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Consider some experimental treatment, such as taking a drug or attending a job training pro-
gram. It is very likely that different people respond differently to the treatment. For example, with
the training program, some people may earn the same whether or not they receive the training,
while other people’s earnings may be much greater with the training than without. Recognizing
this seemingly simple fact greatly affects how we can interpret instrumental variable estimates of
the effect of the treatment.

1. CONTEXT

In addition to being empirically relevant, treatment heterogeneity has been important in the de-
velopment of econometric thought. The thing that distinguishes econometrics from statistics more
than anything else is that econometrics focuses far more on estimating causal relationships from
observational data. Traditional econometrics focuses on combining economic theory with obser-
vational data to infer causal effects. Simultaneous equation methods to estimate e.g. demand and
supply, and the Heckman selection model to estimate e.g. the effect of education on earnings are
canonical examples of this approach. Roughly in the 1980s, some researchers grew increasingly
skeptical of this approach. Their view was that many traditional econometric models made too
strong of assumptions. There was a recognition that some of the basic assumption of idealized
economic theory may not hold. Moreover, many traditional econometric models invoked func-
tional form and distributional assumptions for tractibility. These assumptions are difficult to de-
fend. Additionally, people became aware that these assumptions can lead to erroneous estimates.
An influential paper by LaLonde (1986) compared the estimated effect of a job training program
obtained from a randomized experiment to various non-experimental estimates. He found that
the non-experimental estimates were sensitive to auxillary assumptions, and often did not agree
with the experimental estimate. Results such as this led some economists to reject the traditional
approach to econometrics and instead think of causality as only what could be estimated in an ide-
alized experiment. This approach to econometrics is sometimes called the reduced form approach.
The traditional approach to econometrics is called the structural approach.

Naturally, there has been some tension between adherents to each of these two approaches.
This tension has helped spur progress in both approaches. Since the 1980s, reduced form advo-
cates have greatly clarified exactly what they are estimating. Meanwhile, structural advocates
have greatly relaxed functional form and distributional assumptions, and clarified to what extent
identification comes from data and to what extent identification comes from other assumptions.
Many of the advances on both fronts came from thinking about models with heterogeneous treat-
ment effects.
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2. SETUP

I am going to shamelessly use Imbens’s slides on IV with treatment heterogeneity in lecture, so
I will follow that notation here. We have a cross section of observations indexed by i. There is a
treatment Wi ∈ W . To begin with we will focus on binary treatments, so Wi ∈ {0, 1}. Later, we will
look at multi-valued treatments. Associated with each treatment is a potential outcome, Yi(Wi),
where Yi : W→Y . Yi is a function from treatments to potential outcomes. We only observe one of
these outcomes, Yi(Wi), but we are interested in the effect treatment, which is just the difference
in potential outcomes,

Yi(1)− Yi(0).

Of course, we cannot estimate Yi(1)−Yi(0) for each individual without some unrealistically strong
assumptions. However, we can come up with reasonable assumptions to estimate e.g.

E[Yi(1)− Yi(0)] = ATE

This quantity is called the average treatment effect, and is often abbreviated ATE. A related quan-
tity of interest is the average effect of treatment for those that receive treatment.

E[Yi(1)− Yi(0)|Wi = 1] = ATT

This is called the average effect of treatment on the treated.
When could we estimate the ATE and ATT? Well, the simplest case is if we have a randomized

experiment. That is, suppose Wi is randomly assigned, independent of Yi(1) and Yi(0). Then

E[Yi(1)|Wi = 1] = E[Yi(1)]

and
E[Yi(0)|Wi = 0] = E[Yi(0)].

So we can estimate the average treatment effect by1

En[Yi(1)|Wi = 1]− En[Yi(0)|Wi = 0].

Also, it is easy to see that the average treatment effect is the same as the average treatment effect
for the treated.

If there we do not have a randomized experiment, but we do have an instrument Zi such that
Z affects W but not Y, then with some assumptions, we can estimate the average treatment effect
using IV. In particular, suppose

Yi = β0 + β1Wi + εi.

Also assume that Zi is independent of the potential outcomes and potential treatments.

A1 (Independence). Let Zi ∈ Z and Wi : Z→{0, 1} then Zi is independent of (Yi(0), Yi(1), Wi), which
we denote

Zi ⊥⊥ (Yi(0), Yi(1), Wi) .

It is important to emphasize the fact that Wi is a function of Zi. Zi affects the observed treatment
through this function, but the distribution of the function is independent of Zi. In particular,
things such as Wi(z1)− Wi(z2) for two particular values of the instrument, z1, z2 are independent
of Zi. Note that this is a slight change in notation compared to earlier. Earlier, Wi was just the
observed treatment, Yi was a function of Wi, and Yi(Wi) was the observed outcome. Now, Wi is
also a function and Wi(Zi) is the observed outcome. Henceforth, we will let lower case letters,
yi = Yi(Wi(ZI)) and wi = Wi(Zi) denote the observed outcome and treatment.

1I use En[xi] =
1
n ∑n

i=1 xi to denote the empirical expectation of xi.
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Throughout we have also been assuming the following exclusion.

A2 (Exclusion). Yi is a function of only Wi(Zi), and not Zi directly.

This assumption is built into our notation, but it is good to state it explicitly, so that we do not
forget that we are making it.

The third assumption that we need is the instrument is relevant.

A3 (Instrument relevance). E[Wi(z)] 6= 0 (as a function of z)

Then

β̂IV
1 =

En [Yi(Zi − En[Zi])]

En [Wi(Zi − En[Zi])]

is a consistent estimate of the average treatment effect and the treatment effect on the treated.

