HOMEWORK 6: STRUCTURAL DYNAMIC DISCRETE CHOICE

HIRO KASAHARA, SLIGHTLY MODIFIED BY PAUL SCHRIMPF DUE: WEDNESDAY, NOVEMBER 30TH UNIVERSITY OF BRITISH COLUMBIA ECONOMICS 628: TOPICS IN ECONOMETRICS

Consider a dynamic model of import decision:

$$V(\omega_{t-1}, d_{t-1}) = \max_{d_t \in \{0, 1\}} W(\omega_{t-1}, d_{t-1}, d_t) + \xi_t(d_t)$$
(1)

$$W(\omega_{t-1}, d_{t-1}, d_t) = \mathbb{E}\left[\tilde{\pi}_{\theta}(\omega_t, d_t) - FC_{\theta}(d_t, d_{t-1}) + \beta V(\omega_t, d_t) | \omega_{t-1}, d_{t-1}\right].$$
(2)

where ω_t is productivity, $(\xi_t(0), \xi_t(1))$ are import cost shocks, d_t is a binary import decision, $\pi_t(\cdot)$ is the profit after maximizing out the variable inputs,

$$FC_{\theta}(d_t, d_{t-1}) = (\delta_1 + \delta_2(1 - d_{t-1}))d_t$$

is the fixed cost of importing materials where δ_1 is per-period fixed cost while δ_2 is one-time sunk cost of importing. The stochastic process of ω_t and $(\xi_t(0), \xi_t(1))$ are given by

$$\omega_t = \rho \omega_{t-1} + \epsilon_t$$

 $\epsilon_t \sim_{iid} N(0, \sigma^2),$
 $(\xi(0), \xi(1)) \sim_{iid}$ Type 1 Extreme value distribution

We specify

$$\tilde{\pi}_{\theta}(\omega_t, d_t) = \exp(\tilde{\alpha}_0 + \tilde{\alpha}_1 \omega_t + \alpha_2 d_t)$$

and

$$\mathbb{E}\left[\tilde{\pi}_{\theta}(\omega_{t}, d_{t})|\omega_{t-1}, d_{t-1}\right] = \mathbb{E}\left[\exp(\tilde{\alpha}_{0} + \tilde{\alpha}_{1}\omega_{t} + \alpha_{2}d_{t})|\omega_{t-1}, d_{t-1}\right]$$
$$= \exp(\alpha_{0} + \alpha_{1}\omega_{t-1} + \alpha_{2}d_{t}) \equiv \pi_{\theta}(\omega_{t-1}, d_{t})$$

with $\alpha_0 = \tilde{\alpha}_0 + 0.5\sigma^2$ and $\alpha_1 = \tilde{\alpha}_1\rho$, where the last equality follows from $\omega_t = \rho\omega_{t-1} + \epsilon_t$ and $E[\exp(\epsilon_t)] = \exp(0.5\sigma^2)$.

Using the property of extreme value distributed variable, (1) and (2) can be written as

$$V(\omega_{t-1}, d_{t-1}) = \text{Euler's constant} + \ln\left(\sum_{d_t \in \{0,1\}} \exp\left(W(\omega_{t-1}, d_{t-1}, d_t)\right)\right)$$
(3)

$$W(\omega_{t-1}, d_{t-1}, d_t) = \pi_{\theta}(\omega_{t-1}, d_t) - FC_{\theta}(d_t, d_{t-1}) + \beta \int V(\rho\omega_{t-1} + \epsilon', d_t)(1/\sigma)\phi(\epsilon'/\sigma)d\epsilon'.$$
(4)

Once the fixed point of (3) and (4) is solved, then we can compute the conditional choice probabilities by the logit formula as:

$$P_{\theta}(d_{t} = 1 | \omega_{t-1}, d_{t-1}) = \frac{\exp\left(\pi_{\theta}(\omega_{t-1}, 1) - FC_{\theta}(1, d_{t-1}) + \beta E_{\epsilon'}\left[V(\rho\omega_{t-1} + \epsilon', 1)\right]\right)}{\sum_{d' \in \{0,1\}} \exp\left(\pi_{\theta}(\omega_{t-1}, d') - FC_{\theta}(d', d_{t-1}) + \beta E\left[V(\rho\omega_{t-1} + \epsilon', d')\right]\right)}$$
(5)

Read "HW6_data" into Matlab, which contains $N \times (T+1)$ panel data for firm's discrete import decisions ("d_m") and productivity shock ("omega"), where there are N = 1976 firms across

T + 1 = 7 years. Estimating the AR(1) process for ω_{it} , we have $\hat{\rho} = 0.5955$ and $\hat{\sigma}^2 = 0.0657$. In this exercise, you are asked to estimate the parameters

$$\theta = (\alpha_0, \alpha_1, \alpha_2, \delta_1, \delta_2)$$

while fixing $\rho = 0.5955$ and $\sigma^2 = 0.0657$ by maximizing the log likelihood function:

$$\mathcal{L}(\theta | \{ d_{it}, \omega_{it}) = \sum_{i=1}^{N} \sum_{t=1}^{T_i} \ln \left(P_{\theta}(d_{it} | \omega_{i,t-1}, d_{i,t-1}) \right),$$
(6)

where

$$\mathbf{P}_{\theta}(d_{it}|\omega_{i,t-1},d_{i,t-1})$$

is given by (5).

