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Abstract. This paper analyzes dynamic games with continuous states and con-

trols. There are two main contributions. First, we give conditions under which

the payoff function is nonparametrically identified by the observed distribution of

states and controls. The identification conditions are fairly general and can be

expected to hold in many potential applications. The key identifying restrictions

include that one of the partial derivatives of the payoff function is known and that

there is some component of the state space that enters the policy function, but not

the payoff function directly. The latter of these restrictions is a standard exclu-

sion restriction and is used to identify the payoff function off the equilibrium path.

By manipulating the first order condition, we can show that the payoff function

satisfies an integro-differential equation. Due to the presence of the value function

in the first order condition, this integro-differential equation contains a Fredholm

integral operator of the second kind. Invertibility of this operator, and knowledge

of one of the partial derivatives of the payoff function is used to ensure that the

integro-differential equation has a unique solution.

The second contribution of this paper is to propose a two-step semiparametric

estimator for the model. In the first step the transition densities and policy function

are estimated nonparametrically. In the second step, the parameters of the payoff

function are estimated from the optimality conditions of the model. Because the

state and action space are continuous, there is a continuum of optimality conditions.

The parameter estimates minimize the norm of the these conditions. Hence, the

estimator is related to recent papers on GMM in Hilbert spaces and semiparametric

estimators with conditional moment restrictions. We give high-level conditions on

the first step nonparametric estimates for the parameter estimates to be consistent

and parameters to be
√
n-asymptotically normal. Finally, we show that a kernel

based estimator satisfies these conditions.
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1. Introduction

This paper analyzes dynamic games with continuous states and controls. There
have been many recent papers about estimating dynamic games, but few, if any, of
them allow for both continuous states and continuous controls. This is a useful gap
to fill since many state and action variables in real applications are approximately
continuous. A generic and pervasive example is investment as a decision variable and
capital stock as a state variable. This paper gives a comprehensive econometric analy-
sis of continuous dynamic games. There are two main results. First, we give sufficient
conditions for nonparametric identification of the payoff function from the observed
transition densities. Second, we propose a two-step semiparametric estimator for the
payoff function and give conditions for consistency and asymptotic normality.

The first main contribution of this paper is to give sufficient conditions for the
payoff function to be identified by the transition density of the state variables and
controls. It is well known (see e.g. Rust (1994)), that without some restrictions,
the payoff function is unidentified. However, in the case of dynamic games with
discrete controls, Magnac and Thesmar (2002) and Bajari, Chernozhukov, Hong,
and Nekipelov (2009) give plausible restrictions sufficient for identification. This
paper develops an analgous result for dynamic games with continuous controls. The
key conditions for identification of the payoff function are that one of the partial
derivatives of the payoff function is known, there is some value of the control such
that value of the payoff function is known for that value of the control and all possible
values of the state, and a certain integral operator of the second kind is invertible. The
first two of these three conditions can be expected to hold in potential applications.
We illustrate their plausibility with an example. The last of these three conditions is
difficult to verify analytically, but could be checked in applications.

Our proof of identification involves manipulating the first order condition for the
continuous control. The first order condition is an integro-differential equation—it
involves both a derivative and an integral of the payoff function. After some manip-
ulation, we transform the first order condition into an integral equation of the second
kind with the derivative of the payoff function with respect to the control as the
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unknown function. We state conditions sufficient for this integral equation to have a
unique solution.

Identification conditions for dynamic games with discrete controls can be found in
Magnac and Thesmar (2002) and Bajari, Chernozhukov, Hong, and Nekipelov (2009).
Blevins (2009) gives identification conditions for dynamic games with both discrete
and continous controls. His result relies on the presence of discrete controls and does
not apply to the purely continous case considered in this paper.

Although our identification result is nonparametric, we develop a semiparametric
estimator of the payoff function. Given the limited sample sizes typically available for
dynamic games, a fully nonparametric estimator may not be informative. Therefore,
like most papers on dynamic games, we assume that the payoff function is known
up to a finite dimensional parameter, but leave the transition density and policy
function nonparametrically specified. Our estimation procedure has two steps. First,
the transition density and policy function are nonparametrically estimated. In the
second step, the fact that at the true parameters the estimated policy function should
maximize the value function is used to form an objective function. Since the state
and action space are continuous, there is a continuum of optimality conditions. The
parameter estimates minimize the norm of the these conditions.

Our asymptotic results are stated at three levels of increasing specificity. First,
we analyze generic two-step semiparametric minimum distance estimators with a
continuum of estimating equations. We give high-level conditions on the initial non-
parametric estimates and estimating equations sufficient for the finite dimensional
parameters to be

√
n asymptotically normal. Next, we specialize this result to the

estimating equations that arise from the optimality conditions of dynamic games, but
remain agnostic about the specific form of the initial nonparametric estimates. Fi-
nally, we describe kernel estimates of the transition density and policy function that
satisfy the conditions of the previous two theorems.

The remainder of this paper proceeds as follows. Section 2 describes the model.
Section 3 gives conditions for identification. Section 4 describes the estimation pro-
cedure. Section 5 contains the asymptotic analysis. Section 6 concludes.
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2. Model

We consider a dynamic decision process with state variables, x, and policy variable,
i. We will refer to the decision maker as a firm. The state variables follow a controlled
Markov process, and have a density which is absolutely continuous with respect to
Lebesgue measue, i.e.

f(xt+1|It) = fx′|x,i(xt+1|xt, it),

where It is all information avaibable at time t. Each period a firm’s payoff function
depends on the current state, the firm’s actions, and an iid private shock, η. We
denote the payoff function by Π(x, i, η). The firm’s value function is:

V (x0, η0) = max
{it=It(xt,ηt)}∞t=0

E

[
∞∑
t=0

δtΠ(xt, it, ηt)|x0, i0, η0]

]
.

where It(xt, ηt) denotes the policy function at time t. Under well-known regularity
conditions, see e.g. Rust (1994), a generalized version of Blackwell’s Theorem ensures
that the value function is the unique solution to the Bellman equation,

V (x, η) = max
i

Π(x, i, η) + δE [V (x′, η′)|x, i] (2.1)

and that there is a time invariant measurable optimal policy function, which we will
denote by I(x, η).

Although the problem above is written for a single agent making decisions in iso-
lation, it can be applied to dynamic games with stationary Markov perfect equilibria
as well. In this case, the state variables would include information on all firms in the
same market. Suppose there are N firms, each indexed by f . The transition density
for xt given the actions of all firms can be written

F (xt+1|xt, {ift}Nf=1) = F (xt+1|xt, {I(xt, ηft)}Nf=1).

However, since ηft is private knowledge each firm must form expectations using

F (xt+1|xt, ift) = E[F (xt+1|xt, {I(xt, ηf̃ t)}
N
f̃=1

)|ηft]. (2.2)

Hence, each firm’s decision problem takes the form written above. In equilibrium, the
policy function must satisfy both (2.1) and (2.2). It would be necessary to take this
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into account if we want to perform any counterfactual analysis. However, our identi-
fication result and estimator will only rely on the individual optimality of each firm’s
actions. As such we will not be explicit about equilibrium considerations throughout
most of the paper.

2.1. Example. This section describes a concrete example that fall under the above
setup. Throughout the paper, we will return to this example to illustrate the plausi-
bility of various assumptions.
Example 1 Investment in natural gas pipelines. In ongoing work, we apply the es-
timator developed in this paper to natural gas pipelines. For clarity, we describe
a simplified version of this application. Investment in natural gas pipelines in the
United States is subject to regulatory approval. Our goal is to recover the implicit
cost of investment, including costs of regulatory compliance. The state variables are
revenues, rt, operating expenses, ot, pipeline capacity, qt, and pipeline utilization, ut.
Each firm tracks both its own values of these four variables, as well as those of other
firms in the same market. We will use an f subscript to differentiate among firms
when necessary. The control variable is pipeline investment measured in dollars, it.
We specify the profit function of firm f as,

Πf (xt, ift, ηft) = rft − oft − ift − c(ift, ηft, qt, ut),

where the final term, c(ift, ηft, qt, ut) represents the cost of regulatory compliance.
We include capacity and utilization in this function based on the assumption that
the regulator primilary looks at the rate of capacity use when deciding how costly
to make approval of new pipeline projects. Also, note that although the revenues
and expenses of other firms do not enter the profit function directly, they will help
the firm better forecast other firms’ choices of investment. Therefore, revenues and
expenses of other firms will still enter the policy function of this firm.

3. Identification

Given observations of {xt, it}, our goal is to recover the payoff function, Π(x, i, η).
Rust (1994) shows that this is, in general, impossible because adding any function
of x to the payoff function results in the same policy function. However, it is still
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possible to give a limited set of additional restrictions that can be used to fully
identify the payoff function. With continuous states variables and discrete actions,
Bajari, Chernozhukov, Hong, and Nekipelov (2009) show that if payoffs are additively
separable in the private shock, η, and the distribution of η is known, then the payoff
function can be identified up to a location normalization with an exclusion restriction.
In the same setting, continuous states and discrete controls, Berry and Tamer (2006)
give a converse result. They show that if the payoff function is known, then the
distribution of η can be identified. In a setting very similar to this paper’s, Berry and
Pakes (2001) propose a parametric estimator based on firm’s first order conditions.
Their estimator requires observations of realized profits. We will also consider an
estimator based on firm’s first-order conditions, but we will not require data on profits.