3. LOCAL AVERAGE TREATMENT EFFECTS

From the previous paragraph, we see that IV consistently estimates the average treatment effect
when the treatment effect is homogeneous. What happens when the treatment effect is heteroge-
neous? For ease of exposition let’s assume that Zi is also binary. Then plim of the IV estimate can
be written as2

plim β̂IV
1 =

E[Yi(wi)|Zi = 1]− E[Yi(wi)|Zi = 0]
E[wi|Zi = 1]− E[wi|Zi = 0]

=
E[Yi(1)wi + Yi(0)(1 − wi)|Zi = 1]− E[Yi(1)wi + Yi(0)(1 − wi)|Zi = 0]

E[wi|Zi = 1]− E[wi|Zi = 0]

=
E[Yi(1)Wi(1)− Yi(0)Wi(1)]− E[Yi(1)Wi(0)− Yi(0)Wi(0)]

E[wi|Zi = 1]− E[wi|Zi = 0]

=
E [(Yi(1)− Yi(0)) (Wi(1)− Wi(0))]

E[wi|Zi = 1]− E[wi|Zi = 0]

=
P(∆Wi = 1)E [Yi(1)− Yi(0)|∆Wi = 1]− P(∆Wi = −1)E [Yi(1)− Yi(0)|∆Wi = −1]

P(∆Wi = 1)− P(∆Wi = −1)
(1)

where ∆Wi = Wi(1)− Wi(0) is the change in treatment when the instrument changes from 0 to 1.
The expressions E[Yi(1)− Yi(0)|∆Wi = 1] and E[Yi(1)− Yi(0)|∆Wi = −1] are average treatment
effects conditional on W changing when the instrument changes. This is useful because although
these conditional expectation are not the average treatment effect or the average treatment effect
on the treated, they are average treatment effects for certain subgroups. However, βIV

1 does not
estimate these conditional expectations separately. It only estimates the weighted sum in (1). Also
notice that even if E[Yi(1)− Yi(0)|∆Wi = 1] and E[Yi(1)− Yi(0)|∆Wi = −1] are both positive, βIV

1
can be positive, negative, or zero. Without a further restriction, the IV estimate might not even
have a meaningful sign.

Fortunately, there is a reasonable restriction that can be made. In many cases, we think of
instruments that have a monotonic effect on the probability of receiving treatment. For example,
in the military service application of Angrist (1990) that we talked about in class, it is sensible to
assume that lower draft numbers only increase the probability of serving in the military. In other
words, it can be reasonable to assume that ∆Wi ≥ 0.

A1 (Monotone instrument). Wi(1) ≥ Wi(0)

2This uses the Wald estimate formula for IV with a binary instrument. We went through this in class, but I’m not
going to write it here. See e.g. Angrist and Pischke (2009) for a derivation.
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This means that there are no people who receive treatment when the instrument is 0, but do
not receive treatment when the instrument is 1. In general, we can divide the population into four
groups:

(1) Always takers always receive treatment, Wi(1) = Wi(0) = 1
(2) Never takers never receive treatment, Wi(1) = Wi(0) = 0
(3) Compliers receive treatment only when the instrument is 1, Wi(1) = 1, Wi(0) = 0.
(4) Deniers receive treatment only when the instrument is 0, Wi(1) = 0, Wi(0) = 1.

If we assume that there no deniers, then

plim β̂IV
1 =

P(∆Wi = 1)E [Yi(1)− Yi(0)|∆Wi = 1]
P(∆Wi = 1)

(2)

=E[Yi(1)− Yi(0)|∆Wi = 1]. (3)

This expression is what Imbens and Angrist (1994) call the local average treatment effect, abbrevi-
ated LATE. It is the average treatment effect for compliers.

3.1. Representativeness of compliers. One natural question is how similar the compliers are to
the rest of the population. There is no definitive way to answer this question, but you can get
some idea by comparing the compliers to the always takers and the never takers. We can estimate
the portion of always takers, compliers, and never takers as follows. Let a denote always takers, n
never takers, and c compliers.

E[wi|Zi = 0] =E[wi|Zi = 0, a]P(a|Zi = 0) + E[wi|Zi = 0, n]P(n|Zi = 0) + E[wi|Zi = 0, c]P(c|Zi = 0)

=P(a|Zi = 0)

The second line follows from the fact that by definition compliers and never takers have Wi = 0
when Zi = 0, and always takers have wi = 1. Now an always taker is just someone with Wi(1) =
Wi(0) = 1. Assumption A1 says that the function Wi is independent of Zi. Always takers are
defined by Wi, therefore being an always taker (or never taker or complier) is independent of Zi,
and P(a) = P(a|Zi). Thus,

P(a) = E[wi|Zi = 0].

Identical reasoning3 shows that
P(n) = 1 − E[wi|Zi = 1],

and
P(c) = 1 − P(n)− P(a) = E[wi|Zi = 1]− E[wi|Zi = 0].

This is useful, but our interpretation of any given local average treatment effect likely depends on
P(c). If we know that the compliers are most of the population (P(c) is near 1), then we should
expect that the LATE is near the ATE (although the difference can still be arbitrarily large if Y is
unbounded).

We can get an even better idea of how the compliers compare the rest of the population by
comparing E[Yi(0)|c] with E[Yi(0)|n], and E[Yi(1)|c] with E[Yi(1)|a]. We have already shown
that E[Yi(1)− Yi(0)|c] is identified. Now we will show that E[Yi(0)|c] , E[Yi(0)|n], E[Yi(1)|c], and
E[Yi(1)|a] can be identified.

First note that by the independence assumption (A1),

E[Yi(1)|a] = E[Yi(1)|Wi(1) = Wi(0) = 1] =

= E[Yi(1)|Wi(1) = Wi(0) = 1, Zi = 1] = E[Yi(1)|Wi(1) = Wi(0) = 1, Zi = 0]

3It might be a useful exercise to write out the argument.
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Also, since anyone with wi = 1 and Zi = 0 is an always taker,

E[Yi(1)|Wi(1) = Wi(0) = 1, Zi = 0] = E[Yi(wi)|wi = 1, Zi = 0].

Thus,
E[Yi(1)|a] = E[yi|wi = 1, Zi = 0]

is identified. Similarly,4

E[Yi(0)|n] = E[yi|wi = 0, Zi = 1]

is identified. Now observe that

E[yi|wi = 1, Zi = 1] =E[yi|wi = 1, Zi = 1, c]P(c|wi = 1, Zi = 1) + E[yi|wi = 1, Zi = 1, a]P(a|wi = 1, Zi = 1)

=E[Yi(1)|c]P(c|wi = 1, Zi = 1) + E[Yi(1)|a]P(a|wi = 1, Zi = 1)

wi = 1 when Zi = 1 only for compliers and always takers, so

P(c|wi = 1, Zi = 1) =
P(c|Zi = 1)

P(c|Zi = 1) + P(a|Zi = 1)

=
P(c)

P(c) + P(a)
Thus,

E[yi|wi = 1, Zi = 1] =E[yi|wi = 1, c]
P(c)

P(c) + P(a)
+ E[Yi(1)|a]

P(a)
P(c) + P(a)

and

E[Yi(1)|c] =E[yi|wi = 1, Zi = 1]
P(c) + P(a)

P(c)
− E[Yi(1)|a]

P(a)
P(c)

=E[yi|wi = 1, Zi = 1]
P(c) + P(a)

P(c)
− E[yi|wi = 1, Zi = 0]

P(a)
P(c)

.

