programming problem for each player, we must find all equilibria for each θ at which
we evaluate the constraint. In general, there multiple equilibria cannot be ruled out theoretically.
There is also not any very easy method to compute all equilibria. As in the single agent case, we
could perform two or three step maximum likelihood if there are some parameters that can be
estimated in a first step without solving the full model.

4.2.2. Pseudo likelihood. As in the single agent case, we can also estimate θ using (nested) pseudo
maximum likelihood. Given an initial consistent estimate of P, say P̂. The pseudo maximum
likelihood estimate is

θ̂PMLE
(0) = arg max

θ∈Θ
L(θ, P̂)

As above, we can repeat this process to get an iterated pseudo likelihood estimator. Let

P̂(1) = Λ
(

vP̂(θ̂PMLE
(0) )

)
.

Given that P̂ is consistent, θ̂PMLE
(0) will be as well. Then P̂(1) is also consistent. We can then define

θ̂PMLE
(1) = arg max

θ∈Θ
L(θ, P̂(1)).

Repeating this k times, we get the k-step pseudo maximum likelihood estimate, θ̂PMLE
(k) . We can

repeat this process to convergence. Unfortunately, this limit need not be the full maximum likeli-
hood estimate. It only needs to solve

θ̂PMLE
(∞) = arg max

θ∈Θ
L(θ, P̂(∞)) s.t. P̂(∞) = Λ(vP̂(∞)(θ̂PMLE

(∞) )).

To get the maximum likelihood estimate, we must take the maximum of all the limit points of it-
erated pseudo maximum likelihood estimates. Aguirregabiria and Mira (2007) call this the nested
pseudo likelihood estimator.

10
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4.2.3. Asymptotic distribution of likelihood estimators. Unlike in the single agent case, two-step max-
imum likelihood and pseudo maximum likelihood do not have the same asymptotic distribution.
Pseudo maximum likelihood, iterated pseudo likelihood, and nested pseudo likelihood also have
different distributions. To simplify the asymptotics, we will look at the case where T and N are
xed, M→∞, and observations across markets are independent. The analysis can easily be adapted
to other cases.

Lets begin by looking at the pseudo maximum likelihood estimator, θ̂PLE
(0) . Taking the usual

mean value expansion of the rst order condition, we have

0 =∇θL(θ̂PLE
(0) , P̂)

=∇θL(θ0, P0) +∇2
θ,θL(θ̂PLE

(0) − θ0) +∇2
θ,PL(P̂ − P0) + op(M−1/2)

√
M(θ̂PLE

(0) − θ0) =− Ωθ,θ

(√
M∇θL+ Ωθ,P

√
M(P̂ − P0)

)
+ oP(1).

Note that if we knew P0, we could maximize the likelihood respect to θ given the known P to
obtain an infeasible θ̂ IMLE maximum liklehood estimate.

θ̂ IMLE = arg max
θ∈Θ

L(θ, P0)

This infeasible estimate would have a similar asymptotic expansion as θ̂PLE
(0) , but without the sec-

ond term, √
M(θ̂ IMLE − θ0) = −Ωθ,θ

√
M∇θL.

Lets assume that √
M∇θL

d→ N(0, Ωθ,θ)

Since θ̂ IMLE is the maximum likelihood estimate of θ when P is known (and the constraint that P
must correspond to equilibrium choice probabilities given θ has not been imposed), it is efcient
(among estimates that do not impose the constraint). θ̂PLE

(0) is another consistent estimator. As
usual, the difference between an efcient estimate and another estimate must be uncorrelated with
the efcient estimate (If not, we could construct a more efcient estimate). Therefore, if we assume
that √

M(P̂ − P0)
d→ N(0, Σ0)

then √
M(θ̂PLE

(0) − θ0)
d→ N

(
0, Ω−1

θ,θ + Ω−1
θ,θ Ωθ,PΣΩ′

θ,PΩ−1
θ,θ

)
From this, we see that θ̂PLE

(0) has variance equal to that of the infeasible MLE , Ω−1
θ,θ , plus an addi-

tional term due the estimation of P.
From the above, we can easily get an expression for the asymptotic distribution of iterated

pseudo likelihood. We instantly get that
√

M(θ̂PLE
(K) − θ0)

d→ N
(

0, Ω−1
θ,θ + Ω−1

θ,θ Ωθ,PΣkΩ′
θ,PΩ−1

θ,θ

)
(5)

where Σk is the asymptotic variance of P̂k. We can compute Σk using the delta method. For k = 1
we have
√

M(P̂(1) − P0) =
√

M
(

Λ(θ̂PLE
(0) , P̂0)− Λ(θ0, P0)

)
=
√

MΛθ(θ̂
PLE
(0) − P0) + ΛP(θ̂

PLE
(0) − P0) + oP(1)

d→ N
(

0, ΛθΩ−1
θ,θ Λ′

θ +
(

ΛθΩ−1
θ,θ Ωθ,P + ΛP

)
Σ0

(
ΛθΩ−1

θ,θ Ωθ,P + ΛP

)′)
11
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We can plug this result into 5 to get the asymptotic variance of θ̂PLE
(k) . However, there does not seem

to be any nice way to simplify this expression. It is generally not even possible to show whether
iterating decreases or increases the variance.

The nest pseudo likelihood estimate satisfies both Λ(θ̂NPL, P̂NPL) = PNPL and the first order
condition for maximizing the likelihood. Combining these two conditions and rearranging, we
can show that

√
M(θ̂NPL − θ0)

d→ N
(

0,
(

Ωθ,θ + Ωθ,P(I − ΛP)
−1Λθ

)−1
Ωθ,θ

(
Ωθ,θ + Ωθ,P(I − ΛP)

−1Λθ

)−1′
)

Aguirregabiria and Mira (2007) show that if the eigenvalues of ΛP are between 0 and 1, then this
variance is smaller than Ω−1

θ,θ . However, there no particular reason for this condition to hold. ?
give some examples where the eigenvalues of LbP are outside of this range.
Comparison with single-agent model. In the single agent case, the pseudo likelihood estimate
and iterated versions of it all have the same asymptotic distribution. The reason is the Ωθ,P = 0
in single agent models. The reason this derivative is zero is that it depends on the derivative of v
with respec to P. Since P maximizes v, this derivative is zero. In a game, vP

i still has zero derivative
with respect to Pi, but it doees not have zero derivative with respect to P−i. Therefore, Ωθ,P ̸= 0 in
dynamic games.
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