We begin by assuming that the transition density of the states and controls, fx′,i′|x,i,
is identified. We then show that the optimality of observed actions imply that the
payoff function must satisfy an integro-differential equation that depends on this
transition density. We propose restrictions on the payoff function and transition
density that guarantee that this integro-differential equation has a unique solution.
We begin by stating our assumptions and main result. The assumptions will be
discussed in more detail below.
Assumptions I (Payoff function identification).

I1 The transition density, fxt,it|xt−1,it−1, is identified.
I2 The policy function, I(x, η), is weakly increasing in η and fηt|It = fηt is known.
I3 The policy function satisfies the firm’s first order condition.
I4 The discount factor, δ, is known.
I5 For some value of the control, i0, the payoff function, Π(x, i0, η), is known for

all x and η.
I6 There exists a component of the state space, x(k) with compact support, such

that:
• ∂Π

∂x(k) (x, i, η) is known and not identically zero for all x, η and,
• The policy function is pseudo-invertible at i0 with respect to x(k) in that

for all x(−k) and η there exists a function χk(i0, x
(−k), η) such that

I(χk(i0, x
(−k), η), x(−k), η) = i0
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and χk is measurable with respect to x(−k) and η.
I7 Let ∂Π

∂i
∈ G. Define the following operators G → G,

D(g)(x, η) =
∂

∂it
E

[
∞∑
τ=0

δτg(xt+τ , ηt+τ )|xt = x, it = I(x, η)

]

L(g)(x, η) =
∫ x(k)

χk(i0,x(−k),η)

g(x̃(k), x(−k), η)
∂I

∂x(k)
(x̃(k), x(−k), η)dx̃(k)

K(g)(x, η) =D (L(g)) (x, η)

The only solution in G to

0 = g(x, η) +K(g)(x, η) (3.1)

is g(x, η) = 0.
I8 There is some component of the state xi excluded from Π(x, i, η), but entering

I(x, η).

Theorem 1 (Payoff function identification). If conditions I1-I7 hold, then the equi-
librium payoff function, Π∗(xt, ηt) = Π(xt, I(xt, ηt), ηt), and value function V (xt, ηt)

are identified. If, additionally, condition I8 holds, then the payoff function, Π(x, i, η)
is identified.

We now discuss the assumptions of this theorem. Its proof can be found in the
next section. If the state vector, xt is observed I1 is trivially satisfied. Hu and Shum
(2008) give conditions that ensure I1 in the presence of unobserved components of
the state vector. These conditions are discussed in detail in section 3.2 below.

Condition I2 is to allow I(x, η) and the distribution of η to be recovered from the
density of i and x. The requirement that the distribution of η is known is more
a normalization than an assumption since η is an unobserved variable that enters
unknown functions in an unrestricted manner.

Condition I3 is to ensure that the first order condition can be used to recover the
payoff function. If it is not satisfied everywhere, such as with binding constraints on
i or non-differentiable portions of Π(·), then the theorem can be adapted to apply for
values of x and η) where the first order condition is satisfied.
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The first order condition can be manipulated to give an integral equation that can
be solved for ∂Π

∂i
. Conditions I5, I6, and I7 guarantee that this integral equation

has a unique solution. Conditions I5 and I6 are analogous to some of the conditions
for identifying dynamic discrete games in Magnac and Thesmar (2002) or Bajari,
Chernozhukov, Hong, and Nekipelov (2009). With discrete actions, it is necessary to
normalize the payoff associated with one of the alternatives to zero. Condition I5 is
the continuous analog of this normalization. With discrete actions, it is also common
to assume that payoff function is additively separable in private shock. Here, the
assumption that one of the partial derivatives of the payoff function is known, I6,
takes the place of the assumption of additively separable private shocks. To make the
analogy more clear, condition I6 could be placed on η instead of x(k).

Condition I7 is a key identifying assumption. It ensures that the integral equation
for ∂Π

∂i
has a unique solution. Similar conditions appear in the literature on nonpara-

metric identification of simulataneous equation and are referred to as completeness
conditions. In that literature, the completeness condition involves an integral equa-
tion of the first kind. Inversion of such equations is an ill-posed problem, which adds
to the difficulty of estimation. Here, the completeness condition involves an integral
equation of the second kind, so there is no ill-posed inverse problem.1

It is difficult to verify condition I7 from more primitive conditions. One simple
sufficient condition is that the operator K : G → G defined above has operator norm
less than one. However, there is no particular reason to believe that this condition
would hold in applications. Fortunately, although it is difficult to determine a priori
whether I7 holds, the condition can be checked for any given dataset. Condition
I7 is an assumption about the transition density and the policy function. These two
things can be identified without attempting to identify the payoff function or invoking
assumption I7. Therefore, condition I7 can be checked. One could even develop a
formal statistical test for I7, but we will leave that task for future work.

1Estimation still involves an ill-posed inveres problem in that it requires estimation of a conditional

expectation operator. However, the inversion of that operator needed to solve for the value function

is well-posed.
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Finally, the exclusion restriction, I8, allows us to separate the structural payoff
function from the equilibrium payoff function. Without the exclusion, we would only
be able to identify the payoff function along the equilibrium path, that is only at
(x, I(x, η), η) rather than for any combination of (x, i, η). While identifying the pay-
off function only along the equilibrium path is sufficient for some purposes, such as
predicting payoffs in the current environment, identifying the payoff function every-
where is essential for counterfactual analysis.

We now discuss how these assumptions relate to our working example.
Example 1 Investment in natural gas pipelines (continued). All of the state variables
in this example are observed, so the transition density is identified, satisfying I1.
Assumption I2 is simply a normalization. Condition I3, which says that first order
condition holds, appears reasonable. It would follow from concavity in i of c(i, η, q, u).
One might think that investment involves a fixed adjustment cost, in which the first
order condition need not hold when investment is zero. However, in this case we
would observed a mass point at zero investment, and there does not appear to be any
such mass point in the available data. Condition I5 can be met by assuming that
when investment is zero, profits are simply revenues minus expenses. In other words,
c(0, η, q, u) = 0. We have revenue data, so we satisfy the first part of I6 by assuming
that profits are additively separable in revenues. The second part of the assumption
is also very plausible. It is reasonable to believe that with sufficiently negative revnue,
the firm would choose to shut down by setting i to a large negative value. Also, if
revenues are sufficiently high, the firm should choose to invest a positive amount. By
continuity, there shoud be some intermediate amount of revenue that leads to zero
investment. As mentioned above, condition I7 is difficult to verify analytically, but it
can be checked using estimates of the transition density and policy function. Finally,
the exclusion restriction, I8, is met by assuming that each firm’s payoffs depend on
the firm’s own revenue, but not the revenue of other firms. The revenue of others
still enters the firm’s policy function because the others’ revenue helps each firm to
predict others’ actions, which can affect future payoffs.

3.1. Proof of identification (theorem 1). We first show that the policy function
is identified. Assumption I1 implies that the conditional quantile function of actions
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given states is known. Denote it by Qi|x(τ |x). Assumption I2 – that I(x, η) is weakly
increasing in η and Fη is known – imply that the policy function is

I
(
x, F−1

η (τ)
)
= Qi|x(τ |x).

Condition I3 says that the policy function satisfies the first order condition. As
stated in the text, the first order condition is

0 =
∂Π

∂i
(xt, I(xt, ηt), ηt) +

∂

∂i

∞∑
τ=1

δτE [Π (xt+τ , I(xt+τ , ηt+τ ), ηt+τ ) |xt, I(xt, ηt)] .

(3.2)

We can express the payoff function in terms of its derivative,

Π(x, I(x, η), η) =

∫ x(k)

x
(k)
0

∂

∂x(k)
[Π(x, I(x, η), η)] dx̃(k)+

+Π
(
x
(k)
0 , x(−k), I(x

(k)
0 , x(−k), η), η

)
=

∫ x(k)

χk(i0,x(−k),η)

∂Π

∂i
(x, I(x, η), η)

∂I

∂x(k)
(x, η) +

∂Π

∂x(k)
(x, I(x, η), η)dx̃(k)

+Π
(
χk(i0, x

−k, η), x−k, i0, η
)

=L
(
∂Π

∂i

)
(x, η) + Π

(
χk(i0, x

−k, η), x−k, i0, η
)
+

+

∫ x(k)

χk(i0,x(−k),η)

∂Π

∂x(k)
(x, I(x, η), η)dx̃(k) (3.3)

where the first line is just the fundamental theorem of calculus, and the second line
comes from setting x

(−k)
0 = χx(i0, x

(−k), η), and expanding ∂
∂x(k) [Π(x, I(x, η), η)]. Let

ϕ(x, η) =Π
(
χk(i0, x

−k, η), x−k, i0, η
)
+

+

∫ x(k)

χk(i0,x(−k),η)

∂Π

∂x(k)
(x, I(x, η), η)dx̃(k)

Note that by I5 and I6, ϕ(x, η) is known. Substituting this and (3.3) into (3.2) gives,

