Limited Participation in International Business Cycle Models: A Formal Evaluation

Xiaodan Gao* Viktoria Hnatkovska*
gao.xiaodan@gmail.com hnatkovs@mail.ubc.ca

Vadim Marmer*
vadim.marmer@ubc.ca

January 2012

Abstract

In this paper we study the role of limited asset market participation (LAMP) for international business cycles. We show that when limited participation is introduced into an otherwise standard model of international business cycles the performance of the model is improved, especially in matching cross-country correlations. To perform formal evaluation of the models we develop a novel statistical procedure that adapts the test of Vuong (1989) to DSGE models and accounts for the possibility that models are misspecified. Based on this test we show that the improvements brought out by LAMP are statistically significant, leading a model with LAMP (and complete markets) to outperform a model with no trade in financial assets – a well-known favorite in the literature. Our results remain robust to the inclusion of investment specific technical change.

JEL Classification: F3, F4

Keywords: international business cycles, incomplete markets, limited asset market participation

*Department of Economics, University of British Columbia, 997 - 1873 East Mall, Vancouver, BC V6T 1Z1, Canada. Hnatkovska is the corresponding author.
1 Introduction

Economists have long been focused on understanding how access to different financial assets affects the functioning of the economy. In a seminal work, Backus et al. (1995, 1994), BKK hereafter, document the key business cycle regularities in industrial countries related to volatilities of consumption, output, investment and their cross-country co-movements, and develop an international business cycles model with complete asset markets in an attempt to rationalize the data facts. They show that only some of the regularities can be explained by the model. The BKK model fails in three key dimensions. First, in the data cross-country consumption correlations tend to be similar to cross-country output correlations, while the model predicts consumption correlations far exceeding those for outputs. This is the so-called “quantity” puzzle (Backus et al., 1995). Second, investment and employment are positively correlated across countries, while the model predicts a negative correlation. This data-model disconnect is usually referred to as the “international comovement” puzzle (Baxter, 1995). Third, the model generates significantly less volatility in the terms of trade and the real exchange rate relative to the data. The model also predicts a positive correlation between real exchange rate and the ratio of domestic to foreign consumption, again contrary to the data.¹

To account for the disconnect between the model and data, Baxter and Crucini (1995), Kollmann (1996), Arvanitis and Mikkola (1996) study economies in which the only asset traded internationally is a non-contingent bond. They show that these economies admit different allocations from those arising under complete asset markets only if productivity shocks are very persistent and do not spill over across countries. Heathcote and Perri (2002) develop this argument further by considering an economy in which no international assets are traded. They call it financial autarky. In this economy, they find that the equilibrium dynamics are similar to those in the data. This conclusion is based primarily on an “eyeball” comparison of various moments predicted by the model with those of competing models and with the data. In fact, such informal moment comparison became a conventional practice in the literature.

There are several important shortcomings of such an approach. First, it does not inform whether differences in the model performance are statistically significant. Namely, based on an “eyeball” approach one cannot credibly argue whether the difference in models performance is systematic (in the sense that it uncovers important relationships between the variables at the population level) and, therefore, is likely to be found in other data sets or if

¹A detailed recent discussion of various puzzles in the international business cycles models can be found in Mandelman et al. (2011).
it is due to random variations in the data. Second, often model comparison is hindered by the fact that one model performs better than the other in some moments, but not in others. Without a metric that allows to aggregate across various moments of interest, informal model comparison remains inconclusive.

In this paper we propose a testing procedure that allows a researcher to assess the statistical significance of the results when comparing DSGE models to the data. The procedure builds upon Hnatkovska et al. (2011a) and is a version of Vuong-type tests for misspecified models (Vuong, 1989) adopted for DSGE frameworks. In particular, to compare two competing models we test a null hypothesis that the models have the same fit to the data. As a measure of fit we use the weighted Euclidean distance between the data characteristics of interest and their values predicted by a model. The procedure allows for all competing models to be misspecified.\(^2\) If the null hypothesis is accepted, we conclude that two models have equally good (or equally poor) fit to the data. When the null hypothesis is rejected, we argue that the winning model provides a significantly better explanation of the data.

The procedure consists of several steps. In the first step we determine the values of the deep structural parameters in each of the competing models. This can be done either informally by setting the parameters to their values typically used in the literature or through formal estimation where the values for the parameters are chosen to match certain characteristics of the data. In the second step, we compute the distance between model-predicted characteristics and their estimates from the data; and obtain the test statistic as the difference between the estimated measures of fit of the two competing models as well as its standard error. The standard error has to take into account how the values for the structural parameters were obtained in the first step. Lastly, we reject the null hypothesis of equal fits if the studentized difference in fits exceeds a standard normal critical value.

We apply the methodology by comparing three key models used extensively in the literature: financial autarky, single risk-free bond economy, and an economy with complete asset markets. Our comparison is based on a set of standard moments: variances of key macroeconomic aggregates, such as consumption, investment, labor input, etc.; correlations of these aggregates with output, and their cross-country co-movements. Our procedure recognizes that different data characteristics can have very different scales (i.e. variances can take any values, while correlations are restricted by \([-1, 1]\) interval). This makes model comparison based on the equally-weighted aggregation of these characteristics not informative. Instead, we propose a data-dependent weighting scheme which allows us to normalize various char-

\(^2\)We define a structural model to be misspecified if it cannot predict the population values of the chosen data characteristics for any combination of the deep structural parameters. See Hnatkovska et al. (2011a) for details.
acteristics by their data counterparts and aggregate them easily. We show that based on both sets of moments (variances and correlations) our test indeed picks financial autarky as the winning specification – consistent with the informal conclusion in Heathcote and Perri (2002).

We then propose a competing model specification that allows for agent heterogeneity. We focus on a simple criterion for agents’ heterogeneity – asset market participation. In our competing model there are two groups of agents: those with access to international and domestic financial markets; and non-participants. We characterize the business cycle properties of the model with limited asset market participation (LAMP) and then apply our test to evaluate the ability of this amended model relative to a model with a representative agent in matching the properties of the data. We show that in the setup with LAMP, financial autarky remains a preferred model if the comparison is based on volatilities of key macro-economic aggregates. However, if the comparison is performed based on co-movements with output and cross-country correlations, then a complete markets economy is chosen as the winner. This is mainly due to the fact that LAMP significantly improves the performance of the BKK model for cross-country correlations: it significantly raises the cross-country correlation in hours of work and investment. Thus it improves on the “international comovement” puzzle. Adding LAMP also raises the cross-country correlation of output, and lowers the corresponding correlation for consumption, thus bringing the two closer together. Therefore, our models with LAMP also improve on the “quantity” puzzle. In majority of cases the improvements are statistically significant.

We verify the robustness of our results to the presence of investment specific shocks and with respect to the elasticity of substitution between labor inputs of participants and non-participants. Our results indicate that adding LAMP to a standard international business cycles model significantly improves its ability to match business cycle facts and can overturn the existing result that financial autarky provides a better fit to the data. To the best of our knowledge, ours is the first paper to perform a statistical model evaluation and comparison based on the agents’ heterogeneity and for a large set of international business cycle statistics.

We believe our model with LAMP provides a simple, but empirically important extension of the standard business cycle framework. The fact that only a small fraction of households participate in the stock market has been documented by Mankiw and Zeldes (1991), who showed that only 24% of US households owned equities in 1984; in 2007 this fraction was 51.1% based on the Survey of Consumer Finance.\(^3\)

\(^3\)The share of US households who own equities, while increased dramatically since 1984, has remained relatively stable at around 50% in the past 15 years, based on the Survey of Consumer Finances. Thus, based on the Survey, the share was 31.6% in 1989, in 1992 – 36.7%, in 1995 – 40.4%, in 1998 – 48.9%, in...
has received attention in the theoretical asset pricing literature (see Polkovnichenko, 2004; Vissing-Jorgensen, 2002 and others). Its implications for monetary policy have been studied by Grossman and Weiss (1983), Alvarez et al. (2002), Bilbiie (2008). They show that LAMP improves model performance for nominal aggregates. van Wincoop (1996) studies the importance of LAMP and borrowing constraints for cross-country consumption correlations and welfare. In this paper we focus on the consequences of LAMP for a large set of international real business cycle moments. Moreover, we assess its role formally using statistical methods.