Similarly,

E[Yi(0)|c] = E[yi|wi = 0, Zi = 0]
P(c) + P(n)

P(c)
− E[yi|wi = 0, Zi = 1]

P(n)
P(c)

.

So you can estimate and compare E[Yi(0)|c] with E[Yi(0)|n] and E[Yi(1)|c] with E[Yi(1)|a]. For an
example of this see Imbens and Wooldridge (2007), which we talked about in lecture.

3.2. Multi-valued instruments. In our analysis of LATE above we assumed that the instrument
in binary. If the instrument takes on multiple values, say Zi ∈ Z then for any pair z0, z1 ∈ Z , we
could repeat the analysis above to show that

LATE(z0, z1) = E[Yi(1)− Yi(0)|Wi(z1) = 1, Wi(z0) = 0]

is identified. Also, as above we could define populations of compliers, always takers, and never
takers for each z0, z1. Of course, do to this we need assumption A1 to hold for each z0, z1 i.e.
Wi(z0) ≤ Wi(z1).

What does β̂IV
1 estimate when Z is multi-valued? Well, in general you can’t get a nice inter-

pretable expression for it. However, with some further assumptions you can show that the IV
estimate is a weighted average of LATE(z0, z1) across different values of z0 and z1. Imbens and
Angrist (1994) state this result for when Z has discrete support. In the next section, we will give
an analogous result for continuously distributed Z.

4It might be a useful exercise to write out the argument.
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4. CONTINUOUS INSTRUMENTS AND MARGINAL TREATMENT EFFECTS

This section is largely based on Heckman and Vytlacil (1999) and Heckman and Vytlacil (2007).
The more structural approach to treatment effects typically treat treatment assignment as a selec-
tion problem. That is, they assume that treatment is determined by a latent index,

Wi(Zi) = 1{ν(Zi)− Ui ≥ 0},

where ν : Z→R, Ui is some real valued random variable, and Ui ⊥⊥ Zi. It is easy to see that
a latent index model implies the monotonicity assumption (A1) of LATE. For any z0, z1, either
ν(z0) ≤ ν(z1) or ν(z0) ≥ ν(z1), and then either Wi(z0) ≤ Wi(z1) or Wi(z0) ≥ Wi(z1) for all i. On
the other hand, it is not clear that the assumptions of LATE imply the existence of such an index
model. In fact, early papers on LATE emphasized that the LATE framework does not include a
potentially restrictive latent index assumption. You might think that the latent index model is
completely unrestrictive since you can always let ν(z) = P(Wi(Zi) = 1|Zi = z) and make U
uniform. However, such a U need not be independent of Z. Nonetheless, it turns out that the
four LATE assumptions imply the existence of a latent index model with Ui ⊥⊥ Zi. This result was
shown by Vytlacil (2002). This is a useful observation because there are some results that are easier
to show directly from the LATE assumptions, and other results that are easier to show from the
latent index selection assumption.

Let π(z) = P(wi = 1|Zi = z). As in the previous section we can define

LATE(p0, p1) =
E[yi|π(Zi) = p1]− E[yi|π(Zi) = p0]

p1 − p0

and we should expect that this is the average treatment group for a certain group of compliers.
However, this group is a bit complicated because it involves all z1, z0 such that π(z1) = p1, and
π(z0) = p0. We can get a more tractable expression by using the latent index assumption. Notice
that

E[yi|π(Zi) = p] =pE[Yi(1)|π(Zi) = p, D = 1] + (1 − p)E[Yi(0)|π(Zi) = p, D = 0]

=p
∫ p

0
E[Yi(1)|Ũi = u]du + (1 − p)

∫ p

0
E[Yi(0)|Ũi = u]du

where Ũi = FU(Ui) is uniformly distributed (if we assume Ui is absolutely continuous with respect
to Lebesgue measure, something that Vytlacil (2002), shows we can do without loss of generality)
and Ui ≤ ν(Zi) iff Ũi ≤ π(Zi). Then,

LATE(p0, p1) =

∫ p1
p0

E[Yi(1)− Yi(0)|Ũi = p]dp

p1 − p0

=E[∆Yi|P(z0) ≤ Ũi ≤ P(z1)]. (4)

So LATE(p0, p1) is the average treatment effect for people with Ũi between p0 and p1. We can
estimate LATE(p0, p1) only when we observe z0 and z1 such that π(z0) = p0 and π(z1) = p1.
Also, LATE(0, 1) is the average treatment effect. This is the well known result that in selection
models, we can identify the average treatment effect only if we have an exclusion with “large
support” i.e. ∃z0, z1 ∈ Z such that π(z0) = 0 and π(z1) = 1.

The expression in the integrand of (4),

MTE(p) = E[∆Yi|Ũi = p]

is called the marginal treatment effect. It is the effect of treatment for people with Ũ = p0, i.e. those
with Ui = ν(z0) where π(z0) = p0. These people are indifferent between receiving treatment or
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not. We can write pretty much any other possible treatment effect of interest as an integral of the
marginal treatment effect. For example,

ATE =
∫ 1

0
MTE(p)dp.

We can identify the marginal treatment as follows. If we take the limit as p1 approaches p0 of
LATE(p1, p0), we get

LIV(p0) = lim
p1→π0

E[yi|π(Zi) = p1]− E[yi|π(Zi) = p0]

p1 − p0

Heckman and Vytlacil (1999) call this the local instrumental variables estimate. It is clear that

LIV(p) =E[∆Yi|Ũi = p] = MTE(p),

so LIV is an estimate of MTE.

4.1. βIV as a weighted average of MTE. We can show that βIV
1 estimates a weighted average of

marginal treatment effects. Suppose we use some function of Zi, g(Zi) as an instrument. Then,

βIV
1 (g) =

E[yi(g(zi)− E[g(zi)])]

E[yi(g(zi)− E[g(zi)])]
.