0 =
∂Π

∂i
(xt, I(xt, ηt), ηt) +

∂

∂i
E

[
∞∑
τ=1

δτL
(
∂Π

∂i

)
(xt+τ , ηt+τ ) + ϕ (xt+τ , ηt+τ ) |xt, I(xt, ηt)

]

=(1 +K)

(
∂Π

∂i

)
+D (ϕ)
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We have assumed that ∂Π
∂x(k) and Π(x, i0, η) are known, which implies that ϕ(x, η)

is known. Also, condition I7 ensures that the operator, 1 + K, in the above equa-
tion is invertible, so we can identify ∂Π

∂i
(x, I(x, η), η). Integrating as in (3.3) gives

Π(x, I(x, η), η).
Finally, to recover the payoff function for at places where i 6= I(x, η), we use the

exclusion restriction I8. In particular this exclusion implies that the payoff function
can be written as Π(x(−i), i, η), so by varying x(i) while holding x(−i) and η fixed, we
can identify the payoff function on the set {x(−i), i, η : i = I(x(i), x(−i), η)}. �

3.2. Identifying transition densities with unobserved state variables . The-
orem 1 above shows that given the transition density and some normalizations, we
can identify the equilibrium payoff function, Π∗(x, η). As stated above, when states
are fully observed, the transition density is easily identified. When some components
of the state vector are unobserved, it can still be possible to identify the transition
density. Hu and Shum (2008) give conditions to identify the transition density in
the presence of unobserved state variables. Their identification argument relies on
the eigendecomposition of an integral operator associated with the joint density of
observed states.

Suppose the state vector can be written as xt = (wt, εt), where wt is observed, but
εt is not. Hu and Shum (2008) show that the transition density can be identified
under the following assumptions:
Assumptions U (Transition density identification with unobserved states).

U1 The states and controls follow a stationary first-order Markov process,

fxt,it|xt−1,it−1,It−1 = fx′,i′|x,i.

U2 Strategies are Markovian, so that

fit|wt,εt,wt−1,εt−1,it−1 = fit|wt,εt .

U3 The unobserved states are not affected by the controls in that

fεt|wt,it−1,wt−1,εt−1 = fεt|wt,εt−1 .
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U4 There is sufficient variation in it−1 with εt−1 given fixed wt and wt−1, so that
there exists a known function ω(i) such that |E[ω(it−1)|wt, wt−1, εt−1]| < ∞

and for any εt−1 6= ε′t−1,

E [ω(it−1)|wt, wt−1, εt−1] 6= E
[
ω(it−1)|wt, wt−1, ε

′
t−1

]
.

U5 There is sufficient variation in it with it−2 given fixed wt and wt−1 so that the
operators defined by

(LIt,wt,ω|wt−1,It−2h)(i
′) =

∫
h(it−2)

∫
ω(it−1)fit,wt,it−1|wt−1,it−2(i

′, wt, it−1|wt−1, it−2)dit−1dit−2

are one-to-one for each wt, wt−1.
U6 There is variation in it with εt−1 given wt, wt−1 so that the operators defined

by

(LIt|,wt,wt−1,εt−1h)(i
′) =

∫
h(εt−1)fit|wt,wt−1,εt−1(i

′|wt, wt−1, εt−1)dεt−1

are one-to-one for each wt, wt−1.
U7 There is variation in it with εt given wt so that the operators defined by:

(Lit|wt,εth)(i) =

∫
h(ε)fit|wt,εt(i|wt, ε)dε

are one-to-one for each wt.
U8 For each component of εt−1, there exists a known functional Gk such that

Gk

[
fit|wt,wt−1,εt−1(·|wt, wt−1, εt−1)

]
is monotonic in εt−1,k.

Theorem 2 (Hu and Shum). If assumptions U1-U8, then the observed density of
(it, wt, it−1, wt−1, it−2, wt−2) uniquely determines the equilibrium transition density
fi′,w′,ε′|i,w,ε.

Assumptions U1 and U2, which state that the environment is stationary and Mar-
kovian, are standard for dynamic games and have already been made above. As-
sumption U3 restricts the nature of the unobserved state variables. It says that
the unobserved state variables are independent of the control in the previous period
conditional on the previous state and current observed state variable.

Assumptions U4-U7 ensure that there is a sufficiently strong relationship between
observed and unobserved variables so that the distribution of observed variables can
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be used to constructed the distribution of unobservables. Although assumptions
U5-U7 can be difficult to fully verify, simple necessary conditions for each can be
expected to hold. For example, U7 requires that conditional on each observed state,
the unobserved state influences firms’ actions. If this were not true for at least some
observed state, then the unobserved state is irrelevant and should not be part of
the model. Similarly, assumptions U5 and U6 require that actions be related to
unobserved states and past and current unobserved states be related. Additionally,
assumptions U6 and U7 require that the support of it be at least as “large” as the
support of εt. For example, if εt is continuous with k dimensions, it must be continuous
with at least k dimensions. If εt is discrete with k points of support, it must have at
least k points of support.

Assumption U4 is easier than assumptions U5-U7 to verify. However, it also fails
in some common models. In particular assumption U4 rules out models where there
is a deterministic relationship between the current state, past action, and past state.
For example, if the state includes the capital stock, the action is investment, and de-
preciation is deterministic, then it = wt− (1− δ)wt−1 and there is no variation with ε

in E[ω(it)|wt, wt−1, εt]. Nonetheless, even in models with deterministic accumulation,
the above result can be useful. Since investment can be recovered from wt+1 and wt,
it can be excluded from the model while identifying the transition density. Then if
remaining actions satisfy the above conditions, the transition density is identified.
In practice, candidates for these remaining actions include anything that satisfy as-
sumptions U2 and U3. That is, they must be functions of only the current state and
should not influence the next unobserved state. Even actions that have no dynamic
implications, such as variable inputs would be suitable. Additionally, depending on
the model and interpretation of εt, outcome variables such as output, revenue, or
costs might be suitable.

4. Estimation

Although the above identification result is nonparametric, our estimation approach
is semiparametric. We assume that the payoff function is known up to a finite di-
mensional parameter, but allow the transition distribution and policy function to be
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nonparametric. As in much of the dynamic game literature, we estimate the model
in multiple steps. First, we estimate that transition distribution of state variables
and the policy function. We then use the estimated policy function and transition
distribution along with the optimality conditions of the model to estimate the payoff
function.

4.1. Estimating policy functions. We begin by supposing we have some nonpara-
metric estimates of the transition density, f̂x′,i′|x,i, and the conditional distribution of
actions given states, F̂i|x. Theorem 4 gives high level conditions on these estimates
for the parameters of the payoff function to be consistent and

√
n asymptotically

normal. In section 5.2 below, we show that certain kernel estimates satisfy these high
level conditions. We expect that sieve estimates would as well.

Given F̂i|x, estimation of the policy function is straightforward. We have assumed
that the policy function is weakly increasing in η, that η is independent of x, and that
the distribution of η is known. Therefore, an estimate of the inverse policy function
can be formed from the following relationship:

Fη(η) =F̂i|x (i|x)

η̂(i, x) =F−1
η

[
F̂i|x (i|x)

]
.

4.2. Estimating the payoff function. The payoff function is estimated from the
optimality conditions of the model. To do this, we must solve for the value function
given the above estimates and a candidate parameter value. This can be done by
evaluating the Bellman equation at the estimated policy function using the estimated
transition densities to evaluate the conditional expectation:

V̂ (x, i; θ, f̂ , η̂) = Π(x, i, η̂(i, x); θ) + δEf̂

[
V̂ (x′, i′; θ, f̂ , η̂)|x, i

]
. (4.1)

This functional equation can be used to solve for V̂ (x, i; θ), the value of being in state
x with a private shock such that i is the estimated policy.2 Let the value of deviating

2Since, given the state, investment and the private shock contain the same information, we could

have instead defined a value function over x and η. In this case, the i in the right hand side of (4.1)

would be replaced with Î(x, η). Although defining the value function over x and η would be more

standard, we chose not to do this because estimating the inverse policy function is slightly more

straightforward than estimating the policy function.
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from the estimated policy for one period be denoted as

V(x, η, ĩ; θ, f̂ , η̂) = Π(x, ĩ, η; θ) + δEf̂

[
V̂ (x′, i′; θ, f̂ , η̂)|x, ĩ

]
.

The optimality conditions of the model can be used to form moment conditions to
estimate the profit function. At least three ways of using the optimality conditions
of the model to estimate the payoff function have appeared in the literature. We will
show that these three methods result in asymptotically equivalent estimators when the
moments are weighted appropriately. Jenkins, Liu, Matzkin, and McFadden (2004)
minimize the difference between observed actions and optimal actions. This action
based moment condition is:

0 = ma(i, x; θ, ĥ) = i− arg max
ĩ

V(x, η̂(i, x), ĩ; θ, ĥ),

where ĥ = (η̂, f̂). Alternatively, the first order condition for investment can be used
as a moment condition:

0 = mf (i, x; θ, ĥ) =
∂V
∂i

(x, η̂(i, x), i; θ, ĥ).

Hong and Shum (2009) use this kind of first order condition based moment. A third
candidate moment condition is the difference between the value of observed actions
and the maximized value function. This type of moment condition is used by Macieira
(2009):

0 = mv(i, x; θ, ĥ) =V̂ (x, η; θ, ĥ)− max
ĩ

V(x, η̂(i, x), ĩ; θ, ĥ).