Our paper is also related to the growing literature on the comparison of structural models by means of statistical methods. To name a few, comparison of misspecified DSGE models has been studied from the Bayesian perspective by Schorfheide (2000). The method we employ in this paper can be viewed as a frequentist counterpart of the Schorfheide (2000) procedure.4 More recently, Kan and Robotti (2008) proposed a Vuong-type test for comparison of misspecified asset pricing models in terms of the Hansen-Jagannathan distance.

The remainder of the paper is organized as follows. Section 2 presents our model economies. We discuss calibration and model solution in Section 3. Section 4 introduces the test for model comparison and presents our results. Section 5 concludes.

\section{Model Economies}

To study the role of asset market structure in capturing the properties of international business cycles, we consider a sequence of three economies: an economy in which there are no markets for international asset trades (we refer to it as financial autarky, FA); an economy in which a single non-contingent bond is traded – bond economy, BE; and an economy with complete markets, CM. The structure of these economies follows closely that proposed by Backus et al. (1995, 1994) and studied in Heathcote and Perri (2002). For completeness, we present it here as well. To study the role of investors heterogeneity we extend the three versions of the model to incorporate limited asset market participation. Aside from asset market structure and investors’ heterogeneity, all our economies have common structure. We describe it next.

We consider the world consisting of two symmetric countries, H and F, each specializing in the production of its intermediate good. Each country is populated by a continuum of firms and households.

4While in Schorfheide (2000) a structural model that achieves the lowest average posterior loss is selected, we follow the approach of Vuong (1989) and test the null hypothesis that two competing models have equal losses.
2.1 Firms

Firms are perfectly competitive and reside in two sectors: intermediate-goods sector and final-goods sector. Firms in the intermediate goods sector (i-firms) hire domestically-located capital, \(k^j \), and labor, \(n^j \), \(j = \{H,F\} \), to produce intermediate goods. The i-firms in country \(H \) specialize in the production of good \(a \), while i-firms in country \(F \) specialize in the production of good \(b \). Period \(t \) production by a representative i-firm in country \(j \) is

\[
F(z^j_t, k^j_t, n^j_t) = e^{z^j_t} (k^j_t)\theta (n^j_t)^{1-\theta},
\]

with \(\theta > 0 \), and \(z^j_t \) being the exogenous state of productivity in country \(j \). Let \(w^j_t \) and \(r^j_t \) denote the real wage and rental rate on capital in country \(j \) in period \(t \), measured in terms of the domestic intermediate good. The problem facing i-firms in country \(j \) then becomes

\[
\max F(z^j_t, k^j_t, n^j_t) - w^j_t n^j_t - r^j_t k^j_t,
\]

subject to \(n^j_t > 0 \), \(k^j_t > 0 \), and equation (1). The intermediate goods produced by \(H \) and \(F \) i-firms can be freely traded in the international goods markets and can be costlessly transported between countries. Under these conditions, the law of one price must prevail to eliminate arbitrage opportunities. Households, who are the owners of the i-firms, sell their holdings of intermediate goods to domestic final goods producing firms (f-firms), and use the proceeds for consumption, \(c^j_t \) and investment, \(x^j_t \). Investment adds to the stock of physical capital available for production next period according to

\[
k^{j}_{t+1} = (1 - \delta) k^j_t + x^j_t,
\]

where \(\delta \) is the depreciation rate.

The f-firms are also perfectly competitive and produce final goods from the \(H \) and \(F \) intermediate goods using constant returns to scale (CRS) technology:

\[
G(a^j_t, b^j_t) = \left[\omega^j \left(a^j_t \right)^{\frac{1}{\sigma}} + (1 - \omega^j) \left(b^j_t \right)^{\frac{1}{\sigma}} \right]^{\frac{\sigma}{\sigma-1}},
\]

where \(\omega^j \) is the weight that f-firms from country \(j \) assigns to the intermediate goods produced in country \(H \). When \(\omega^j > 0.5 \) there is home bias in the production of final goods in country \(j \). The elasticity of substitution between \(H \) and \(F \)-produced intermediate goods is \(\sigma > 0 \). Let \(q^j_{a,t} \) and \(q^j_{b,t} \) denote the prices of intermediate goods \(a \) and \(b \) in country \(j \) in units of the final
good produced in country \(j \). Then, the problem facing \(f \)-firms in country \(j \) is

\[
\max \ G(a^j_t, b^j_t) - q^j_{a,t} a^j_t - q^j_{b,t} b^j_t; \]

subject to \(n^j_t > 0, k^j_t > 0 \), and equation (2).

Productivity in intermediate good sectors is governed by an exogenous process. In particular, we assume that the vector \(z_t \equiv [z_t^u, z_t^f]' \) follows an AR(1) process:

\[
z_t = \alpha z_{t-1} + e_t, \tag{3}
\]

where \(e_t \) is a \((2 \times 1)\) vector of independently normally distributed, mean zero shocks with covariance \(\Omega_e \).

2.2 Households

Each country is also populated by a continuum of households, whose preferences are defined over consumption and leisure. In particular, the preferences of households in country \(j \) are represented by

\[
E_0 \sum_{t=0}^{\infty} \beta^t U(c^j_t, 1 - n^j_t), \tag{4}
\]

where \(0 < \beta < 1 \) is the discount factor, and \(U(\cdot) \) is a concave sub-utility function. Period utility function of the household in country \(j \) is given by

\[
U(c^j_t, 1 - n^j_t) = \frac{1}{\gamma} \left[(c^j_t)^{\mu} (1 - n^j_t)^{1-\mu} \right]^\gamma.
\]

Households choose consumption, \(c^j_t \), and hours of work, \(n^j_t \in [0, 1] \), to maximize their lifetime expected utility subject to a sequence of budget constraints, which depend on the financial structure of the model economy. We consider three such structures. Under financial autarky (FA), households can not trade any international financial assets. Under bond economy (BE), households can hold a single non-state contingent internationally traded bond. The third case we consider is that of complete markets (CM). Here households have access to a complete set of Arrow securities. We now describe the budget constraints facing households under each of these different financial structures.

2.2.1 Financial autarky, FA

In the financial autarky, households do not have access to international financial assets. As a result, households consume and invest out of their factor income. The period–\(t \) budget
constraint of households in country j is
\[c_t^j + x_t^j = q_{a,t}^j \left(w_t^j n_t^j + r_t^j k_t^j \right). \]

Notice that FA rules out the possibility of international borrowing or lending, so neither country can have positive or negative trade balance.

2.2.2 Bond economy, BE

In the bond economy households only trade a single non-state-contingent international bond. We assume that bonds are denominated in the units of intermediate good a. Let B_t^j denote bond holdings of country j households and Q_t be the price of the bonds. Then the period-t budget constraint of households in country j is
\[c_t^j + x_t^j + q_{a,t}^j B_t^j = q_{a,t}^j \left(w_t^j n_t^j + r_t^j k_t^j \right) + q_{a,t}^j B_{t-1}^j. \]

2.2.3 Complete markets, CM

Following Heathcote and Perri (2002) we assume that households complete the markets by trading in a complete set of Arrow securities denominated in units of intermediate good a. Thus the households’ budget constraint can be written as
\[c_t^j + x_t^j + q_{a,t}^j \sum_{s_{t+1}} Q_t(s^t, s_{t+1}) B_t^j(s^t, s_{t+1}) = q_{a,t}^j \left(w_t^j n_t^j + r_t^j k_t^j \right) + q_{a,t}^j B_{t-1}(s_{t-1}, s_t), \]

where $s^t = (s_0, s_1, s_2, ..., s_t)$ denotes the entire state history of the economy till date t.

