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UNIVERSITY OF BRITISH COLUMBIA

ECONOMICS 628: TOPICS IN ECONOMETRICS

In this assignment, you will analyze Graddy’s data on the Fulton fish market using quantile
regression.

Part 1. Download the daily Fulton fish market data in worksheet format from http://people.

brandeis.edu/~kgraddy/data.html. You can load the data into Matlab/Octave with

data=dlmread(’fish.out.txt’,’\t’ ,2,0);

dayOfWeek = data (: ,1:4); % monday , tuesday , wednesday , thursday

stormy = data (: ,6); % stormy weather

mixed = data (: ,7); % rough weather

logp = data (:,8); % log price

logq = data (:,9); % log quantity sold

rainy = data (: ,10); % rainy weather

cold = data (: ,11); % cold weather

windspd = data (: ,12); % wind speed

windspd2 = data (: ,13); % wind speed squared

price = data (: ,14); % price

qRecieved = data (: ,15); % quantity of fish received from fishermen

qSold = data (: ,16); % quantity of fish sold

Even though this is time series data, you can assume that the observations are independent for
this assignment.

(1) Estimate a least squares regression of log quantity on log price and a constant. Report the
coefficient on log price and its standard error.

(2) Estimate a two stage least squares regression of log quantity on log price and a constant.
Report the coefficient on log price and its standard error.

Part 2. The problem of minimizing a linear function subject to linear constraints,

min
x∈Rn

cTx

subject to

Ax ≤ b

is called a linear program. Note that the constraints can include equality constraints or upper and
lower bound constraints on x by defining A appropriately. Linear programs have many applica-
tions, so there are efficient algorithms to compute their solutions. Chapter 6 of Koenker (2005) is a
good introduction to linear programming and how it relates to quantile regression.
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Recall that quantile regression minimizes the average of the check function,

min
β∈Rd

En [ρτ(yi − xiβ)] .

This can be written in the form of a linear program as follows. Let X be the n × d matrix of
regressors, and Y be the n × 1 vectors of outcomes.

min
(u,v,β)∈R2n+d

τu + (1 − τ)v

subject to

Y − Xβ = u − v

u ≥ 0

v ≥ 0

or

min
(u,v,β)∈R2n+d

 τın

(1 − τ)ın

0ıd

T u
v
β


subject to
In −In X
−In In −X
−In 0 0

0 −In 0


u

v
β

 ≤


Y
Y

0ın

0ın


where ın is a n × 1 vector of ones. The Matlab command for solving linear programs is linprog,
and the Octave command is glpk.

(1) Estimate a quantile regression of log quantity on log price. Do so for each decile, τ =

0.1, 0.2, ...0.9.
(2) Estimate the standard error for your quantile regression coefficients. There are many ways

to do this, one way is the following:

% estimate variance

e = y - x*b;

% bandwidth set similar to Koenker 2005 p81

c = numel(y)^( -1/3)* min(tau ,1-tau);

h = std(e)*( norminv(tau+c)-norminv(tau -c))

% epanechnikov kernel

K = @(u) 0.75*( abs(u) <1).*(u.^2 -1);

J = inv (((K(e/h)/h*ones(1,size(x ,2))).*x)’ *x/n);

xte = x.*((tau -1*(e>0))* ones(1,size(x ,2)));

Om = xte ’*xte/n;

V = J*Om*J/n;

Another option would be to use bootstrap. However you estimate the standard errors, say
whether your method is robust to misspecification of the conditional quantile function.

(3) Graph your estimates of the coefficient of log price as a function of the quantile. Include
90% confidence bands. State whether your confidence bands are pointwise or uniform in
τ.
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Part 3. Suppose that market demand is

yd = q(p, u)

where q is increasing in u, and u ∼ U(0, 1) is an unobserved variable capturing the state of de-
mand. Suppose supply is

ys = s(p, z, ε)

for some observed variable z and unobserved variable ε. Then the equilibrium price solves

q(p, u) = s(p, z, ε),

so
p = δ(z, v)

for some function δ with v = (u, ε).
Assume that q(p, u) = A(u)pβ(u)

(1) Does the quantile regression in part 2 estimate β(u) consistently?
(2) What does 2SLS from part 1 estimate in terms of A(u) and β(u)?
(3) Under what assumptions can control function quantile regression be used to log A(u) and

β(u)?
(4) Under what assumptions can IV quantile regression be used to estimate log A(u) and β(u)?

Part 4. In this part, you will estimate β(u) and log A(u) for u = 0.1, 0.2, ..., 0.9 using the control
function approach.

(1) Regress log price on instruments wind speed, stormy, and mixed. Form the estimated
residuals v̂.

(2) Perform a quantile regression of log quantity on log price, a constant, and a series of v̂. For
example,

Pi = regress(logp ,z);

vhat = logp - z*Pi;

v = vhat -min(vhat);

v = v/max(v)*pi;

xcf = [logp ones(n,1) cos(v*(1:k))];

b = qregress(logq ,xcf ,tau(j))

where regress and qregress are functions that perform regression and quantile regression
(you have to create these).

(3) Plot the estimated demand curves.

Part 5. In this part, you will estimate β(u) and log A(u) for u = 0.1, 0.2, ..., 0.9 using IV quantile
regression.

(1) For a fine grid of possible values for β(u), quantile regress log quantity minus β(u) times
log price on a constant and instruments, stormy and mixed. Calculate and save the norm
of the coefficients of the instruments. Plot the norm of the coefficients of the instruments
as a function of β(u). Set β̂(u) to the value that minimizes the norm of the coefficients of
the instruments.

(2) Repeat the previous steps using stormy, mixed, and wind speed as instruments. Comment
on the results.

(3) Plot β̂(u) as function of u, along with the control function estimates from part 4 and the
plain quantile regression estimates from part 2
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