Note that each of these conditions hold for all i, x. An objective function can
be formed by taking a combination of them. Since the estimates of the transtion
distribution and policy are estimated nonparametrically, we must use a continuum of
moment conditions in the objective function to enable the payoff function parameters
to be

√
n-consistent. Let m(·) be one of ma(·), mf (·), or mv(·). The objective function

is

Qn(θ; ĥ) =

∫
I×X

∫
I×X

m(i, x; θ, ĥ)wn(i, x; , i
′, x′)m(i′, x′; θ, ĥ)didxdi′dx′

=
∥∥∥Bnm(·; θ, ĥ)

∥∥∥2
n
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where wn(i, x; i
′, x′) is some weighting function, possibly data-dependent, and the sec-

ond line is simply alternate notation for the first. In particular, ‖f‖2 =
∫
f(i, x)2didx,

and Bn is an integral operator with a kernel that satisfies

wn(i, x; , i
′, x′) =

∫
bn(i, x; ĩ, x̃)bn(i

′, x′; ĩ, x̃)d̃idx̃.

The parameters of the payoff function are estimated by minimizing the objective
function,

θ̂ = arg min
θ∈Θ

Qn(θ; ĥ).

5. Asymptotic Theory

The above estimator of θ is similar to the estimation frameworks of Carrasco and
Florens (2000); Carrasco, Chernov, Florens, and Ghysels (2007); and Ai and Chen
(2003). As a result, we can derive the asymptotic distribution of θ̂ using a suitable
adaptation of their arguments. The current situation differs from the setup of Car-
rasco and Florens (2000) and Carrasco, Chernov, Florens, and Ghysels (2007) in that
the moment conditions here include a preliminary nonparametric estimate. Ai and
Chen (2003) study conditional moment conditions with nonparametric components.
They derive their results for independent data, and so their weighting operator is
diagonal. Here, the data is not independent. Also, Ai and Chen (2003) consider
simulataneous estimation of the nonparametric and parametric components of their
model. Here, the nonparametric and parametric components are estimated in two
steps.

The following theorem gives conditions on m(·; θ, h) and ĥ sufficient for asymptotic
normality. The conditions are stated for generic moment functions m(·; θ, h) and
nonparametric estimate ĥ. Theorem 4 gives more specific conditions on the payoff
function and transition density that imply the generic conditions of Theorem 3 for
each of the three versions of m(·; θ, h) defined above. Section 5.2 describes kernel
estimates of the transition density and inverse policy function that satisfy the generic
conditions of 3. Let 〈f, g〉 denote the inner-product associated with the norm used
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to define Qn, i.e.

〈f, g〉 =
∫

f(i, x)g(i, x)didx.

For any functions, f and g, let f(x) . g(x) mean that there exist a constant M such
that f(x) ≤ Mg(x). Similarly, let f(x) .p g(x) mean that f(x) ≤ Mg(x) + op(1)

uniformly in x.
Assumptions A (Asymptotic normality for semiparametric minimum distance esti-
mators in a Hilbert space).

A1 θ̂ approximately minimizes Qn(θ), so that Qn(θ̂) ≤ infθ∈ΘQn(θ) + op(n
−1/2).

A2 Let ‖B‖op be the usual operator norm, ‖B‖op = sup‖f‖=1 ‖Bf‖, assume that
‖Bn −B‖op

p→ 0.
A3 The nonparametric estimates of the transition density and policy function

converge at a rate faster than n−1/4 with respect to some norm ‖·‖H, in that∥∥∥B(ĥ− h)
∥∥∥
H
= op

(
n−1/4

)
.

A4 The following derivatives exist and satisfy the following conditions:
A4.i For all θ with ‖θ − θ0‖ ≤ δn, m(·; θ, h) is pathwise differentiable with

respect to h at h0. We denote this derivative as Dm
h (θ, h0). This derivative

is such that

sup
θ:‖θ−θ0‖≤δn

∥∥∥Bn

(
m(·; θ, ĥ)−m(·; θ, h0)−Dh

m(θ, h0)(ĥ− h0)
)∥∥∥ .p

∥∥∥ĥ− h0

∥∥∥2
H

and
A4.ii

sup
θ:‖θ−θ0‖≤δn

∥∥∥Bn

(
Dh

m(θ, h0)(ĥ− h0)−Dh
m(θ0, h0)(ĥ− h0)

)∥∥∥ .p

∥∥∥ĥ− h0

∥∥∥
H
‖θ − θ0‖ .

A4.iii In a neighborhood of θ0, m(·; θ, h0) is continuously differentiable with
respect to θ. This derivative is bounded away from zero in that

1/

(
inf

θ:‖θ−θ0‖≤δn

∥∥∥∥Bn
∂m

∂θ
(·; θ, h0)

∥∥∥∥) .p 1,

and this derivative is Lipschitz continuous, so that

sup
θ1,θ2:‖θi−θ0‖≤δn

∥∥∥∥Bn

(
∂m

∂θ
(·; θ1, h0)−

∂m

∂θ
(·; θ2, h0)

)∥∥∥∥ .p ‖θ1 − θ2‖ .
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A4.iv In a neighborhood of θ0, ‖Bnm(·; θ, h0)‖2 is continuously differentiable
with respect to θ with derivative

∂

∂θ
‖Bnm(·; θ, h0)‖2 = 2

〈
Bn

∂m

∂θ
(·; θ, h0), Bnm(·; θ, h0)

〉
.

A5 ĥ and Bn are bounded in the sense that there is some constant M such that
with probability approaching one

∥∥∥Bnm(·; θ, ĥ)
∥∥∥ ≤ M

and

∥∥∥Bn

(
m(·; θ, h0) +Dm

h (θ0, h0)(ĥ− h0)
)∥∥∥ ≤ M.

A6

√
n

〈
B
∂m

∂θ
(·, θ0, h0), BDm

h (θ0, h0)(ĥ− h0)

〉
d→N(0,ΩB)

Theorem 3 (Asymptotic distribution for semiparametric minimum distance esti-
mators in a Hilbert space). If A1-A6 then

√
n(θ̂ − θ0)

d→N(0,M−1
B ΩBM

−1
B ) with

MB = 〈B ∂m
∂θ

, B ∂m
∂θ

′〉−1.

Proof. We will show that θ̂, which minimizes

Qn(θ) =
∥∥∥Bnm(·; θ, ĥ)

∥∥∥2
is close to the minimizer of the linearized objective function,

Ln(θ) =
∥∥∥Bn

(
m(·; θ, h0) +Dm

h (θ0, h0)(ĥ− h0)
)∥∥∥2 .

First, we must show athat Qn(θ) is close to Ln(θ) in that

sup
‖θ−θ0‖≤δn

|Qn(θ)− Ln(θ)| = op(n
−1/2).
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Note that

|Qn(θ)− Ln(θ)| =
∣∣∣∣∥∥∥Bnm(·; θ, ĥ)

∥∥∥2 − ∥∥∥Bn

(
m(·; θ, h0) +Dm

h (θ0, h0)(ĥ− h0)
)∥∥∥2∣∣∣∣

=

∣∣∣∣∣∣
(∥∥∥Bnm(·; θ, ĥ)

∥∥∥− ∥∥∥Bn

(
m(·; θ, h0) +Dm

h (θ0, h0)(ĥ− h0)
)∥∥∥)×

×
(∥∥∥Bnm(·; θ, ĥ)

∥∥∥+ ∥∥∥Bn

(
m(·; θ, h0) +Dm

h (θ0, h0)(ĥ− h0)
)∥∥∥)

∣∣∣∣∣∣
.
∣∣∣∥∥∥Bnm(·; θ, ĥ)

∥∥∥− ∥∥∥Bn

(
m(·; θ, h0) +Dm

h (θ0, h0)(ĥ− h0)
)∥∥∥∣∣∣

.
∥∥∥Bn

(
m(·; θ, ĥ)−m(·; θ, h0)−Dm

h (θ0, h0)(ĥ− h0)
)∥∥∥

where we used assumption A5 and the reverse triangle inequality. Note that∥∥∥Bn

(
m(·; θ, ĥ) −m(·; θ, h0)−Dm

h (θ0, h0)(ĥ− h0)
)∥∥∥ ≤

≤
∥∥∥Bn

(
m(·; θ, ĥ)−m(·; θ, h0)−Dm

h (θ, h0)(ĥ− h0)
)∥∥∥+

+
∥∥∥Bn

(
Dm

h (θ, h0)(ĥ− h0)−Dm
h (θ0, h0)(ĥ− h0)

)∥∥∥
Invoking assumptions A4.i and A4.ii gives∥∥∥Bn

(
m(·; θ, ĥ)−m(·; θ, h0)−Dm

h (θ0, h0)(ĥ− h0)
)∥∥∥ .p

∥∥∥ĥ− h0

∥∥∥2
H
+

+
∥∥∥ĥ− h0

∥∥∥
H
‖θ − θ0‖

Using assumption A3, we have∥∥∥Bn

(
m(·; θ, ĥ)−m(·; θ, h0)−Dm

h (θ0, h0)(ĥ− h0)
)∥∥∥ .pop(n

−1/2)+ (5.1)

+ op(n
−1/4)