2.2.4 Equilibrium

An equilibrium in this economy consists of a set of goods’ prices $\{q_{a,t}^j, q_{b,t}^j\}$, and asset prices (i.e. $\{Q_t\}$ under BE or $\{Q_t(s^t, s_{t+1})\}$ under CM) such that all markets clear when households optimally make their consumption, investment, and asset allocation decisions, taking goods and asset prices as given.

Market clearing in the intermediate goods markets requires
\[a_t^u + a_t^v = F(z_t^u, k_t^u, n_t^u), \]
\[b_t^u + b_t^v = F(z_t^v, k_t^v, n_t^v). \]
Market clearing in the final goods markets requires

\[c^j_t + x^j_t = G(a^j_t, b^j_t), \quad j = \{H, F\}. \]

The market clearing conditions in financial markets vary according to the financial structure of the economy. Under BE, the bond market clearing condition requires

\[0 = B^H_t + B^F_t. \]

Under CM, a similar condition applies for every \(s_{t+1} \):

\[0 = B^H_t(s^t, s_{t+1}) + B^F_t(s^t, s_{t+1}). \]

2.3 Limited asset market participation

Next, we introduce LAMP in our model economy. This feature is used to capture the empirical observation that a large fraction of population does not hold any financial assets. Thus, we assume that each country is populated by two types of households: non-participants and participants. Non-participants do not own any capital, do not have access to international markets, and only choose how much time to work and how much to consume. Participants hold all of the capital stock in the economy and can borrow and lend at the international markets (if the model specification allows it). They also supply labor services to the intermediate goods producing firms and make all investment decisions. We assume that there is a fraction \(\lambda \) of such households in each country. We assume that all households who have access to the domestic stock market also can trade in the international asset market, when financial regime allows so.

The problem facing non-participants \((N)\) is

\[
\max \mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t U(c^j_{N,t}, 1 - n^j_{N,t}),
\]

subject to

\[c^j_{N,t} = q^j_{a,t} w^j_t n^j_{N,t}, \]

where subscript \(N \) is used to denote the variables pertinent to non-participants. Note that the non-participants’ problem remains the same independent of the assumed asset market structure.

The problem facing participants \((P)\) is the same as in the economy with a representative
agent:

$$\max_0 \sum_{t=0}^{\infty} \beta^t U(c^j_{p,t}, 1 - n^j_{p,t}),$$

subject to a budget constraint. Here subscript p is used to denote the variables specific to asset market participants. For participants the exact form of the budget constraint varies with the financial structure of the economy. For instance, the budget constraint of participants in the financial autarky is

$$c^j_{p,t} + x^j_t = q^j_{a,t} (w^j_t n^j_{p,t} + r^j_t k^j_t)$$

In the bond economy the budget constraint becomes

$$c^j_{p,t} + x^j_t + q^j_{a,t} Q_t B^j_t = q^j_{a,t} (w^j_t n^j_{p,t} + r^j_t k^j_t) + q^j_{a,t} B^j_{t-1},$$

while under complete markets, it is

$$c^j_{p,t} + x^j_t + q^j_{a,t} \sum_{s_{t+1}} Q_t (s^t, s_{t+1}) B^j_t (s^t, s_{t+1}) = q^j_{a,t} (w^j_t n^j_{p,t} + r^j_t k^j_t) + q^j_{a,t} B^j_{t-1} (s^t-1, s_t).$$

Note that in this case, the asset markets are complete internationally for participants only. The optimization problems solved by i-firms and f-firms remain unchanged.

Aggregate labor input in the economy consists of labor inputs of participants and non-participants and is defined as:

$$n^j_t = \left[\lambda \left(n^j_{p,t} \right)^{\frac{1}{v}} + (1 - \lambda) \left(n^j_{n,t} \right)^{\frac{1}{v}} \right]^{\frac{v}{v-1}},$$

where v is the elasticity of substitution between the two types of labor.

The market clearing conditions in the goods markets remain the same, while the market clearing conditions in the asset markets apply to participants only.

2.4 Investment-specific technology (IST) shocks

Several recent papers have emphasized the role played by investment-specific technology (IST) shocks in the international business cycles (IBC). In a framework similar to ours, Raffo (2010) shows that IST shocks can help account for a number of puzzles in the business cycles literature. He emphasizes the Backus-Smith puzzle – the fact that consumption and real exchange rate tend to be negatively correlated in the data, while a standard IBC framework predicts the opposite; and the “price” puzzle – the fact that models generate far lower volatility of international relative prices relative to the data. At the same time,
Mandelman et al. (2011) show that an IBC model with IST shocks estimated from the data fails to reproduce the moments emphasized in Raffo (2010). Our interest in IST shocks is motivated by their potentially important interactions with LAMP. When only a segment of population has access to capital and asset markets IST shocks will have differential effects on the participants and non-participants, leading to important distributional effects between them. We investigate the role of IST shocks by incorporating them in our models as in Greenwood et al. (2000) and Raffo (2010), but using the properties of these shocks as estimated in Mandelman et al. (2011). In what follows we highlight the new model features introduced by IST shocks.

The problem facing non-participants does not change when IST shocks are introduced. Objective functions of participants and their budget constraints also remain unchanged. In the presence of IST shocks, capital accumulation equation becomes

\[
k_{t+1}^j = (1 - \delta)k_t^j + e^{x_t^j},
\]

where \(e^{x_t^j}\) is the IST shock in country \(j\). As shown in Greenwood et al. (2000), in a competitive equilibrium, \(e^{x_t^j}\) is interpreted as the relative price of capital goods in terms of consumption goods. We assume that IST shocks, \(v_t \equiv [v_t^a, v_t^f]'\) follow an AR(1) process:

\[
v_t = \alpha_v v_{t-1} + \zeta_t, \tag{5}\]

where \(\zeta_t\) is a \((2 \times 1)\) vector of independently normally distributed, mean zero shocks with covariance \(\Omega_\zeta\).

All other model equations remain unchanged.

2.5 Definitions

There are several variables of interest that we define here. Gross domestic product in country \(j\) expressed in terms of final consumption goods is given by \(y_t^j = q_{a,t}^j F(z_t^j, k_t^j, n_t^j)\). Net exports are \(NX_t^H = q_{a,t}^H a_t^H - q_{b,t}^H b_t^H\). Imports ratio for home country is defined following Heathcote and Perri (2002), as the ratio of imports to domestically consumed intermediate goods, both measured at the steady state prices which are symmetric under benchmark calibration, giving \(\nu_t^H = b_t^H / a_t^H\). Terms of trade in \(H\) country are defined as the price of imports divided by the price of exports, \(p_t^H = q_{b,t}^H / q_{a,t}^H\), while the real exchange rate is defined as the relative price of foreign consumption goods to domestic consumption goods, giving \(\text{RE}t^H = q_{a,t}^H / q_{a,t}^F\).
3 Calibration and model solution

In calibrating the model we assign some parameters their values commonly used in the literature, while we estimate other parameters from the data. Such approach has become standard in the literature. In our application it also allows us to illustrate our testing procedure in the most general case when some parameters are fixed while other parameters are estimated.5

In the calibration we consider the world economy as consisting of two countries: country 1 matching the properties of the US economy in quarterly data, and country 2 as the rest of the world. Most of the parameter values are borrowed from Heathcote and Perri (2002). We summarize them in Table 1. We set discount factor to 0.99, which implies annual real interest rate of 4 percent. Risk aversion coefficient is set at 2. As in Heathcote and Perri (2002), we fix consumption share parameter at $\mu = 0.34$. We assume that capital income share, θ is 0.34; and depreciation rate of 2.5 percent. Parameter ω, which controls the consumption home bias in household’s preferences is set to match the observed import share in the U.S. equal to 15 percent of GDP. We set the elasticity of substitution between domestic and imported intermediate goods at 0.9, which is the value estimated in Heathcote and Perri (2002). This is above the value of this parameter used in Raffo (2010) and Mandelman et al. (2011), but more along the lines of the values used in the IBC literature.6

In the model with LAMP a new parameter, λ, is introduced. It captures the share of nonparticipants, which we calibrate to match the share of US households who did not hold any equity as reported in the 2007 Survey of Consumer Finance equal to 51.1%. Therefore, we set $\lambda = 0.5$. The only remaining parameter is ν which equals the elasticity of substitution between labor input of participants and non-participants in the model. For simplicity and given the lack of estimates of this parameter in the literature, we assume that the two types of labor are perfectly substitutable. In what follows we check the robustness of our results with respect to this parameter.