Following Heckman and Vytlacil (2007), we will deal with the numerator and denominator sepa-
rately. Let g̃(Zi) = g(Zi)− E[g(Zi)]. Note that

E[yi(g(zi)− E[g(zi)])] =E [(Yi(0) + wi(Yi(1)− Yi(0))) g̃i(Z)]

=E [wi (Yi(1)− Yi(0)) g̃i(Z)] (independence of zi and Yi(1))

=E
[
1{Ũi ≤ π(zi)} (∆Yi) g̃i(Z)

]
=E

[
1{Ũi ≤ π(zi)} (∆Yi) g̃(zi)

]
=E

[
1{Ũi ≤ π(zi)}EY[∆Yi|Ũ = u]g̃(zi)

]
=EU

[
EY[∆Yi|Ũ = u]EZ[g̃(zi)|π(zi) ≥ Ũi]PZ(Ũi ≤ π(zi))

]
=

∫ 1

0
MTE(u)EZ[g̃(zi)|π(zi) ≥ u]PZ(u ≤ π(zi))du

where the subscripts on expectations and probabilities are simply to emphasize what the expecta-
tion is being taken over. Finally, observe that Cov(g(z), W) = Cov(g(z), π(z)), so

βIV(g) =
∫ 1

0
MTE(u)ωg(u)du (5)

where

ωg(u) =
EZ[g̃(zi)|π(zi) ≥ u]PZ(u ≤ π(zi))

Cov(g(z), π(z))
.

It can be shown that these weights integrate to one. Also, if g(z) = π(z), it is easy to see that
weights are positive. Also, since these weights depend on z and w, they are estimable. We could
estimate these weights to get some idea of which weighted average of marginal treatment effects
IV is estimating. A final interesting observation is that βIV(g) depends on g. In the traditional IV
setup, the choice of g affects efficiency, but it does not affect what is being estimated.

7
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5. POLICY RELEVANT TREATMENT EFFECTS

This section is based largely on Carneiro, Heckman, and Vytlacil (2010). In the previous sections
we have focused on identifying the effect of administering some treatment. If we think about
evaluating some potential policy, the average treatment effect is the effect of the policy that forces
everyone to receive treatment. This is often not the most realistic or relevant policy. The majority of
policies do not force people to receive undergo some treatment. Instead, policies typically provide
some incentive to receive treatment. For example, attending college is a treatment that has been
widely studied. However, no one thinks that any government would or should force everyone to
attend college. In light of that, although it may be an interesting thing to think about, the average
treatment effect of college does not have much practical relevance. The policy interventions with
respect to college that we see, such as direct subsidies and subsidized loans, change the incentives
to go to college. Our current setup gives us a nice way to think about such policies.

Suppose we observe some baseline policy and want to evaluate an alternative policy. Define
the policy relevant treatment effect as

PRTE =
E[yi|alt]− E[yi|base]
E[wi|alt]− E[wi|base]

.

More generally, we might be interested in the four conditional expectations in this expression
separately. We define the PRTE as this ratio so that it has the same form as other treatment effects.
It is the effect of the policy per person induced to receive treatment.

If we assume that the policy only affects π(z) and not the distribution of Yi, Wi then we can
use our observation of the baseline policy to extrapolate what will happen in the alternate policy.
Let πb(z) denote the baseline probability of treatment and πa(z) the alternative probability of
treatment. Also, let

Fπ(z)(p) = P(π(z) ≤ p)

be the cdf of π(z). Then

E[yi|base] =
∫ 1

0
E[yi|base, π(z) = p]dFπb(z)(p)

=
∫ 1

0
E[wiYi(1) + (1 − wi)Yi(0)|π(z) = u]dFπb(z)(p)

=
∫ 1

0

(∫ 1

0
1{p ≥ u}E[Yi(1)|Ũi = u]du

)
dFπb(z)(p)+

+
∫ 1

0

(∫ 1

0
1{p < u}E[Yi(0)|Ũi = u]du

)
dFπb(z)(p)

=
∫ 1

0
Fπ(z)(u)E[Yi(1)|Ũi = u] +

(
1 − Fπb(z)(u)

)
E[Yi(0)|Ũi = u]

Similarly,

E[yi|alt] =
∫ 1

0
Fπa(z)(u)E[Yi(1)|Ũi = u] +

(
1 − Fπa(z)(u)

)
E[Yi(0)|Ũi = u]

Thus,

E[yi|alt]− E[yi|base] =
∫ 1

0
E[Yi(1)|Ũi = u](Fπa(z)(u)− Fπb(z)(u))− E[Yi(0)|Ũi = u](Fπa(z)(u)− Fπb(z)(u))du

=
∫ 1

0
MTE(u)(Fπa(z)(u)− Fπb(z)(u))du

8
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and

PRTE =
∫ 1

0
MTE(u)ωa,b(u)du (6)

where

ωa,b(u) =
Fπa(z)(u)− Fπb(z)(u)

Ez[πa(z)|a]− E[πb(z)|b]
.

As above, we can identify MTE(u) for u ∈ πb(Z) where Z is the observed support of z. If we
then specify an alternate policy such that πa(Z) ⊆ πb(Z) (i.e. the alternate policy does not push
πa(z) outside of the range observed in the baseline, πa(z) can differ from πb(z) for individual z),
then we can identify the policy relevant treatment effect. If we are thinking about an abstract pol-
icy, we can just set πa(z) to whatever we think is interesting. If we have a real policy in mind, we
might want to estimate πa(z). The appropriate estimation method and assumptions will depend
on the particular policy being considered.

If we have a sequence of alternative policies indexed by α such that we can look the limit as
α→0. Also suppose that α = 0 is the baseline policy, then we can consider

lim
α→0

PRTE(α) = MPRTE(α)

which we call the marginal policy relevant treatment effect. This sequence of alternate policies
corresponds to a sequence of Fπα(z) which we will just denote as Fα to reduce notation. From the
above,

PRTE(α) =
∫ 1

0
MTE(u)

Fα(u)− F0(u)
E[πa(z)]− E[πb(z)]

Assuming we can interchange limits and integrals, then

MPRTE(u) =
∫ 1

0
MTE(u)

∂Fα
∂α (u)|α=0∫ 1

0
∂Fα
∂α (u)|α=0du

du

So the MPRTE is again a weighted average of the MTE.