∥∥∥θ̂ − θ0

∥∥∥ . (5.2)

We will now show that
∥∥∥θ̂ − θ0

∥∥∥ ≤ Op(n
−1/2). By assumption A4.iii, we can take

a mean value expansion in θ around θ0, so that

m(·; θ̂, h0) = m(·; θ0, h0) +
∂m

∂θ
(·; θ̄, h0)(θ̂ − θ0)

Therefore,

m(·; θ̂, ĥ)−m(·; θ̂, h0) +

(
m(·; θ0, h0) +

∂m

∂θ
(·; θ̄, h0)(θ̂ − θ0)

)
= 0

Rearranging and using the fact that m(·; θ0, h0) = 0, we have∥∥∥∥Bn
∂m

∂θ
(·; θ̄, h0)(θ̂ − θ0)

∥∥∥∥ =
∥∥∥Bn

(
m(·; θ̂, ĥ)−m(·; θ̂, h0)

)∥∥∥
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By A4.i we have∥∥∥∥Bn
∂m

∂θ
(·; θ̄, h0)(θ̂ − θ0)

∥∥∥∥ =
∥∥∥BnD

m
h (ĥ− h0)

∥∥∥+ op(n
−1/2)∥∥∥θ̂ − θ0

∥∥∥ .∥∥∥BDm
h (ĥ− h0)

∥∥∥+ op(n
−1/2)

Thus, by assumptions A4.iii and A6, we can conclude that ‖θ̂ − θ0‖ ≤ Op(n
−1/2).

Combining the just obtained rate bound for θ̂ with equation (5.2) gives:

|Qn(θ)− Ln(θ)| = op(n
−1/2).

Now we show that the minimizer of Qn(θ) = ‖Bnm(·; θ, ĥ)‖ is close to the minimizer
of Ln(θ) =

∥∥∥Bn

(
m(·, θ, h0) +Dm

h (θ0, h0)(ĥ− h0)
)∥∥∥. Let θ̂ denote the former and θ̃

denote the later. By assumption A1,

Qn(θ̂) ≤ Qn(θ̃) + op(n
−1/2).

Using the expansion results above we then have,

Ln(θ̂) ≤ Ln(θ̃) + op(n
−1/2).

On the other hand, θ̃ is defined as the minimizer of Ln(θ), so Ln(θ̃) ≤ Ln(θ̂) and we
can conclude that

Ln(θ̂) = Ln(θ̃) + op(n
−1/2).

By assumption A4.iv we can expand both sides around θ0 to get〈
Bn

∂m

∂θ
(·; θ̄1, h0), BnD

m
h (θ0, h0)(ĥ− h0)

〉
(θ̂ − θ0) =

=

〈
Bn

∂m

∂θ
(·; θ̄2, h0), BnD

m
h (θ0, h0)(ĥ− h0)

〉
(θ̃ − θ0) + op(n

−1/2)

Rearranging gives

〈Bn
∂m

∂θ
(·; θ̄2, h0), BnD

m
h (θ0, h0)(ĥ− h0)

〉
(θ̃ − θ̂) =

=

〈
Bn

(
∂m

∂θ
(·; θ̄1, h0)−

∂m

∂θ
(·; θ̄2, h0)

)
, BnD

m
h (θ0, h0)(ĥ− h0)

〉
(θ̂ − θ0) + op(n

−1/2)

By assumption A4.iii,∥∥∥∥∂m∂θ (·; θ̄1, h0)−
∂m

∂θ
(·; θ̄2, h0)

∥∥∥∥ . ∥∥θ̄1 − θ̄2
∥∥ .
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Also we have already shown that
∥∥∥θ̂ − θ0

∥∥∥ ≤ Op(n
−1/2), which implies that

∥∥θ̄1 − θ̄2
∥∥ ≤

Op(n
−1/2). Thus, we can conclude that ‖θ̃ − θ̂‖ = op(n

−1/2).
Finally, expanding the first order condition for the linearized objective function

gives,

0 =

〈
Bn

∂m

∂θ
(·, θ̃, h0), Bn

(
m(·, θ̃, h0) +Dm

h (θ0, h0)(ĥ− h0)
)〉

0 =

〈
Bn

∂m

∂θ
(·, θ̃, h0), Bn

 m(·, θ0, h0) +
∂m
∂θ

(·, θ̄, h0)(θ̃ − θ0)+

+Dm
h (θ0, h0)(ĥ− h0)

〉

(θ̃ − θ0) =−
〈
Bn

∂m

∂θ
(·, θ̃, h0), Bn

∂m

∂θ
(·, θ̄, h0)

〉−1

×

×
〈
Bn

∂m

∂θ
(·, θ̃, h0), BnD

m
h (θ0, h0)(ĥ− h0)

〉
=−

〈
B
∂m

∂θ
(·, θ0, h0), B

∂m

∂θ
(·, θ0, h0)

〉−1

×

×
〈
B
∂m

∂θ
(·, θ0, h0), BDm

h (θ0, h0)(ĥ− h0)

〉
+ op(n

−1/2)

To conclude, we have

√
n(θ̂ − θ0) =−

√
n

〈
B
∂m

∂θ
(·, θ0, h0), B

∂m

∂θ
(·, θ0, h0)

〉−1

×

×
〈
B
∂m

∂θ
(·, θ0, h0), BDm

h (θ0, h0)(ĥ− h0)

〉
+ op(1)

and the statement in the theorem follows from assumption A6. �

We now give conditions on the payoff function and other model primitives such that
the conditions of theorem 3 are satisfied. We begin by establishing differentiability
of m(·; θ, h) for each of the three candidates for m(·; θ, h) introduced above. Each
m(·; θ, h) is simple function of V(x, η, i; θ, f,η), so Lemma 1 about the derivatives
of V is useful. Before stating this lemma, we define some additional notation. Let
Ef (g)(x, i) denote the following conditional expectation operator:

Ef (g)(x, i) = E [g (x′, i′) |x, i]

where g : X × I → R and the expectation is taken with respect to the transition
density, fx′,i′|x,i. Also, let I denote the identity operator, g ◦ η = g(x, i,η(i, x)) for
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g : X × I ×N → Rk, and let Πθ(x, i, η) = Π(x, i, η; θ). Note that (I − δEf )−1 exists
because ‖δEf‖op = δ < 1. Using this notation, we can write V as

V(x, η, i; θ, f̂ , η̂) = Πθ(x, i, η) + δEf̂
(
(I − δEf̂ )

−1Πθ ◦ η̂
)
(x, i, η)

Lemma 1 (Differentiability of V(x, η, ĩ; θ, f,η) ). If

(1) The payoff function is twice continuously differentiable with respect to i, η,
and θ for all (i, x, η), and for all θ in a neighborhood of θ0. The derivative
with respect to θ is bounded by a function with finite expectation with respect
to f , i.e. ∣∣∣∣∂Π∂θ

∣∣∣∣ ≤ m(i, x)

with ∫
m(i′, x′)f0(i

′, x′|i, x)di′dx′ < ∞

uniformly in (i, x). The derivatives with respect to η are Lipschitz continuous
in that for all θ in a neighborhood of θ0,∣∣∣∣∂Πθ

∂η
(x, i, η1)−

∂Πθ

∂η
(x, i, η2)

∣∣∣∣ ≤ M1(i, x) |η1 − η2|

with ‖BnM1‖ bounded. Similarly, for all θ in a neighborhood of θ0,∣∣∣∣∂2Πθ

∂η∂i
(x, i, η1)−

∂2Πθ∂i

∂η
(x, i, η2)

∣∣∣∣ ≤ M2(i, x) |η1 − η2|

with ‖BnM2‖ bounded.
(2) The conditional expectation operator, Ef is twice continuously differentiable

respect to i.

then V is twice continuously differentiable with respect to i and θ at h = h0, for all i,
and for all θ in a neighborhood of θ0. Moreoever, these derivatives are given by:

∂V
∂θ

(x, i, η; θ, f0,η0) =
∂Πθ

∂θ
(x, i, η) + δEf0

(
(I − δEf0)−1∂Πθ

∂θ
◦ η0

)
(x, i) (5.3)

∂V
∂i

(x, i, η; θ, f0,η0) =
∂Πθ

∂i
(x, i, η) + δ

∂Ef0
∂i

(
(I − δEf0)−1Π ◦ η0

)
(x, i) (5.4)

∂2V
∂i2

(x, i, η; θ, f0,η0) =
∂2Πθ

∂i2
(x, i, η) + δ

∂2Ef0
∂i2

(
(I − δEf0)−1Πθ ◦ η0

)
(x, i) (5.5)

∂2V
∂i∂θ

(x, i, η; θ, f0,η0) =
∂2Πθ

∂i∂θ
(x, i, η) + δ

∂Ef0
∂i

(
(I − δEf0)−1∂Πθ

∂θ
◦ η
)
(x, i). (5.6)
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Also, V is pathwise differentiable with respect to f and η in a neighborhood of f0 and
η0 with derivatives

DV
η (θ, f,η)(η1 − η) =δEf

(
(I − δEf )−1

((
∂Πθ

∂η
◦ η
)
(η1(·)− η(·))

))
(5.7)

DV
f (θ, f,η)(f1 − f) =δEf

(I − δEf )−1

δ

∫
((I − δEf )−1Πθ ◦ η) (x′, i′)×

× (f1(x
′, i′|·)− f(x′, i′|·)) dx′di′

+

+ δ

∫ (
(I − δEf )−1Πθ ◦ η

)
(x′, i′) (f1(x

′, i′|·)− f(x′, i′|·)) dx′di′.