Part 1. Solve the fixed point of (4) by approximating the state space of ω by a set of $N_{\omega} = 61$ discrete points: $\mathcal{W} = \{-1.5, -1.45, -1.4, ..., -0.05, 0, 0.05, ..., 1.4, 1.45, 1.5\}$. Let $\omega^1 = -1.5, \omega^2 = -1.45, ..., \omega^{61} = 1.45$, and $\omega^{N_{\omega}} = 1.5$. Let

$$q_j = (\omega_j + \omega_{j+1})/2$$

for $j = 1, ..., N_{\omega-1}$ so that q_j is the middle point between ω_j and ω_{j+1} . The AR(1) process of ω is then approximated on the grid as:

$$\mathbf{P}(\omega_t = \omega^j | \omega_{t-1} = \omega^i) = \begin{cases} \Phi((q^1 - \rho \omega^i) / \sigma) & \text{if } j = 1\\ \Phi((q^j - \rho \omega^i) / \sigma) - \Phi((q^{j-1} - \rho \omega^i) / \sigma) & \text{if } 1 < j < N_{\omega} \\ 1 - \Phi((q^{N_{\omega}} - \rho \omega^i) / \sigma) & \text{if } j = N_{\omega}. \end{cases}$$

Compute $Pr(\omega_t = \omega^j | \omega_{t-1} = \omega^i)$ for $i, j = 1, ..., N_\omega$ and construct a $N_\omega \times N_\omega$ transition matrix, called M_ω , of which (i, j)-th element is $P(\omega_t = \omega^j | \omega_{t-1} = \omega^i)$. We set $\beta = 0.9$.

Part 2. Once the state space is discretized, both the value function *V* and the conditional choice probabilities $P_{\theta}(d_t = 1 | \omega_{t-1}, d_{t-1})$ can be expressed by $N_{\omega} \times 2$ matrices. Write a function m-file which takes θ , M_{ω} , and $\{\omega^1, ..., \omega^{N_{\omega}}\}$ as inputs and then produces the fixed point *V* and the conditional choice probability $P_{\theta}(d_t = 1 | \omega^j, d_{t-1})$ for $j = 1, ..., N_{\omega}$.

Part 3. "Discretize" the data on productivity shock, $\{\omega_{it}\}$, by setting ω_{it} equal to the closest grid point among $\{\omega^1, ..., \omega^{N\omega}\}$, i.e.,

$$\omega_{it}^* = egin{cases} \omega^1 & ext{if } \omega_{it} \leq q^1 \ \omega^j & ext{if } q^j < \omega_{it} \leq q^{j+1} \ \omega^{N_\omega} & ext{if } q^{N_\omega} < \omega_{it} \end{cases}$$

Part 4. Write a function m-file which takes θ , M_{ω} , and $\{\omega^1, ..., \omega^{N_{\omega}}\}$, $\{\omega_{it}^*\}$, and $\{d_{it}\}$ as inputs and produces the negative value of log-likelihood function (6) as output. Estimate θ by maximum likelihood. Report the estimates and their standard errors.

Part 5. The conditional choice probabilities $P_{\theta}(d_t = 1 | \omega_t, d_{t-1})$ and the transition matrix of ω_t^* jointly characterize the stochastic process of (d_t, ω_t^*) . Using the estimate $\hat{\theta}$ and the transition matrix M_{ω} , compute the stationary joint distribution of (d_t, ω_t^*) as well as the conditional distribution of d_t given ω_t^* in the long-run.

Part 6. Compute the empirical transition matrix of d_t and report it in the 2 × 2 table, where the (1,1)-th element is a fraction of firms with $d_t = 0$ given $d_{t-1} = 0$. Compute the predicted transition matrix of d_t under the estimated parameters and compare it with the empirical transition probability. Does the estimated model successfully replicate the dynamic patterns of import status?

Part 7. Suppose that a government unexpectedly and permanently introduces import subsidies in the form of one-time lump-sum transfer for the "first-time" importers at t = 0 and, as a result, the value of δ_2 decreases by 50%. Analyze how a fraction of importers change over time after the introduction of import subsidies starting from the stationary distribution of (ω_t^*, d_t) by plotting a fraction of importers as y-axis and time as x-axis.