9
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6. ESTIMATION AND INFERENCE

The key ingredient for estimating policy relevant treatment effects and marginal policy relevant
treatment effects is the marginal treatment. As above, MTE(u) is equal to LIV(u), which is

LIV(u) =
∂E[yi|π(Zi) = p]

∂p
(u)

To estimate the marginal treatment effect, we need to estimate the derivative of a conditional
expectation function. In the spirit of the section on context, we would like to do so with little
or no assumptions about functional form or the distribution of unobservables. There are two
primary ways of doing this: kernel regression and series regression. Since MTE(u) is an unknown
function that cannot be described by a finite dimensional parameter, estimating MTE(u) is a non-
parametric problem. We will see that MTE(u) converges more slowly that the usual parametric
(
√

n) rate.
As in the previous section, many other treatment effects of interest can be written as weighted

integrals of the marginal treatment effect. There is an econometrics literature about estimating
weighted average derivative estimators. The estimate of the marginal treatment effect is a deriva-
tive, so various treatment effects can be analyzed as weighted average derivative estimators.

References: Our treatment of series estimators is based on Chernozhukov (2009). Newey (1997)
is the standard reference for series estimation. Our presentation of kernel estimation is based
largely on Hansen (2009). Hansen (2008) has useful result on uniform convergence rates of kernel
estimators.

6.1. Estimators. To estimate the marginal treatment effect,

MTE(u) = E[∆Yi|π(Zi) = u] =
∂E[yi|π(Zi) = p]

∂p
(u),

we must first estimate
π(Zi) = E[wi|Zi].

π(Zi) is often called the propensity score.5 To estimate the propensity score, we must estimate the
conditional expectation of treatment given the instruments. To estimate the marginal treatment
effect, we must estimate the derivative of the conditional expectation of the outcome. The problem
of estimating conditional expectations and their derivatives appears quite often, so it has been
widely studied. There are two basic approaches: series and kernel based.

6.1.1. Series regression. Suppose we are interested in estimating E[yi|xi] with xi ∈ X ⊆ Rd and
yi ∈ R, where X is compact. We will let g : X→R be g(x) = E[yi|xi = x], and assume that
g ∈ Gn. Gn is some space of functions from X to R. We index it by n to allow for the possibility
that Gn changes with the sample size, but in typical applications, it will not. We will denote the
probability measure of x by F.

We will approximate g by a linear combination of k functions, pj : X→R, for j = 1, .., k. Let

p(x) =

p1(x)
...

pk(x)

 .

5This name is often associated with propensity score matching, which is another method of estimating treatment
effects, but makes very different assumptions.
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We approximate g(x) by p(x)′b for some b ∈ Rk. We will allow k to increase with n so that
p(x)′b can get closer and closer to g(x). Series regression gets its name from the sequence of
approximating functions pj. The specification of Gn affects the rate at which p(x)′b can approach
g(x). The most common specification of Gn is some H older space. We will discuss the Gn in more
detail in the next section.

Common choices of approximating functions include:
(1) Polynomials:

p(x) =
(
1 x cdots xk−1

)T

for d = 1
(2) Fourier series:

p(x) =
(
1 cos(2πx) sin(2πx) cdots cos(2(k/2 − 1)πx) sin(2(k/2 − 1)πx)

)T

or equivalently,

p(x) =
(
1 cos(πx) cos(2πx) cdots cos(kπx)

)T

for X = [0, 1].
(3) Splines: a spline of order l with r knots, t1, ..., tr is a piecewise polynomial function that is

l − 1 times continuously differentiable. The associated series can be written

p(x) =
(
1 x · · · xl (x − t1)

3
+ · · · (x − tl)

3
+

)
where (x)+ = max{0, x}. Note that k = l + 1 + r.

The above series are often transformed to reduce collinearity of the approximating functions. Poly-
nomials are often orthonormalized, sometimes with respect to the uniform measure on [0, 1], other
times with respect to an estimate or guess at the probability measure of xi. Fourier series are al-
ready orthonormal with respect to the uniform measure on [0, 1], but could be orthonormalized
with respect to another measure. Splines are often transformed into B-splines instead of the form
given above.

Given a choice of series functions and k, we estimate g by regressing y on p(x). We will let

β̂ = arg min
b∈Rk

En[(yi − p(xi)
′b)2]

and ĝ(x) = p(x)′ β̂. We estimate the derivatives of g by the derivatives of ĝ,

∂ĝ
∂xj

(x) =
∂p′

∂xj
(x)β.

In the next section we will analyze the asymptotics of these estimators.

6.1.2. Kernel regression. The usual way of estimating expectations is to just use the sample average.
If x has discrete support, then there is no problem with estimating E[yi|xi = x] by En[yi|xi = x].
However, when x is continuously distributed, the probability of observing any xi = x is zero for
each value of x. Instead of conditioning on xi = x, we could condition on xi being close to x. For
example,

En[yi| ‖xi − x‖ < h].

If h is not too small, we will have some observations with ‖xi − x‖. Also, if we let h→0 then,

E[yi| ‖xi − x‖ < h]→E[yi|xi = x].

Therefore we should expect that if we make h→0 as n→∞, then En[yi| ‖xi − x‖ < h] should
converge to E[yi|xi = x].

11
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Rather than just looking at the average yi for all xi near x, we could look at a weighted average,

ĝk(x) =
En[yiK(H−1(xi − x))]
En[yiK(H−1(xi − x))]

where K : Rd→R is a kernel function such that
∫

Rd K(u)du = 1 and K(−u) = K(u). H is called
the bandwidth. It will depend on n and ‖H‖→0 as n→∞. Common one-dimensional kernels
include:

(1) Uniform: K(u) = 1
2 1{|u| < 1}

(2) Gaussian: K(u) = 1√
2π

e−u2/2

(3) Epanechnikov: K(u) = 3
4 (u

2 − 1)1{|u| < 1}
Multivariate kernels are often constructed as products of univariate kernels. There are also more
natural multivariate version of each of these kernels.

(1) Uniform: K(u) = 1
2 1{‖u‖ < 1}

(2) Gaussian: K(u) = 1√
2π

e−u′u/2

(3) Epanechnikov: K(u) = 3
4 (u

′u − 1)1{‖u‖ < 1}
The multivariate bandwidth is often H = hS for some fixed nonsingular matrix S and h ∈ R.

The jth moment of a univariate kernel is∫
R

ujK(u)du.