(5.8)

Finally, DV
η and DV

f are continuously differentiable with respect to i these derivatives
are equal to the pathwise derivates of ∂V

∂i
with respect to η and f , which also exist.

These derivatives are given by

∂DV
η

∂i
(θ, f,η)(η1 − η) =δ

∂Ef
∂i

(
(I − δEf )−1

((
∂Πθ

∂η
◦ η
)
(η1(·)− η(·))

))
(5.9)

∂DV
f

∂i
(θ, f,η)(f1 − f) =δ

∂Ef
∂i

(I − δEf )−1

δ

∫
((I − δEf )−1Πθ ◦ η) (x′, i′)×

× (f1(x
′, i′|·)− f(x′, i′|·)) dx′di′

+

+ δ

∫
((I − δEf )−1Πθ ◦ η) (x′, i′)×

×
(
∂f1
∂i
(x′, i′|·)− ∂f

∂i
(x′, i′|·)

)
dx′di′

, (5.10)

and these derivatives are Lipschitz continuous with respect to η, f , and θ uniformly
in a neighborhood of η0, f0, and θ0.

Proof. Assumption 1 allows us to apply the dominated convergence theorem to show
that

∂

∂θ
EfΠ(·; θ) = Ef

∂Π

∂θ
(·; θ)

and
∂

∂θ
(I − δEf )−1Π(·; θ) = (I − δEf )−1∂Π

∂θ
(·; θ)

Given this, (5.3)-(5.6) follow directly from the assumed differentiability of the payoff
function and conditional expectation.

We now show (5.7). Recall that

V(x, i, η; θ, f,η) =Πθ(x, i, η) + δEf
[
(I − δEf )−1 Πθ ◦ η

]
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Let Vj = V(x, i, η; θ, f,ηj) for j = 1, 2. Note that,

V1 − V2 =δEf
[
(I − δEf )−1Πθ ◦ η1

]
− δEf

[
(I − δEf )−1 Πθ ◦ η2

]
=δEf

[
(I − δEf )−1 (Πθ ◦ η1 − Πθ ◦ η2)

]
Also,

V1−V2 −DV
η (·; θ, f,η1)

=δEf
[
(I − δEf )−1

(
Πθ ◦ η1 − Πθ ◦ η2 −

(
∂Πθ

∂η
◦ η1

)
(η1 − η2)

)]
Taking a mean value expansion in η of Πθ ◦ η2, along with the assumed Lipschitz
condition on ∂Π

∂η
gives

∥∥V1 − V2 −DV
η (·; θ, f,η1)

∥∥ ≤ δ

1− δ
‖f‖F ‖M1‖ ‖η1 − η2‖

2

Thus, DV
η is the pathwise derivative as claimed.Also, a similar argument would also

show that (5.9) is the pathwise derivative of ∂V
∂i

with respect to η.
We now show (5.8). Recall that V(x, i, η; θ, f,η) denotes the value of choosing i

when the state is x and the private shock is η and V̂ (x, i; θ, f,η) denotes the value of
being in state x and choosing i when η = η(i, x), i.e. the value of choosing i when η

is such that i is optimal. V can be written as

V(x, i, η; θ, f,η) =Πθ(x, i, η) + δEf V̂ (·; θ, f,η),

where V̂ can be defined as the solution to the following equation:

V̂ (i, x; θ, f,η) =Πθ (x, i,η(i, x)) + δEf V̂ (·; θ, f,η).

Consider the difference between V for two values of f .

V1 − V2 =δEf1V̂1 − δEf2V̂2

=δ

∫
V̂1(i

′, x′) (f1(i
′, x′|·)− f2(i

′, x′|·)) di′dx′ + δEf2
(
V̂1 − V̂2

)
where now Vj = V(·; θ, fj,η) and V̂j = V̂ (·; θ, fj,η). Similarly,

V̂1 − V̂2 =δ

∫
V̂1(i

′, x′) (f1(i
′, x′|·)− f2(i

′, x′|·)) di′dx′ + δEf2
(
V̂1 − V̂2

)
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Although this equation is nearly identical to the previous one, here we can subtract
δEf2

(
V̂1 − V̂2

)
from both sides and apply (I − δEf2)−1 to obtain

V̂1 − V̂2 =(I − δEf2)
−1

[
δ

∫
V̂1(i

′, x′) (f1(i
′, x′|·)− f2(i

′, x′|·)) di′dx′
]
.

Now note that,

V1−V2 −DV
f (·; θ, f1,η) =

=Ef2
(
(I − δEf2)

−1

[
δ

∫
V̂1(i

′, x′) (f1(i
′, x′|·)− f2(i

′, x′|·)) di′dx′
])

−

− Ef1
(
(I − δEf1)

−1

[
δ

∫
V̂1(i

′, x′) (f1(i
′, x′|·)− f2(i

′, x′|·)) di′dx′
])

=Ef2
([

(I − δEf2)
−1 − (I − δEf1)

−1] [δ ∫ V̂1(i
′, x′) (f1(i

′, x′|·)− f2(i
′, x′|·)) di′dx′

])
+

+ (Ef2 − Ef1)
(
(I − δEf1)

−1

[
δq

∫
V̂1(i

′, x′) (f1(i
′, x′|·)− f2(i

′, x′|·)) di′dx′
])

.

It is trivial that

∥∥(Ef2 − Ef1)(
(I − δEf1)

−1

[
δq

∫
V̂1(i

′, x′) (f1(i
′, x′|·)− f2(i

′, x′|·)) di′dx′
])∥∥ .

. ‖f2 − f1‖2F .

Also, for any function g(i, x),

∥∥(I − δEf2)
−1 g − (I − δEf1)

−1 g
∥∥ ≤ δ

1− δ
‖g‖ ‖f1 − f2‖F

Thus, we can conclude that

lim
f2→f1

∥∥V1 − V2 −DV
f (·; θ, f1,η)(f1 − f2)

∥∥
‖f1 − f2‖F

= 0

and DV
f is the derivative as claimed. It is elementary to show that DV

f has the
derivative with respect to i claimed in (5.10). Showing that ∂V

∂i
has (5.10) pathwise

derivative involves the same argument just used to show (5.8), so we omit the details.
Also, showing that the pathwise derivatives are Lipschitz can be done in similar
manner, so we omit the details. �
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We now give conditions on the payoff function that are sufficient for the conditions
theorem 3. Let F be the Sobolev like space of functions f : (X × I)× (X × I) that
are differentiable with respect to their last argument. Define a norm on this space by

‖f‖F = sup
‖Bg‖=1

∥∥∥∥B ∫ g(x′, i′)f(x′, i′|·)dx′di′
∥∥∥∥+ sup

‖Bg‖=1

∥∥∥∥B ∫ g(x′, i′)
∂f

∂i
(x′, i′|·)dx′di′

∥∥∥∥ .
Theorem 4 (Asymptotic distribution of the payoff function parameters). If assump-
tions A1, A2, and the conditions of lemma 1 hold and,

A′1 The estimates of η, f , and ∂f
∂i

converge faster than n−1/4, i.e.

‖B(η̂ − η0)‖ =op(n
−1/4)∥∥∥f̂ − f0

∥∥∥
F
=op(n

−1/4)

A′2 ∂Π
∂θ

and ∂2Π
∂i∂θ

are Lipschitz continuous with respect to θ in a neighborhood of θ0
in that ∥∥∥∥B(∂Π

∂θ
(·; θ1)−

∂Π

∂θ
(·; θ2)

)∥∥∥∥ . |θ1 − θ2|

and ∥∥∥∥B( ∂2Π

∂i∂θ
(·; θ1)−

∂Π

∂i∂θ
(·; θ2)

)∥∥∥∥ . |θ1 − θ2|

A′3
∣∣∣ ∂2V
∂i∂θ

(x, i)
∣∣∣ ≤ C(x, i) with (BC)(x, i) and ‖BC‖ finite.

A′4 f̂ and η̂ are bounded with probability approaching one

‖Bnη̂‖ ≤ M

and ∥∥∥f̂∥∥∥
F
≤ M.

A′5

√
n

〈B ∂m
∂θ

(·, θ0, h0), BDm
η (θ0, h0)(η̂ − η0)

〉〈
B ∂m

∂θ
(·, θ0, h0), BDm

f (θ0, h0)(f̂ − f0)
〉 d→N(0,ΩB)

Proof. We will verify the conditions of theorem 3. We have assumed A1 and A2.
Also, condition A′1 is basically a restatement of A3. To verify A4, first note that the
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derivatives of ma, mv, and mf are simply functions of the derivatives of V . For mf ,
it is immediate that

∂mf

∂θ
=

∂2V
∂i∂θ

D
mf
η (η1 − η) =

(
∂Π

∂η
◦ η +

∂DV
η

∂i

)
(η1 − η)

D
mf

f (f1 − f) =
∂DV

f

∂i
(f1 − f).