TFP shocks are assumed to be persistent, but temporary. We estimate the process for TFP shocks as in Heathcote and Perri (2002). Namely, we compute productivity sequences for the US and the rest of the world during 1973:1-2007:4 period, where the rest of the world is identified with the aggregate of 21 major trade partners for the U.S.7 In our estimation, we impose the symmetry restrictions $\rho_{11} = \rho_{22}$ and $\rho_{12} = \rho_{21}$.

5As we discuss in Section 4.2.1, when some model parameters are estimated, we must take into account the uncertainty due to this estimation when computing standard errors of our test statistics.
6For instance, Backus et al. (1995, 1994) use a value of 1.5. Kollmann (2006) uses traded elasticity values as low as 0.6; Chari et al. (2002) and Engel and Matsumoto (2009) use 1.5.
7Details on sample construction and data sources are provided in the Appendix A.1.
Table 1: Benchmark parameter values without estimation step

<table>
<thead>
<tr>
<th>PREFERENCES</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>discount factor β</td>
<td>0.99</td>
</tr>
<tr>
<td>risk-aversion 1 - γ</td>
<td>2</td>
</tr>
<tr>
<td>consumption share μ</td>
<td>0.34</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TECHNOLOGY</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>capital income share θ</td>
<td>0.36</td>
</tr>
<tr>
<td>depreciation rate δ</td>
<td>0.025</td>
</tr>
<tr>
<td>import share is (ω)</td>
<td>0.15</td>
</tr>
<tr>
<td>elasticity of subst, b/n goods a and b σ</td>
<td>0.9</td>
</tr>
<tr>
<td>share of p households λ</td>
<td>0.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IST SHOCKS</th>
<th>Value</th>
</tr>
</thead>
</table>
| transition matrix α
 | ρ_{11} ρ_{12} ρ_{21} ρ_{22} | [0.975 0.024] [0.024 0.975] |
| std. dev. of innovations σ_{ε1} = σ_{ε2} | 0.0066 |
| corr. of innovations σ_{ε1,ε2} | 0.1955 |

Our estimation results for productivity process are presented in Table 2 and they are very similar to the estimates in Heathcote and Perri (2002). Namely, our estimates of productivity persistence ρ_{11} and spill-over ρ_{12} are almost the same, while the standard deviation of productivity innovations σ_{ε1} and the correlation between domestic and foreign productivity innovations σ_{ε1,ε2} are somewhat smaller than their values.8

Table 2: Estimated productivity process

| productivity transition matrix α
ρ_{11} ρ_{12}	[0.975 0.024] (0.009) (0.009)
std. dev. of productivity innovations σ_{ε1}	0.0066
corr. of productivity innovations σ_{ε1,ε2}	0.1955

Note: Following Heathcote and Perri (2002), we estimate productivity shock process using: \(z_{1,t} \) = \(ρ_{11} z_{1,t-1} + ρ_{21} z_{2,t-1} + ε_{1,t} \), \(z_{2,t} \) = \(ρ_{12} z_{1,t-1} + ρ_{22} z_{2,t-1} + ε_{2,t} \), with the symmetry restriction imposed, \(ρ_{11} = ρ_{22} \) and \(ρ_{12} = ρ_{21} \). Coefficient estimates and their standard errors are reported in the table.

In calibrating IST shocks, we follow the findings of Mandelman et al. (2011) who show that IST processes for the U.S. and the rest of the world are very persistent and exhibit no spill-overs across countries. Importantly, Mandelman et al. (2011) show that the variance of these shocks is of the same magnitude as the variance of TFP shocks. Motivated by these

8 When simulating the models we use σ_{ε1} = σ_{ε2} = 0.0066.
results, and to facilitate the comparison of the models with and without IST shocks, we assume that IST shocks are fully symmetric to TFP shocks, with no spillovers across the two types of shocks.

Each model is solved by linearizing the sequence of equilibrium conditions and solving the resulting system of linear difference equations. We derive the second moments of model’s variables by simulating the model over 100 periods. The statistics based on which the model comparison is conducted are derived from 10000 simulations. All series, except net exports, are logged and Hodrick-Prescott (HP) filtered with a smoothing parameter of 1600.

4 Results

In this section we present the findings from the numerical solutions of our models and model comparisons. We conduct model comparisons based on two sets of moments: volatilities of endogenous variables and correlations, which include co-movements of key macroeconomic aggregates with output and cross-country correlations. To perform the comparison, we estimate the corresponding moments in the U.S. quarterly data over the period of 1973:1-2007:4. Details on data sources and calculations are provided in the Appendix A.1.

We begin by presenting the results for the BKK and LAMP economies under the benchmark calibration. Then we conduct a series of robustness tests. In particular, (i) we consider model scenario in which labor input of participants and non-participants are imperfect substitutes by varying the elasticity of substitution between them, \(\nu \); (ii) we allow for investment-specific technology shocks.

4.1 Benchmark case

In this section we present the results from our simulations of BKK and LAMP models under the benchmark parameterization. Table 3 presents the volatilities of various macroeconomic aggregates in the data and in different versions of our models. Thus, panel (a) reports the statistics from the original BKK model specification. Panel (b) reports the corresponding statistics in the model with LAMP under perfect substitutability in labor inputs of participants and non-participants.

As in Heathcote and Perri (2002), financial autarky model generates significantly higher volatilities of exports, imports and especially relative prices, in comparison with the complete markets and bond economies; but implies lower volatilities of output, consumption, investment and employment relative to bond economy and complete markets economy. These results are driven by the inability of agents in the environment of financial autarky to run
Table 3: Volatilities: Benchmark calibration

<table>
<thead>
<tr>
<th></th>
<th>% std dev</th>
<th>% std dev</th>
<th>% std dev</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>y</td>
<td>c</td>
<td>x</td>
</tr>
<tr>
<td>U.S. Data</td>
<td>1.49</td>
<td>0.62</td>
<td>2.92</td>
</tr>
<tr>
<td>(a) BKK</td>
<td>FA</td>
<td>BE</td>
<td>CM</td>
</tr>
<tr>
<td></td>
<td>0.98</td>
<td>1.01</td>
<td>1.01</td>
</tr>
<tr>
<td></td>
<td>0.54</td>
<td>0.54</td>
<td>0.55</td>
</tr>
<tr>
<td></td>
<td>1.86</td>
<td>2.71</td>
<td>2.73</td>
</tr>
<tr>
<td></td>
<td>0.25</td>
<td>0.29</td>
<td>0.29</td>
</tr>
<tr>
<td></td>
<td>1.07</td>
<td>0.81</td>
<td>0.82</td>
</tr>
<tr>
<td></td>
<td>1.07</td>
<td>0.81</td>
<td>0.82</td>
</tr>
<tr>
<td></td>
<td>0.00</td>
<td>0.20</td>
<td>0.21</td>
</tr>
<tr>
<td></td>
<td>1.53</td>
<td>0.83</td>
<td>0.70</td>
</tr>
<tr>
<td></td>
<td>1.00</td>
<td>0.54</td>
<td>0.78</td>
</tr>
</tbody>
</table>

Note: This Table presents actual and simulated percent standard deviations for the U.S. economy. The data statistics are for the period of 1973:1-2007:4. Details on the data are available in the Appendix A.1. Model-based statistics are obtained from 10000 simulations, 100 periods long, each. All series are logged and HP-filtered. The following models are considered: (a) original BKK; (b) BKK with LAMP. FA, BE and CM refer, respectively, to financial autarky, bond economy and complete markets economy.

trade imbalances. In such framework, following productivity shocks, it is impossible to shift final goods production to the country that has comparative advantage in doing so. As a result, a larger adjustment in relative prices, such as terms of trade, is needed to clear the markets. Such larger movements in the terms of trade under financial autarky partially offset the productivity changes (as in Cole and Obstfeld, 1991), thus reducing the incentives to work and invest. Consequently, employment, investment, output and consumption all become less volatile when no access to financial assets in available.