There is a natural definition for multivariate kernels as well, but the notation is more cumbersome,
so we do not write it. Symmetric kernels have all of their odd moments equal to zero. A jth order
kernel has its 1, 2, ..., j− 1 moments equal to zero and its jth moment non-zero. The three examples
above are second order kernels. Higher order kernels can have lower bias, and are necessary for
some results. A perceived disadvantage of higher order kernels is that since

∫
u2K(u)du = 0,

it must be that K(u) < 0 for some values of u. Higher order kernels can be constructed from
any lower order kernel, see Hansen (2005). The fourth order versions of the Epanechnikov and
Gaussian kernels are:

(1) 4th order Epanechnikov: K(u) = 15
8 (1 −

7
3 u2) 3

4(u
2 − 1)1{|u| < 1}

(2) 4th order Gaussian: K(u) = 1
2(3 − u2) 1√

2π
e−u′u/2.

As above, to get an estimate of ∂E[yi |xi=x]
∂x instead of E[yi|xi = x], we simply differentiate our

estimate of g(x) = E[yi|xi = x]. That is,

∂̂g
∂xj

(x) =
∂ĝk

∂xj
(x) =

∂

∂xj

En[yiK(H−1(xi − x))]
En[yiK(H−1(xi − x))]

.

We will see that for this estimate to be any good, we will need to use a higher order kernel.
Local polynomial regression. One way of viewing kernel regression is that it solves

ĝk(x) =min
b0

En

[
(yi − b0)

2K
(

H−1(xi − x)
)]

In other words ĝ(x) is the weighted least squares regression of yi on a constant with weights given
by K

(
H−1(xi − x)

)
. We could also think of a usual weighted least squares regression,

ĝll(x)min
b0,b

En

[
(yi − b0 − x′ib)

2K
(

H−1(xi − x)
)]

12
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This estimator is called local linear regression. One advantage of local linear regression is that if
we let

b̂0(x), b̂(x) = arg min
b0,b

En

[
(yi − b0 − x′ib)

2K
(

H−1(xi − x)
)]

Then the jth component of b̂(x) will be a valid estimation of ∂g
∂xj

. The natural generalization of
local linear regression local polynomial regression. Let p(xi) denote a polynomial series of fixed
degree evaluated at xi. Local polynomial regression is

ĝlp(x)min
b

En

[
(yi − p(xi)

′b)2K
(

H−1(xi − x)
)]

.

Note that unlike with series regression the degree of this polynomial is fixed. It does not change
with the sample size. As with linear regression the coefficients of a local polynomial regression of
degree m are valid estimates of the first m derivatives of g.

6.2. Asymptotic theory. In this section, we will establish conditions under which series and ker-
nel regression are consistent. We will also find the rate of convergence and the limit distribution
of these estimators. We will see that the results depend on the rate at which k grows with n for
series or the rate at which h shrinks with n for kernels. Since g is a function, we can look at these
results both pointwise for some particular value of x, and for the entire function g. That is, we can
examine the pointwise convergence of

ĝ(x)− g(x)

and the convergence of the entire function by analyzing

‖ĝ − g‖ .

Note that there are a variety of potential norms we could consider. We will focus on L2 and L∞

norms.

6.2.1. Series regression. Let
β̂ = arg min

b
En

[
(yi − p(xi)

′b)2]
so that

ĝ(x) = p(x)′ β̂.

Also define the population version of β̂ as

β = arg min
b

E
[
(yi − p(xi)

′b)2] .

Then we can write

ĝ(x)− g(x) =p(x)′ β̂ − p(x)′β + p(x)′β − g(x)

= p(x)′
(

β̂ − β
)︸ ︷︷ ︸

estimation error

+
(

p(x)′β − g(x)
)︸ ︷︷ ︸

approximation error

We begin by assuming the following.

A1. Let εi = yi − g(xi). (εi, xi) are i.i.d. and σ2
i ≡ E[ε2

i |xi] is bounded.

Approximation by series is a topic that has been widely studied, so there are many results
available about the approximation error,

r(x) ≡ p(x)′β − g(x).

We will make the following assumption about r(x).
13
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A2 (approximation error ). For each g ∈ Gn there are finite constants ck and `k such that

‖r‖F,2 ≡
(∫

r(x)2dF(x)
)1/2

≤ ck

and
‖r‖∞ ≡ sup

x∈X
|r(x)| ≤ `kck.

Recall that F is the probability measure of x. Feasible values of ck and `k depend on Gn, the
series being used, and F. Suppose that Gn is a H older (α, s) class, i.e.

Gn = {g ∈ Cs(X ) : ‖Dsg(x1)− Dsg(x2)‖ ≤ M ‖x1 − x2‖α ∀x1, x2 ∈ X}

where Cs(X ) is the set of s times continuously differentiable functions from X to R, Then for
polynomials and Fourier series,

ck . k−s/d

where the notation f (k) . g(k) means that there exists 0 ≤ M < ∞ such that f (k) ≤ Mg(k) for all
k. For splines of order s0,

ck . k−max{s,s0}/d.

See the references in Chernozhukov (2009) or Newey (1997) for the source of these results. The
bound on `k is even more dependent on the series and other assumptions. The following results
are useful.

(1) Polynomials: for Chebyshev polynomials on X = [−1, 1] with dF(x)/dx = 1√
1−x2 (so

the Chebyshev polynomials are orthonormal with the inner product induced by dF), and
Gn ⊆ C(X ), then

`k ≤ c0 log k + c1

for some fixed c0 and c1.
(2) Fourier series: if X = [0, 1], F is uniform (so the Fourier series is orthonormal with the

inner product induced by dF), and Gn ⊆ C(X ), then

`k ≤ c0 log k + c1

for some fixed c0 and c1.
(3) Splines: if X = [0, 1], F is uniform, and Gn ⊆ C(X ), then

`k ≤ c0

for some fixed c0.

These results are stated in Chernozhukov (2009). Presumably, he got them from one of the refer-
ences he listed. I’d guess DeVore and Lorentz (1993), but I really do not know.

We will go into more detail about how to control the sampling error,

p(xi)(β̂ − β)

The usual formula for β̂ gives that

β̂ = En[p(xi)p(xi)
′]−1En[p(xi)y]

and
β == E[p(xi)p(xi)

′]−1E[p(xi)y].

The matrix E[p(xi)p(xi)
′] will appear often. We will also need to control how large ‖p(x)‖ can be.

To do so, we assume the following.
14
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A3. The eigenvalues of Q ≡= E[p(xi)p(xi)
′] are bounded above and away from zero. Let

ξk ≡ sup
x∈X

‖p(x)‖ .