For ma, a simple application of the implicit function theorem gives,

∂ma

∂θ
=−

(
∂2V
∂i2

)−1
∂2V
∂i∂θ

Dma
η (η1 − η) =−

(
∂2V
∂i2

)−1
(
∂Π

∂η
◦ η +

∂DV
η

∂i

)
(η1 − η)

Dma
f (f1 − f) =−

(
∂2V
∂i2

)−1 ∂DV
f

∂i
(f1 − f).

For mv, using the envelope and mean value theorems gives,

∂ma

∂θ
=

∂2V
∂i∂θ

(i− i∗)

Dma
η (η1 − η) =

(
∂Π

∂η
◦ η +

∂DV
η

∂i

)
(η1 − η)(i− i∗)

Dma
f (f1 − f) =

∂DV
f

∂i
(f1 − f)(i− i∗),

where i∗(i, x; θ, f,η) = arg maxĩ V(x,η(i, x), ĩ, i; θ, f,η). Conditions A4.i and A4.ii
then follow from the Lipschitz continuity of ∂DV

η

∂i
and ∂DV

f

∂i
shown in lemma 1. Similarly,

condition A4.iii follows directly from lemma 1 and assumption A′2.
A4.iv can be verified through repeated application of the dominated convergence

theorem. In particular if
∣∣∂m
∂θ

(x, i; θ)
∣∣ ≤ C(x, i) with BC(x, i) < ∞ and |BC| < ∞,

then

∂

∂θ
Bm =

∂

∂θ

∫
m(x′, i′)b(x′, i′; x, i)dx′di′

=

∫
∂m

∂θ
(x′, i′)b(x′, i′; x, i)dx′di′.
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Also, ∫
∂

∂θ
(Bm)(x, i)2dxdi =

∫
2(B

∂m

∂θ
)(x, i)(Bm)(x, i)dxdi

≤‖BC‖ ‖Bm‖

so

∂

∂θ
‖Bm‖2 = 2

〈
B
∂m

∂θ
,Bm

〉
.

Thus, we just have to show for each of the three possibilities of m that
∣∣∂m
∂θ

(x, i; θ)
∣∣ ≤

C(x, i) with BC(x, i) < ∞ and |BC| < ∞.
Condition A5 follows from A′4 and the following inequalities. To show the first

part of A5 note that∥∥∥Bnm(·; θ, ĥ)
∥∥∥ .∥∥∥∥Bn

∂Π

∂i
◦ η̂
∥∥∥∥+ ∥∥∥∥Bnδ

∂Ef̂
∂i

(
I − δEf̂

)−1

Π ◦ η̂
∥∥∥∥

. ‖Bn(η̂ − η0)‖+
δ

1− δ

(
‖Bn‖op

∥∥∥f̂ − f
∥∥∥
F
+ ‖Bn(η̂ − η0)‖

)
.

Similarly, the second part of A5 follows from∥∥∥BnD
m
h (ĥ− h)

∥∥∥ . ∥∥∥∥∥Bn

∂DV
η

∂i
(η̂ − η0)

∥∥∥∥∥+
∥∥∥∥∥Bn

∂DV
f

∂i
(f̂ − f0)

∥∥∥∥∥
. δ

1− δ

(
‖Bn (η̂ − η0)‖+

∥∥∥f̂ − f0

∥∥∥
F

)
.

Finally, A′5 implies A6. �

5.1. Asymptotic equivalence. In this subsection we show that the three types of
moment conditions result in asymptotically equivalent estimators when appropriate
weighting operators are used. This fact follows directly from results derived in the
proofs of Theorems 3 and 4.

Corollary 1 (Asymptotic equivalence ). Suppose the conditions of Theorem 4 hold.
Let θ̂f (B) be the estimate from using moment conditions mf and weighting operator
B. Similarly, define θ̂a(B) and θ̂v(B). Then∥∥∥∥θ̂f (B)− θ̂a(B

∂2V
∂i

)

∥∥∥∥ =op(n
−1/2)

∥∥∥θ̂f (B)− θ̂v(B(i∗ − i)−1)
∥∥∥ = op(n

−1/2).
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Proof. The proof of Theorem 3 shows that

√
n(θ̂ − θ0) =−

√
n

〈
B
∂m

∂θ
(·, θ0, h0), B

∂m

∂θ
(·, θ0, h0)

〉−1

×

×
〈
B
∂m

∂θ
(·, θ0, h0), BDm

h (θ0, h0)(ĥ− h0)

〉
+ op(1).

Substituting in the formulas for Dm
h and ∂m

∂θ
given in the proof of theorem 4 verifies

the proposition. �

5.2. A kernel estimator . This section describes kernel estimates of the transition
density and policy function that satisfy the conditions for asymptotic normality given
in theorem 4. We assume that our data comes from a balanced panel of length T .
There are M independent markets, each with F firms. We will state results for M

and F fixed with T → ∞, but our proofs could easily be adapted to situations with
M → ∞ and T either growing or fixed, provided that at least MT → ∞. We will let
n = MTF . When the distinction among M , T , and F is unimportant, we will let

n∑
j=1

xj =
T∑
t=1

M∑
m=1

F∑
f=1

xt,m,f .

Our estimate of the policy function is

η̂(x, i) =F−1
η

(∑n
j=1 1(ij ≤ i)k((xj − x)/hn)∑n

j=1 k((xj − x)/hn)

)
,

where k is a kernel satisfying the conditions states below and hn is the bandwidth.
We will let

̂F (i|x)f(x) = 1

hnn

n∑
j=1

1(ij ≤ i)k((xj − x)/hn)

and

f̂(x) =
1

hnn

n∑
j=1

k((xj − x)/hn).

Let z = (x, i). The transition density is estimated by

f̂(z′|z) =
∑M

m=1

∑F
f=1

∑T−1
t=1 k((zt+1,m,f − z′, zt,m,f − i)/hn)∑M

m=1

∑F
f=1

∑T−1
t=1 k((zt,m,f − z)/hn)

,
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and the estimate of its derivative is simply the derivative of the estimate of the
transition density,

∂f̂

∂i
(z′|z) = ∂

∂i

∑M
m=1

∑F
f=1

∑T−1
t=1 k((zt+1,m,f − z′, zt,m,f − z)/hn)∑M

m=1

∑F
f=1

∑T−1
t=1 k((zt,m,f − z)/hn)

.

We will denote the joint density of zt+1 and zt by fzz, the marginal density of z by fz,
and the marginal density of x by fx. We denote kernel estimates of these densities
by f̂zz, f̂z, and f̂x.

To apply Theorem 4 to conclude that θ̂ is
√
n asymptotically norma; we must verify

that the kernel estimates above satisfy the rate condition A′1 and the asymptotic
normality condition A′5. The rate condition can be verified by using available results
on uniform convergance rates for kernel estimators. We employ the results of Hansen
(2008) for this purpose. Showing condition A′5 is more involved. In independent
work, Srisuma and Linton (2010) propose a similar kernel estimator for the case
with continuous states and discrete actions, and Srisuma (2010) develops a similar
estimator for models with discrete states and continous controls. These papers employ
U-statistics to show

√
n asymptotic normality of the parameters of the payoff function.

We take a different approach. We extend the uniform central limit theorem for
smoothed empirical processes of van der Vaart (1994) and Giné and Nickl (2007) to
allow for dependent data. We then utilize this theorem to verify condition A′5.

Condition A′5 is that

√
n

〈
B∗B

∂m

∂θ
(·, θ0, h0), D

m
h (θ0, h0)(ĥ− h0)

〉
d→N(0,ΩB).
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To verify this condition, we first observe that this inner-product has the following
integral form:〈

B∗B
∂m

∂θ
(·, θ0, h0),D

m
h (θ0, h0)(ĥ− h0)

〉
=

=

∫
c1(z

′, z)
(
f̂z′,z(z

′, z)− fz′,z(z
′, z)
)
dz′dz+

+

∫
c2(z

′, z)
(
f̂z(z)− fz(z)

)
dz′dz+

+

∫
c3(z

′, z)

(
∂f̂z′,z(z

′, z)

∂i
− ∂fz′,z(z

′, z)

∂i

)
dz′dz+

+

∫
c4(z

′, z)

(
∂f̂z(z)

∂i
− ∂fz(z)

∂i

)
dz′dz+

+

∫
c5(z

′, z)
(
f̂x(x)− fx(x)

)
dz′dz+

+

∫
c6(z

′, z)
(

̂F (i|x)f(x)− F (i|x)f(x)
)
dz′dz + op(n

−1/2),

(5.11)

where cj(·) are functions that depend on B, ∂m
∂θ

and Dm
h . The exact form of cj(·) and

formal verification of (5.11) are given in Lemma 2 below. Given (5.11), we can then
apply the following theorem, which is an extension of van der Vaart (1994) and Giné
and Nickl (2007) to allow for dependent data and estimates of derivatives of densities
as well as densities themselves. This result may be of independent interest.