When agents become heterogeneous in terms of their access to financial instruments, there are two key changes in the volatility characteristics of our economies. First, volatility of consumption increases across all financial regimes; second, the volatility of all other variables declines across all financial regimes. In our setup, introducing LAMP implies that asset markets become incomplete within a country. Namely, the non-participants can not trade any assets (neither financial, nor real, like capital) and only consume their labor income. Their consumption, as a result becomes more volatile, thus raising the volatility of aggregate consumption in the country. On the other hand, employment is the only source of income for non-participants, as a result, their labor supply is inelastic. This implies that aggregate employment, output and investment, all become less volatile relative to the economy with no LAMP.

Next, we evaluate the performance of our model in terms of co-movements with output. The results are summarized in Table 4. As before, the top row of the table reports the co-movements in the data, while panels (a) and (b) report them, respectively, in the original BKK model and in the economy with LAMP.

As was the case for volatilities, the financial autarky economy is the most distinct among our three financial regimes. The fact that all trades in this economy must be *quid pro quo*
implies that net exports are acyclical. Financial autarky also generates more procyclical exports and less procyclical imports relative to the bond and complete markets economies. In terms of these co-movements financial autarky economy departs from the data relative to the other two financial regimes. When LAMP is introduced, the comovement properties of the model do not change much. The only exception is the comovement of consumption with output, which increases when LAMP is introduced. The reason is again the behavior of non-participants, whose work hours are inelastic, which in turn makes their wage income and thus consumption more sensitive to productivity changes. Consumption of non-participants, therefore, is more procyclical than consumption of participants. This makes aggregate consumption move more closely with output relative to the original BKK framework. Both BKK and LAMP economies fail to replicate the negative correlation between real exchange rate and relative consumption between domestic and foreign economies that is observed in the data. This mismatch of theory and data is a well-known Backus-Smith puzzle due to Backus and Smith (1993) and Kollmann (1996). Adding LAMP reduces this correlation, but only marginally.

Finally, we summarize the model performance based on cross-country co-movements of various macroeconomic aggregates. Table 5 reports our results. The top row reports the estimates in the data, the second panel summarizes them in the BKK economies, and the bottom panel - in the economies with LAMP. There are several puzzles associated with the cross-country correlations, and they can be seen clearly from Table 5. First, is the fact that consumption is less correlated than output across countries in the data, while models predict the opposite (“quantity” puzzle). Second, in the data the correlations of investment and employment across countries are positive, while complete markets and bond economy models predict negative correlations (“international comovement” puzzle). Financial autarky, on the other hand, generates investment and employment across countries that are positively

Table 4: Correlations with output: Benchmark calibration

<table>
<thead>
<tr>
<th></th>
<th>c,y</th>
<th>x,y</th>
<th>n,y</th>
<th>e,x,y</th>
<th>m,x,y</th>
<th>n,x,y</th>
<th>p,y</th>
<th>r,x,y</th>
<th>r,x,c1-c2</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S. Data</td>
<td>0.82</td>
<td>0.94</td>
<td>0.85</td>
<td>0.42</td>
<td>0.82</td>
<td>-0.37</td>
<td>-0.16</td>
<td>0.16</td>
<td>-0.17</td>
</tr>
<tr>
<td>(a) BKK</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FA</td>
<td>0.89</td>
<td>0.99</td>
<td>0.98</td>
<td>1.00</td>
<td>0.07</td>
<td>0.01</td>
<td>0.64</td>
<td>0.64</td>
<td>0.96</td>
</tr>
<tr>
<td>BE</td>
<td>0.93</td>
<td>0.95</td>
<td>0.96</td>
<td>0.55</td>
<td>0.80</td>
<td>-0.65</td>
<td>0.64</td>
<td>0.64</td>
<td>0.99</td>
</tr>
<tr>
<td>CM</td>
<td>0.94</td>
<td>0.95</td>
<td>0.96</td>
<td>0.50</td>
<td>0.84</td>
<td>-0.65</td>
<td>0.64</td>
<td>0.64</td>
<td>0.99</td>
</tr>
<tr>
<td>(b) LAMP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FA</td>
<td>0.93</td>
<td>0.99</td>
<td>0.99</td>
<td>1.00</td>
<td>0.08</td>
<td>0.01</td>
<td>0.64</td>
<td>0.64</td>
<td>0.99</td>
</tr>
<tr>
<td>BE</td>
<td>0.97</td>
<td>0.95</td>
<td>0.97</td>
<td>0.54</td>
<td>0.83</td>
<td>-0.64</td>
<td>0.63</td>
<td>0.63</td>
<td>0.97</td>
</tr>
<tr>
<td>CM</td>
<td>0.97</td>
<td>0.95</td>
<td>0.97</td>
<td>0.48</td>
<td>0.87</td>
<td>-0.64</td>
<td>0.62</td>
<td>0.62</td>
<td>0.97</td>
</tr>
</tbody>
</table>

Note: This Table presents actual and simulated correlations of macroeconomics aggregates with output for the U.S. economy. The data statistics are for the period of 1973:1-2007:4. Details on the data are available in the Appendix A.1. Model-based statistics are obtained from 10000 simulations, 100 periods long, each. All series are logged and HP-filtered. The following models are considered: (a) original BKK; (b) BKK with LAMP. FA, BE and CM refer, respectively, to financial autarky, bond economy and complete markets economy.
correlated, consistent with the data. So, as was the case with volatilities, financial autarky model seems to provide a better match to the data even when it comes to the cross-country co-movements.

Table 5: Cross-country correlations: Benchmark calibration

<table>
<thead>
<tr>
<th></th>
<th>y_1, y_2</th>
<th>c_1, c_2</th>
<th>x_1, x_2</th>
<th>n_1, n_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S. Data</td>
<td>0.58</td>
<td>0.43</td>
<td>0.41</td>
<td>0.45</td>
</tr>
<tr>
<td>(a) BKK</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FA</td>
<td>0.16</td>
<td>0.86</td>
<td>0.29</td>
<td>0.01</td>
</tr>
<tr>
<td>BE</td>
<td>0.08</td>
<td>0.68</td>
<td>-0.42</td>
<td>-0.32</td>
</tr>
<tr>
<td>CM</td>
<td>0.09</td>
<td>0.64</td>
<td>-0.43</td>
<td>-0.29</td>
</tr>
<tr>
<td>(b) LAMP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FA</td>
<td>0.17</td>
<td>0.79</td>
<td>0.37</td>
<td>0.10</td>
</tr>
<tr>
<td>BE</td>
<td>0.12</td>
<td>0.57</td>
<td>-0.39</td>
<td>-0.22</td>
</tr>
<tr>
<td>CM</td>
<td>0.13</td>
<td>0.53</td>
<td>-0.40</td>
<td>-0.18</td>
</tr>
</tbody>
</table>

Note: This Table presents actual and simulated cross-country correlations for the U.S. economy and the rest of the world. The data statistics are for the period of 1973-2007. Details on the data are available in the Appendix A.1. Model-based statistics are obtained from 10000 simulations, 100 periods long, each. All series are logged and HP-filtered. The following models are considered: (a) original BKK; (b) BKK with LAMP. FA, BE and CM refer, respectively, to financial autarky, bond economy and complete markets economy.