Assume that k is such that
ξ2

kn−1 log n→0.

As stated in Newey (1997), for polynomials, ξk . k. For Fourier series and splines ξk .
√

k.
We can now state some results. We begin by establishing the L2 rate of convergence.

Theorem 6.1 (L2 rate for series ). Under A1, A2, and A3, and if ck→0, then

‖ĝ − h‖F,2 .p

√
k
n
+ ck

Proof. See Chernozhukov (2009). �

It is common to choose the number of series terms to achieve the fastest L2 convergence rate.
The first part of the rat,e

√
k/n represents sampling error and increases with k. The second term,

ck, is approximation error. It decreases with k. The fastest convergence rate is achieved when the
rate from sampling error and rate approximation error are made equal.

√
k/n ∝ ck

As stated above, for polynomials and Fourier series, ck . k−s/d where g is assumed to be s times

differentiable. In that case, the optimal k is proportional to n
d

s+d and the optimal rate is
√

n
−s

s+d .
Thus, the L2 nonparametric rate is slower than n−1/2, but the nonparametric L2 rate gets close to
n−1/2 if we assume the function we are estimating is very smooth.

Lemma 6.1 (Pointwise linearization ). Under A1-A3, for α ∈ Rk with ‖α‖ = 1 we have
√

nα′(β̂ − β) = α′Gn [p(xi)(εi + r(xi))] + R1n

where

R1n .p

√
ξ2

k log n
n

(
1 + `kck

√
k log n

)
and

α′Gn[p(xi)
′r(xi)] .p `kck.

Proof. See Chernozhukov (2009). �

Notice that if (ξ2
k log n)/n→0 and `kck→0, then all that remains is α′Gn[pi(xi)εi]. Given an

appropriate assumption on εi, we can show that this term is asymptotically normal.

A4. εi is such that for each M→∞,

sup
x∈X

E
[
ε2

i 1{|εi| > M}|xi = x
]
→0,

and approximation error obeys |r(xi)| ≤ `kck = o(
√

n/ξk).

Theorem 6.2 (Pointwise asymptotic normality). Suppose A1-A4 hold. If R1n
p→ 0 and `kck→0, then

√
n

α′(β̂ − β)

‖α′Ω1/2‖
d→ N(0, 1),

where Ω = Q−1E[ε2
i p(xi)p(xi)

′]Q−1.
15
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Proof. See Chernozhukov (2009). �
Note that we can take α = p(x) to obtain

√
n

p(x)′(β̂ − β)

‖p(x)′Ω1/2‖
d→ N(0, 1).

If additionally
√

nr(x)
‖p(x)′Ω1/2‖→0, then we have

√
n

p(x)′ β̂ − g(x))
‖p(x)′Ω1/2‖

d→ N(0, 1).

This is why the theorem is label pointwise asymptotic normality.
Another thing to notice about theorem 6.3 is that it is always true that a N(0, 1) has the same

distribution as α′Ω1/2

‖α′Ω1/2‖N(0, Ik). If k were fixed we would have

√
n(β̂ − β)Ω−1/2 d→ N(0, Ik).

We cannot get this sort of result here because k is increasing with n. However, to emphasize this
parallel, we could have stated the result of theorem 6.3 as

√
n

p(x)′ β̂ − g(x))
‖p(x)′Ω1/2‖

d→ p(x)′Ω1/2

‖p(x)′Ω1/2‖
N(0, Ik).

We could also state this result as∣∣∣∣∣√n
p(x)′ β̂ − g(x))
‖p(x)′Ω1/2‖

− p(x)′Ω1/2

‖p(x)′Ω1/2‖
Nk

∣∣∣∣∣ = op(1),

for some Nk ∼ N(0, Ik). When we look at the uniform limit distribution, we will get a result with
this form, so it is useful to draw attention to the similarity. We did not originally state the theorem
in this form to emphasize that theorem 6.3 is really a result of applying a standard central limit
theorem.

To obtain a uniform linearization and asymptotic distribution, we need a stronger assumption
on the errors.

A5. The errors are conditionally sub-Gaussian, which means

sup
x∈X

E
[
eε2

i /2|xi = x
]
< ∞.

Additionally for α(x) ≡ p(x)/ ‖p(x)‖, we have

‖α(x1)− α(x2)‖ ≤ ξ1k ‖x1 − x2‖
with ξ1k . ka for some a < ∞.

Lemma 6.2 (uniform linearization ). Suppose that A1-A5 hold. Then uniformly in x ∈ X ,
√

nα(x)′(β̂ − β) = α(x)′Gn [p(xi)(εi + r(xi))] + R1n

where

R1n .p

√
ξ2

k(log n)2

n

(
1 + `kck

√
k log n

)
and

α(x)′Gn[p(xi)r(xi)] = R2n .p `kck log n

Proof. See Chernozhukov (2009). �
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Theorem 6.3 (uniform rate ). Under A1-A5 we have

sup
x∈X

∣∣α(x)′Gn [p(xi)(εi + r(xi))]
∣∣ .p (log n)3/2

so
sup
x∈X

|ĝ(x)− g(x)| .p
ξk√

n

(
(log n)3/2 + R1n + R2n

)
+ `kck

Proof. See Chernozhukov (2009). �
Finally, we state a uniform convergence in distribution result.

Theorem 6.4 (strong approximation ). Suppose A1-A5 hold and R1n = op(a−1
n ), and that

a3
nk4ξ2

k(1 + `3
kc3

k)(log n)2/n→0

Then for some Nk ∼ N(0, Ik) we have

sup
α∈Sk−1

∣∣∣∣∣√n
α′(β̂ − β)

‖α′Ω1/2‖
− α′Ω1/2

‖α′Ω1/2‖
Nk

∣∣∣∣∣ = op(a−1
n )

As with the pointwise limit theorem 6.3, if we replace α with p(x) and we have supx∈X
√

n |r(x)|
‖p(x)′Ω1/2‖ =

oP(a−n 1), then 6.4 implies that

sup
x∈X

∣∣∣∣√n
ĝ(x)− g(x)
‖α′Ω1/2‖

− p(x)′Ω1/2

‖p(x)′Ω1/2‖
Nk

∣∣∣∣ = op(a−1
n ).