Theorem 5 (Extension of van der Vaart (1994) and Giné and Nickl (2007) ). Let
X = (Xi)i∈Z be a stationary sequence with marginal distribution P and β-mixing
coefficients β(k). Let F ⊂ L2(P) be a translation invariant class of functions. Suppose
there exists 2 < p < ∞ such that

∑∞
k=1 k

2/(2−p)β(k) < ∞ and F is not too complex,
namely the bracketing entropy integral is finite, J[](∞,F ,Lp(P)) < ∞. Let ‖f‖LR =∑

i∈ZE [f(z0)f(zi)]. Let {µn}∞n=1 converge weakly to the Dirac measure at zero, δ0, or
one of its derivatives, ∂αδ0. Also assume that for all n, µn(Rd) ≤ C, F ⊆ L1 (|µn|),
and

∫
‖f(· − y)‖LRd|µn|(y) < ∞ for all f ∈ F . If

sup
f∈F

∑
i∈Z

E

[(∫
f(X0 + y)− f(X0)dµn(y)

)(∫
f(Xi + y)− f(Xi)dµn(y)

)]
→ 0

(5.12)



32 PAUL SCHRIMPF

and

sup
f∈F

∣∣∣∣E ∫ f(X + y)− f(X)dµn(y)

∣∣∣∣→ 0 (5.13)

then
√
n (Pn ∗ µn − P ∗ µ∞) G in `∞(F),

where G is the P-Brownian bridge indexed by F and µ∞ is either δ0 or ∂αδ0.

Proof. This is Theorem 2 of Giné and Nickl (2007), except it allows for dependent data
and µn → ∂αδ0 in addition to µn → δ0. Allowing for ∂αδ0 requires no modification
of the proof. Allowing for dependent data simply requires substituting the empirical
process results for independent data used by van der Vaart (1994) and Giné and Nickl
(2007) with a suitable empirical process result for dependent data. A variety of such
results are available; we use Theorem 11.22 of Kosorok (2008). This theorem says
that given the condition on β-mixing coefficients and bracketing entropy above

√
n (Pn − P) ξ in `∞(F),

where ξ is a tight, mean zero Gaussian process with covariance

V (f, g) =
∑
i∈Z

cov (f(X0)g(Xi)) .

Then, by following the arguments used to prove Theorem 1 and Lemmas 1 and 2 of
Giné and Nickl (2007), but with ‖ · ‖LR in place of ‖ · ‖2,P, we can show that

Gn(f, µ) =
√
n (Pn − P)

∫
f(X + y)dµ(y)

converges in distribution in `∞(F ×M). Finally, the proof of van der Vaart (1994),
with his semi-metric d redefined as

d2 ((f, µ), (g, ν)) =
∑
i∈Z

E

(∫ f(X0 + y)dµ(y)−
∫
g(X0 + y)dν(y)

)
×

×
(∫

f(Xi + y)dµ(y)−
∫
g(Xi + y)dν(y)

)
 ,

leads to the conclusion. �

We now state regularity conditions that are sufficient for (5.11) to hold and Theorem
5 to apply.
Assumptions K (Kernel estimator).
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K1 The densities f(z′, z) and f(z) are a ≥ 2-times continuously differentiable.
K2 The data is comes from M markets with F firms and T → ∞ periods.

{zt,m,f}t∈Z is stationary and strongly mixing with strong mixing coefficients
αm that decay at rate β, i.e. αm . m−β for some m > 1. There exists q > 0

such that β > 1 + d
q
+ d and

β − 1− d
q
− d

d(β + 3− d)
>

1

4r
.

K3 With probability approaching one,∫ ∣∣∣[B∗
nBnD

m
h (ĥ(z

′, z)− h(z′, z))
]
(z0)

∣∣∣ dz′dz < C

uniformly in z0.
K4 The dimension of z = (x, i) is d.
K5 cj(z

′, z) is s > d/2 times differentiable with uniformly bounded derivatives.
K6 The kernel is of order r = a+ s− k > a+ d/2.
K7 The bandwidth is such that ha+s−k

n nd/2 → ∞

K8 The weighting operator is such that
∫
bn(z0, z1)bn(z, z1)dz1 has compact convex

support and vanishes at the boundary of its support.

Lemma 2 shows that these conditions are sufficient for (5.11).

Lemma 2 (Verification of (5.11) ). If K1-K7 hold, then the following functions exist

d1(z
′, z; z0) =δ

[
∂Ef
∂i

(
(I − δEf )−1

)]
(z|z0)

[
δ(I − δEf )−1Πθ0 ◦ η0

]
(z′)

d2(z
′, z; z0) =

[
δ(I − δEf )−1Πθ0 ◦ η0

]
(z′)

dη(z
′, z; z0) =

∂2Πθ0

∂η∂i
◦ η0(z0) + δ

[
Ef
(
(I − δEf )−1

(
∂Πθ0

∂η
◦ η0

))]
(z),

and equation (5.11) holds with

cj(z
′, z) =

〈
∂m

∂θ
, (B∗Bc̃j(z

′, ·))(z, ·)
〉

=

∫
∂m

∂θ
(z0)

(∫
b(z0, z1)b(z, z1)dz1

)
c̃(z′, z; z0)dz0
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where

c̃1(z
′, z; z0) =d1(z

′, z; z0)
1

fz(z)
− d2(z

′, z; z0)
∂fzz/∂i(z

′, z)

fz(z)2

c̃2(z
′, z; z0) =− d1(z

′, z; z0)
fzz(z

′, z)

fz(z)2
−

− d2(z
′, z; z0)

(
∂fzz/∂i(z

′, z)

fzz(z′, z)
+ 2

fzz(z
′z)∂fz/∂i(z)

fz(z)2

)
c̃3(z

′, z; z0) =d2(z
′, z; z0)

1

fz(z)

c̃4(z
′, z; z0) =d2(z

′, z; z0)
fzz(z

′, z)

fz(z)

c̃5(z
′, z; z0) =dη(z

′, z; z0)
1

fx(x)

c̃6(z
′, z; z0) =− dη(z

′, z; z0)

Proof. Equation (5.11) is derived by repeatedly applying the mean value theorem to
write ĥ−h as a sum of f̂zz −fzz, f̂z −fz, f̂x−fx, and their derivatives. Condition K3
ensures that we can freely interchange the order of integration while doing so. The
definitions of d1, d2, and dη are then verified by straightforward calculation. Condition
K7 and K2, along with the uniform convergence rate results of Hansen (2008), are
sufficient to show that the remainder in (5.11) is op(n

−1/2). �

Combining this lemma with Theorems 5 and 4 shows that the kernel estimator of
θ̂ is asymptotically normal. Thoerem 6 states this result.

Theorem 6 (Asymptotic distribution for kernel estimator ). If conditions A′2-A′4
and K1-K7 hold, then

√
n(θ̂ − θ0)

d→N(0,M−1
B ΩBM

−1
B ),
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where

Ωb =
∞∑

t=−∞

F∑
f2,f1=1



cov (c1(z0+1,m1,f , z0,m,f1), c1(zt+1,m2, f, zt,m,f2))+

+cov
(∫

c2(z
′, z0,m,f1)dz

′,
∫
c2(z

′, zt,m,f2)dz
′)+

cov
(
∂c3
∂i
(z0+1,m1,f , z0,m,f1),

∂c3
∂i
(zt+1,m2, f, zt,m,f2)

)
+

+cov
(∫

∂c4
∂i
(z′, z0,m,f1)dz

′,
∫

∂c4
∂i
(z′,m2, f, zt,m,f2)dz

′)+
+cov

(∫
c5(z

′, (x0,m,f1 , i))dz
′di,
∫
c5(z

′, (xt,m,f2 , i))dz
′di
)
+

cov
(∫

∂c6
∂i
(z′, z0,m,f1)dz

′,
∫

∂c6
∂i
(z′,m2, f, zt,m,f2)dz

′)


.

Proof. As in the proof of Lemm 2, conditions K1 and K7, along with the uniform
convergence rate results of Hansen (2008), are sufficient to show that the rate as-
sumption, A′1, holds. We have assumed A′2-A′4. All that remains is to show A′5
holds with the stated ΩB. By Lemma 2, equation (5.11) holds. Applying Theorem 5
to (5.11) yields the desired conclusion. All that remains is to show that the conditions
of Theorem 5 are satisfied.

Let F = {cj(z′, z)}6j=1. This is finite class and trivially satisfies J[](∞,F ,Lp(P)) <

∞. Conditions K1 and K5 are sufficient to apply Proposition 1 of Giné and Nickl
(2007) to show that (5.12) holds for c1-c6. Conditions K5-K7 are sufficient to apply
Theorem 6 of Giné and Nickl (2007) to show that (5.13) holds for c1, c2, c5, and c6.
These same conditions along with K8 and a slight modification of Theorem 6 of Giné
and Nickl (2007) shows (5.13) for c3 and c4. �

6. Conclusion

We have shown that the payoff function in dynamic games with continous states
and controls is nonparametrically identified by the observed distribution of states and
controls. The key identifying restrictions include that one of the partial derivatives
of the payoff function is known, that there is some component of the state space that
enters the policy function, but not the payoff function directly, and that a certain
integral operator of the second kind is invertible. We have also developed a semi-
parametric estimator for the model. In the first step the transition densities and
policy function are estimated nonparametrically. In the second step, the parameters
of the payoff function are estimated from the optimality conditions of the model. we
gave high-level conditions on the first step nonparametric estimates for the parameter
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estimates to be consistent and parameters to be
√
n asymptotically normal, and we

have shown that a kernel based estimator satisfies these conditions.
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