Adding agents’ heterogeneity in asset market access works towards resolving these puzzles. In particular, LAMP reduces the cross-country correlation of consumption, while simultaneously increasing it for output; and does so for all three financial regimes considered. It also significantly increases the cross-country correlation in investment and employment.

To understand these results, consider what happens to employment, investment, consumption and output in the economy with a representative households following a positive productivity shock. The country experiencing a productivity improvement (say, home country) sees its real wages rise, leading to an increase in labor supply, and therefore output and investment. At the same time, following the shock, the terms of trade depreciate in the home country, thus making foreign households relatively wealthier. As a result, they reduce their labor supply, lowering real output. For consumption in the foreign country to go up, investment must fall. When markets are complete or a single non-contingent bond is available these adjustments imply a negative correlation of employment and investment between home and foreign economies. In the financial autarky, where shifting production across countries is not an option, terms of trade must adjust to eliminate the incentives to do so. These terms of trade movements are larger than in the bond or complete market economies as was argued before. By offsetting some of the productivity improvement in the home country,

There are several channels through which wealth effect in the foreign country arises following productivity improvement in the home country. First is the fact that productivity shocks spill over across countries. Second, is the terms of trade effect mentioned in the text. Third effect works through the world interest rate (whenever any assets are traded across countries). In particular, interest rate in the country experiencing a productivity improvement rises, creating an additional positive wealth effect for foreign households, who want to lend following the shock.
terms of trade adjustment implies that output, consumption, investment and employment in this country increase by less under financial autarky than under bond or complete market regimes. Correspondingly, in the foreign country, these macroeconomic aggregates increase by more as foreign households take advantage of larger favorable terms of trade movements. These adjustments imply positive cross-country correlations under financial autarky.

Adding LAMP moderates these dynamics. With LAMP, only households participating in the asset and capital markets adjust their labor supply following the shock. As a result, aggregate labor supply in both countries becomes less elastic relative to the economy with a representative agent. Cross-country correlation of hours, as a result, increases and so does cross-country correlation of output. In the bond and complete market economies this reduces the incentives to shift production across countries following the shocks and increases the cross-country correlation in investment. With investment responding less, so does consumption, thus lowering consumption correlation across countries. This result highlights how the absence of risk-sharing within a country spills into lower international risk-sharing. In financial autarky with LAMP, the same mechanism increases the cross-country correlation of investment and employment.

Overall, we find that different version of our model perform better in matching different data characteristics. Financial autarky economy does best in matching volatilities of macroeconomic aggregates, but can not account for the cyclical properties of trade variables. Complete markets and bond economies do better in accounting for the cyclical properties of the data, but under-perform in terms of volatilities and cross-country correlations. Introducing LAMP improves models performance primarily in matching cross-country correlations of consumption, output, investment and employment. Given these results, a formal statistical test is necessary to aggregate various characteristics and pick a winner among our model variants. We turn to this next.

4.2 Model comparison

4.2.1 Procedure

For a formal statistical comparison of the considered models, we rely on a Vuong-type (Vuong, 1989) test for potentially misspecified calibrated models proposed in Hnatkovska et al. (2011a,b). We, however, adjust the procedure to account for simulation uncertainty.

We begin by assuming that data can be summarized using two mutually exclusive vectors of characteristics denoted by h_1 and h_2, where the first vector is used for estimation of unknown structural parameters, while the second vector is used to compare structural
models. This reflects a standard practice in applied macroeconomics, when parameters are calibrated to one group of data characteristics, while models are evaluated on another. We assume that \(h_1 \) and \(h_2 \) can be estimated from data without employing a structural model. For example, in our case, \(h_1 \) consists of the estimated productivity shocks, while \(h_2 \) consists of volatilities and correlations between the variables of interest as described in Tables 3-5.

Suppose that there are two structural models denoted \(f(\theta) \) and \(g(\beta) \), where \(\theta \) and \(\beta \) are the corresponding structural parameters describing consumer’s preferences, technology, etc. Here, \(f(\theta) \) and \(g(\beta) \) denote the value of \(h_2 \) predicted by models \(f \) and \(g \), respectively. Naturally, vectors \(h_2 \), \(f(\theta) \) and \(g(\beta) \) must be of the same dimension; we assume that they are \(m \)-vectors. We allow for the competing models to be misspecified, i.e. it is possible that for all permitted values of \(\theta \) and \(\beta \), \(h_2 \neq f(\theta) \) and \(h_2 \neq g(\beta) \).

The models are allowed to share some of the parameters. Note, however, that \(\theta \) and \(\beta \) contain only the parameters that must be estimated from data. We allow that some of the parameters may be assigned fixed values, for example, values that are commonly used in the literature. Such parameters are excluded from \(\theta \) and \(\beta \) and absorbed into \(f \) and \(g \).\(^\text{10}\)

We are interested in testing a hypothesis that models \(f \) and \(g \) have equivalent fit to the data as described by \(h_2 \). For an \(m \times m \) symmetric and positive definite weight matrix \(W_{h_2} \), the null hypothesis of the models’ equivalence is

\[
H_0 : (h_2 - g(\beta))' W_{h_2} (h_2 - g(\beta)) - (h_2 - f(\theta))' W_{h_2} (h_2 - f(\theta)) = 0.
\]

The notation indicates that the weight matrix \(W_{h_2} \) can depend on \(h_2 \). A simple choice for a weight matrix is to use the identity matrix. In that case, the weight matrix is independent of \(h_2 \), and the models are compared in terms of their squared prediction errors. Another example for \(W_{h_2} \) is a diagonal matrix with the reciprocals of the elements of \(h_2 \) on the main diagonal. With such a choice of the weight matrix, the models are compared in terms of the squares of their percentage prediction errors. In our application, we use a combination of the two. That is to evaluate the models, for some parameters, such as correlations, we use prediction errors, while for others, such as volatilities, we use percentage prediction errors.

The alternative hypotheses are

\[
H_f : (h_2 - g(\beta))' W_{h_2} (h_2 - g(\beta)) - (h_2 - f(\theta))' W_{h_2} (h_2 - f(\theta)) > 0,
\]

\[
H_g : (h_2 - g(\beta))' W_{h_2} (h_2 - g(\beta)) - (h_2 - f(\theta))' W_{h_2} (h_2 - f(\theta)) < 0,
\]

\(^{10}\)In our application \(\theta \) and \(\beta \) are the same and describe the productivity process.
where \(f \) has a better fit according to \(H_f \), and \(g \) has a better fit according to \(H_g \).

Let \(\hat{h}_1 \) and \(\hat{h}_2 \) denote the estimators of \(h_1 \) and \(h_2 \), respectively. We assume that \(\hat{h}_1 \) and \(\hat{h}_2 \) do not require the knowledge of the true structural model, are consistent and asymptotically normal as described in the following assumption:

\[
\sqrt{n} \begin{pmatrix} \hat{h}_1 - h_1 \\ \hat{h}_2 - h_2 \end{pmatrix} \to_d N \begin{pmatrix} 0, & \begin{pmatrix} \Lambda_{11} & \Lambda_{12} \\ \Lambda'_{12} & \Lambda_{22} \end{pmatrix} \end{pmatrix}, \tag{6}
\]

where \(n \) denotes the sample size used in estimation of \(h_1 \) and \(h_2 \), \(\Lambda_{11} \) and \(\Lambda_{22} \) denote the asymptotic variance-covariance matrices of \(\hat{h}_1 \) and \(\hat{h}_2 \) respectively, and \(\Lambda_{12} \) denotes the asymptotic covariance between \(\hat{h}_1 \) and \(\hat{h}_2 \). Let \(\hat{\Lambda}_{11} \), \(\hat{\Lambda}_{22} \) and \(\hat{\Lambda}_{12} \) denote consistent estimators of the corresponding elements in the above asymptotic variance-covariance matrix. In a typical time-series application, \(\Lambda_{11} \), \(\Lambda_{22} \) and \(\Lambda_{12} \) are long-run variances and covariances and, therefore, require HAC-type estimators, see Newey and West (1987) and Andrews (1991).