Note that unlike the pointwise asymptotic distribution (6.3), the uniform limiting theory is not a

traditional weak convergence result. For a given x, regardless of k, p(x)′Ω1/2

‖p(x)′Ω1/2‖Nk has a standard

normal distribution. However, as a function of x, the Gaussian process, p(x)′Ω1/2

‖p(x)′Ω1/2‖Nk changes

with k. Theorem 6.4 says nothing about whether p(x)′Ω1/2

‖p(x)′Ω1/2‖Nk ever converges to a fixed Gaussian

process, so in particular, the theorem does not show weak convergence. Nonetheless, for any k,
p(x)′Ω1/2

‖p(x)′Ω1/2‖Nk is a tractable process and we can find its distribution either analytically or through

simulation. This is enough to perform inference.
To get some idea of how this approximating process behaves, figure 1 shows the covariance

function of p(x)′Ω1/2

‖p(x)′Ω1/2‖Nk for d = 1 and polynomials for various k. That is, it plots

Cov
(

p(x1)
′Ω1/2

‖p(x1)′Ω1/2‖
Nk, f racp(x2)

′Ω1/2
∥∥∥p(x2)

′Ω1/2
∥∥∥Nk

)
as a function of x1 and x2. When x1 = x2 the variance is always one. When x1 6= x2, the covariance
approaches 0 as k increases. The approximating processes eventually converge to white noise.
However, we cannot perform inference based on white noise as the limiting distribution because
we have not shown how quickly the approximating processes approach white noise.

Figure 2 shows the same thing for Fourier series.
A uniform confidence band of g(x) of level 1 − α is a pair of functions, lk(x), uk(x) such that

P(lk(x) ≤ g(x) ≤ uk(x)∀x ∈ X ) = 1 − α

There are a number of ways to construct such bands, but it is standard to focus on bands of the
form

(lk(x), uk(x)) = ĝ(x)± κ(1 − α)
∥∥∥p(x)′Ω1/2

∥∥∥
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FIGURE 1. Covariance function for polynomials
k = 2 k = 4 k = 6 k = 8
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k = 10 k = 13 k = 17 k = 20
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FIGURE 2. Covariance function for Fourier series
k = 2 k = 4 k = 6 k = 8
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where κ(1 − α) is chosen so as to get the correct coverage probability. From theorem 6.4, we know

that
√

n ĝ(x)−g(x)
‖p(x)′Ω1/2‖ is uniformly close to p(x)′Ω1/2

‖p(x)′Ω1/2‖Nk. Let

Zn(x) ≡ p(x)′Ω1/2

‖p(x)′Ω1/2‖
Nk.

We can set κ(1 − α) to be the (1 − α) quantile of

sup
x∈X

|Zn(x)| .

There are analytic results for this, which are useful for comparing the widths of these confidence
bands to confidence bands from other methods or of other estimators. However, in practice, it is
easier to use simulation. Thus, you could compute confidence bands by:
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(1) Estimate ĝ(x).
(2) Estimate Ω̂ = En[p(xi)p(xi)

′]−1En[ε̂2
i p(xi)p(xi)

′]En[p(xi)p(xi)
′]−1

(3) Simulate a large number of draws, say z1, ..., zR from N(0, Ik), set

Zn,r(x) =
p(x)′Ω̂1/2∥∥p(x)′Ω̂1/2

∥∥ zr

and find supx∈X |Zn,r(x)|
(4) Set κ̂(1 − α) = 1 − α/2 quantile of supx∈X |Zn,r(x)|
(5) The confidence bands are

(l̂k(x), ûk(x)) = ĝ(x)± κ̂(1 − α)
∥∥∥p(x)′Ω̂1/2

∥∥∥
Note that all of our results above treated Ω as known. We could show that the results go through
when using Ω̂ instead, see Chernozhukov, Lee, and Rosen (2009).

Throughout, we have had these constants ck, `k, etc that depend on various details of the prob-
lem. Wang and Yang (2009) obtain similar results for spline regression, but they make explicit
assumptions about what ck, `k, etc will be.

All of our results have been for ĝ(x) and not ∂ĝ
∂xj

(x). However, the result in theorem 6.4 also
applies to

sup
x∈X

∣∣∣∣∣√n
pj(x)′(β̂ − β)∥∥pj(x)′Ω1/2

∥∥ − pj(x)′Ω1/2

‖α′Ω1/2‖
Nk

∣∣∣∣∣ = op(a−1
n )

where pj(x) = ∂p
∂xj

(x). If we redefine the approximation error as

r(x) = pj(x)′β − ∂g
∂xj

then we just need to control this approximation error instead. If I recall correctly, we will generally
get ck = k−

s−m
d when we approximate the mth derivative. I believe `k will not change, but I am not

at all certain. Finally ξk must be redefined as sup
∥∥pj(x)

∥∥, and it increases to k1/2+m for splines,
and k1+2m for polynomials. I am not sure about Fourier series, but I suspect k1/2+m as well. It is
easy to show that k1/2+m works, but it may be possible to get a sharper bound. In any case, both
ξk and ck are worse when estimating derivatives instead of functions themselves. Because of this,
we will get a slower rate of convergence when estimating derivatives.

6.2.2. Kernel regression. I am running out of time, so just refer to Hansen (2009) for kernel re-
gression. Hansen’s notes on nonoparametrics have 16 parts. The most relevant is the second part,
http://www.ssc.wisc.edu/~bhansen/718/NonParametrics2.pdf. Hansen’s notes show the same
sort of pointwise asymptotic normality and uniform convergence rate results as above for series
esitmators. Hansen’s notes do not cover a uniform limiting distribution. However, something like
theorem 6.4 can be shown for kernel regression as well. See e.g. Chernozhukov, Lee, and Rosen
(2009), although the result was first shown much earlier.

6.2.3. Bootstrap. Someone asked whether you can construct uniform confidence bands using the
bootstrap. Yes, you can, but only if you bootstrap in the correct way. It has not been proven
that the standard nonparametric bootstrap works (i.e. resampling observations with replacement).
However, certain variants of the bootstrap do work. For kernel regression, Hardle and Marron
(1991) propose using a wild bootstrap procedure. Claeskens and van Keilegom (2003) propose
a smoothed bootstrap procedure is consistent for local polynomial regression. I do not know of
any analogous result for series regression. However, I am fairly certain that a combination of the
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arguments in Chernozhukov (2009) and Chandrasekhar, Chernozhukov, Molinari, and Schrimpf
(2011) would show consistency of another smoothed bootstrap procedure.
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