Let \(\hat{\theta} \) and \(\hat{\beta} \) denote the estimators of \(\theta \) and \(\beta \) respectively. We assume that the estimators are asymptotically linear in \(h_1 \):

\[
\sqrt{n}(\hat{\theta} - \theta) = A\sqrt{n}(\hat{h}_1 - h_1) + o_p(1), \tag{7}
\]

\[
\sqrt{n}(\hat{\beta} - \beta) = B\sqrt{n}(\hat{h}_1 - h_1) + o_p(1), \tag{8}
\]

where matrices \(A \) and \(B \) may depend on the elements of \(h_1 \). This specification is satisfied by most estimators used in practice. Appendix A.2 contains derivations of equation (7).\(^{11}\) We assume that \(A \) and \(B \) can be consistently estimated, and use \(\hat{A} \) and \(\hat{B} \) to denote their estimators.

When functions \(f(\theta) \) and \(g(\beta) \) are too complicated for analytical or even exact numerical calculations, we assume that they can be estimated by simulations. For example, as in our case, one can draw random shocks and solve the models as described in Section 2 using \(\hat{\theta} \) for model \(f \) and \(\hat{\beta} \) for model \(g \), and obtain a set of random equilibrium values for the variables of interest. By repeating this process \(R \) times, one obtains a sample of \(R \) observations for the variables of interest, which can be used to estimate \(f \) and \(g \) by averaging across the simulations. Let \(\hat{f}(\hat{\theta}) \) and \(\hat{g}(\hat{\beta}) \) denote such estimators.

We assume that, at the true values \(\theta \) and \(\beta \), estimators \(\hat{f}(\theta) \) and \(\hat{g}(\beta) \) are independent.

\(^{11}\)In our application, because \(\beta \) and \(\theta \) are the same, we do not use equation (8).
of \hat{h}_1 and \hat{h}_2, and satisfy the following assumption:

$$
\sqrt{R} \left(\begin{array}{cc}
\hat{f}(\theta) - f(\theta) \\
\hat{g}(\beta) - g(\beta)
\end{array} \right) \xrightarrow{d} N \left(0, \begin{pmatrix}
\Lambda_{ff} & \Lambda_{fg} \\
\Lambda_{fg}' & \Lambda_{gg}
\end{pmatrix} \right).
$$

(9)

We use $\hat{\Lambda}_{ff}$, $\hat{\Lambda}_{gg}$ and $\hat{\Lambda}_{fg}$ to denote consistent estimators of the asymptotic variances and covariance in (9).

Our test is based on the difference between the estimated fits of the two models:

$$
S = (\hat{h}_2 - \hat{g}(\beta))' W_{h_2} (\hat{h}_2 - \hat{g}(\beta)) - (\hat{h}_2 - \hat{f}(\theta))' W_{h_2} (\hat{h}_2 - \hat{f}(\theta)).
$$

Under the assumptions in (6)-(9), S is asymptotically normal, and its standard error can be computed as $\hat{\sigma}/\sqrt{n}$, where\(^{12}\)

$$
\hat{\sigma}^2 = 2\hat{\sigma}_1^2 + 2\hat{\sigma}_2^2,
$$

$$
\hat{\sigma}_1^2 = \left(\hat{\Lambda}_{ff} \hat{\Lambda}_{fg}' W_{h_2} (\hat{h}_2 - \hat{f}(\theta)) - \hat{\Lambda}_{fg} \hat{\Lambda}_{gg}' W_{h_2} (\hat{h}_2 - \hat{g}(\beta)) \right)' \left(\hat{\Lambda}_{ff} \hat{\Lambda}_{fg}' W_{h_2} (\hat{h}_2 - \hat{f}(\theta)) - \hat{\Lambda}_{fg} \hat{\Lambda}_{gg}' W_{h_2} (\hat{h}_2 - \hat{g}(\beta)) \right),
$$

$$
\times \left(\hat{W}_{h_2} (\hat{h}_2 - \hat{f}(\theta)) - \hat{\Lambda}_{fg} \hat{\Lambda}_{gg}' W_{h_2} (\hat{h}_2 - \hat{g}(\beta)) \right)

\times \left(\hat{W}_{h_2} (\hat{h}_2 - \hat{f}(\theta)) - \hat{\Lambda}_{fg} \hat{\Lambda}_{gg}' W_{h_2} (\hat{h}_2 - \hat{g}(\beta)) \right) \right);
$$

$$
\hat{\sigma}_2^2 = \frac{n}{R} \left(\begin{array}{cc}
W_{h_2} (\hat{h}_2 - \hat{f}(\theta)) \\
-W_{h_2} (\hat{h}_2 - \hat{g}(\beta))
\end{array} \right)' \left(\hat{\Lambda}_{ff} \hat{\Lambda}_{fg}' W_{h_2} (\hat{h}_2 - \hat{f}(\theta)) \\
-W_{h_2} (\hat{h}_2 - \hat{g}(\beta))
\right).
$$

(11)

(12)

In the expression for $\hat{\sigma}_1^2$,

$$
K(h, f, g) = ((h - g) \otimes (h - g)) - ((h - f) \otimes (h - f)),
$$

(13)

vector $w(h_2)$ collects the element of W_{h_2} without duplicates, and J denotes a known $m^2 \times m$ selection matrix of zeros and ones such that

$$
\text{vec}(W_{h_2}) = Jw(h_2).
$$

(14)

For example, when W_{h_2} is a diagonal matrix with the reciprocals of the elements of h_2 on

\(^{12}\)The asymptotic variance formula is explained in Appendix A.3

21
the main diagonal, we have that \(w_i(h) = 1/h_i, \ i = 1, \ldots, m, \) and

\[
J = \begin{pmatrix}
J_1 \\
\vdots \\
J_m
\end{pmatrix},
\]

where, for \(i = 1, \ldots, m, \) \(J_i \) is an \(m \times m \) matrix with 1 in position \((i,i)\) and zeros everywhere else.

In (10), the first term, \(\hat{\sigma}_1^2 \), reflects the uncertainty due to estimation of \(\theta, \beta, \) and \(h_2 \). For example, when comparing the models at some known fixed parameter values \(\bar{\theta} \) and \(\bar{\beta} \), matrices \(\hat{A} \) and \(\hat{B} \) should be replaced by zeros. Similarly, when comparing the models using a known fixed weight matrix (independent of \(h_2 \)), the terms \(0.5(\partial w(h)'/\partial h)J'K(h, \hat{f}, \hat{g}) \) in (11) should be replaced with zeros.

The second term in (10), \(\hat{\sigma}_2^2 \), is due to the simulations uncertainty in computation of \(\hat{f}(\hat{\theta}) \) and \(\hat{g}(\hat{\beta}) \). This term is zero when \(f \) and \(g \) can be evaluated numerically (without use of simulations). Uncertainty due to simulations can be simply ignored if one can select a large number of simulations \(R \) so that the ratio \(n/R \) is sufficiently small.

Our asymptotic test with significance level \(\alpha \) is:

- Reject \(H_0 \) in favor of \(H_f \) when \(\sqrt{nS}/\hat{\sigma} > z_{1-\alpha/2} \).
- Reject \(H_0 \) in favor of \(H_g \) when \(\sqrt{nS}/\hat{\sigma} < -z_{1-\alpha/2} \).

where \(z_{1-\alpha/2} \) denotes a standard normal critical value.

4.2.2 Test results

To determine which version of the model described above provides the best fit to the data, we apply our test for all possible pair-wise model comparisons. Our null hypothesis is that any two models considered provide an equivalent fit to the data. We evaluate each model performance based on three criteria: (i) its ability to match volatilities; (ii) its ability to match co-movements with output and cross-country correlations; and (iii) its overall performance which aggregates all of the abovementioned characteristics. Aggregation of model characteristics is equivalent to choosing the weight matrix \(W_{h_2} \) defined above and deserves a special note. The simplest approach would be to assign equal weights to all model characteristics, that is to use an identity weighting matrix. Such an approach, however, may not be very informative if different data characteristics have significantly different scales. For instance, in our case, variances can take any values, while correlations are restricted
by $[-1,1]$ interval. Thus, if we use an identity weighting matrix to aggregate across such variances and correlations, the overall model performance will be heavily influenced by its performance for the moments that are larger - variances in our case.

To account for the differences in scale we utilize a data-dependent weighting scheme in which various characteristics of interest are brought to a common base, thus facilitating their aggregation. According to our weighting scheme, prediction errors are assigned weights that are inversely related to the values of corresponding moments in the data. This way, instead of measuring absolute distance between the model and data to construct the test statistic as with the identity weighting matrix, we measure the percentage error made by the model relative to data. In other words, we compute the ratio of the distance between model and data over the data moment, $(h - f)/h$ where f is the model moment and h is its data counterpart and use it to construct a scale-free measure of the test statistic. We use such percentage errors in the case of volatilities. However, since correlations are unit-free, we aggregate them using simple prediction errors.\footnote{Another possibility is to use a weight matrix that is inversely related to the asymptotic variance-covariance matrix of data moments. Such an approach gives a scale-free measure of fit which is reminiscent of the GMM approach, i.e. moments that are more precisely estimated are assigned greater weights. Note, however, that in the time-series context where the asymptotic variance-covariance matrix is estimated by HAC methods, the uncertainty in the estimation of the weight matrix will dominate the uncertainty in estimation of parameters and moments. This is because HAC estimators converge at a slower than square root-n rate (see, for example, Hall and Inoue (2003) for details. As a result, such a test may have poor power in finite samples.}

The comparison results for BKK and LAMP models with various financial structures are presented in Table 6. Three panels in the table identify the set of characteristics based on which we conduct the comparisons: variances (panel (a)), co-movements with output and cross-country correlations (panel (b)), and overall performance (panel (c)). The test statistic is computed as the difference between the loss function of the model in the row (model g) and the loss function of the model in the column (model f). Therefore, a positive sign of the test statistic implies that the model in the row does worse in matching data moments as compared with the model in the column. In addition, the larger the test statistic, the worse the model in the row performs. We report p-values in parenthesis below the test statistics.

According to panel (a) of Table 6, based on volatilities, our test picks financial autarky with no LAMP as the winner. Its superior performance for volatilities is also statistically significant in three out of five pairs. Based on co-movements with output and cross-country correlations, our test reported in panel (b) picks complete market economy with LAMP as the model that matches data best. This result is also statistically significant in three pairwise comparisons out of five possible. Finally, based on the overall performance, autarky with no LAMP outperforms all other models, however the differences are not statistically
Table 6: Test results from benchmark models comparisons

<table>
<thead>
<tr>
<th>Model g</th>
<th>Model f</th>
<th>BKK FA</th>
<th>BKK BE</th>
<th>BKK CM</th>
<th>LAMP FA</th>
<th>LAMP BE</th>
<th>LAMP CM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(a) Volatilities</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BKK, FA</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BKK, BE</td>
<td></td>
<td>0.06</td>
<td></td>
<td></td>
<td></td>
<td>(0.37)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.13)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BKK, CM</td>
<td></td>
<td>0.11</td>
<td>0.04***</td>
<td></td>
<td>0</td>
<td>(0.00)</td>
<td>(0.00)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.13)</td>
<td>(0.00)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LAMP, FA</td>
<td></td>
<td>0.23***</td>
<td>0.17**</td>
<td>0.13</td>
<td>0</td>
<td>(0.00)</td>
<td>(0.04)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.00)</td>
<td>(0.12)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LAMP, BE</td>
<td></td>
<td>0.33***</td>
<td>0.20***</td>
<td>0.22***</td>
<td>0.09</td>
<td>(0.90)</td>
<td>(0.00)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.91)</td>
<td>(0.00)</td>
<td>(0.14)</td>
<td>(0.00)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LAMP, CM</td>
<td></td>
<td>0.38***</td>
<td>0.31***</td>
<td>0.27***</td>
<td>0.14**</td>
<td>0.05***</td>
<td>(0.00)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.90)</td>
<td>(0.00)</td>
<td>(0.00)</td>
<td>(0.02)</td>
<td>(0.00)</td>
<td></td>
</tr>
<tr>
<td>(b) Correlations (with output and cross-country)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BKK, FA</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BKK, BE</td>
<td></td>
<td>0.13</td>
<td></td>
<td></td>
<td></td>
<td>(0.77)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.91)</td>
<td>(0.00)</td>
<td></td>
<td></td>
<td>(0.00)</td>
<td></td>
</tr>
<tr>
<td>BKK, CM</td>
<td></td>
<td>-0.12</td>
<td>-0.25</td>
<td>-0.17</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.91)</td>
<td>(0.65)</td>
<td>(0.76)</td>
<td>(0.91)</td>
<td>(0.00)</td>
<td></td>
</tr>
<tr>
<td>LAMP, FA</td>
<td></td>
<td>-0.22</td>
<td>-0.35***</td>
<td>-0.27**</td>
<td>-0.10</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.57)</td>
<td>(0.00)</td>
<td>(0.03)</td>
<td>(0.84)</td>
<td>(0.00)</td>
<td></td>
</tr>
<tr>
<td>LAMP, BE</td>
<td></td>
<td>-0.31</td>
<td>-0.45***</td>
<td>-0.36***</td>
<td>-0.19</td>
<td>-0.09***</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.42)</td>
<td>(0.00)</td>
<td>(0.01)</td>
<td>(0.68)</td>
<td>(0.00)</td>
<td></td>
</tr>
<tr>
<td>LAMP, CM</td>
<td></td>
<td>-0.06</td>
<td>-0.13</td>
<td>-0.09</td>
<td>-0.05</td>
<td>-0.04*</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.87)</td>
<td>(0.25)</td>
<td>(0.41)</td>
<td>(0.92)</td>
<td>(0.06)</td>
<td></td>
</tr>
</tbody>
</table>

Note: This Table reports the test statistics for comparison of the model in the row (model g) against the model in the column (model f). Positive numbers for the test statistic indicate that, compared with the model in the column, the model in the row provides a worse fit to the data moments. P-values are in the parentheses. * p-value ≤ 0.10, ** p-value ≤ 0.05, *** p-value ≤ 0.01.

4.3 Robustness

Next we consider the robustness of our results with respect to parameter ν and to the presence of IST shocks. The results under alternative calibrations are presented in Table 7 for volatilities, Table 8 for correlations with output, and Table 9 for cross-country correlations.

Panel (a) in each table presents the results for the case of imperfect substitutability in labor inputs of participants and non-participants, where we set the elasticity parameter ν to 0.5. Panels (b) and (c) report, respectively, second moments from the specifications of BKK and LAMP models with IST shocks. In each robustness exercise we keep all remaining
parameters unchanged.

Table 7: Volatilities: Robustness

<table>
<thead>
<tr>
<th></th>
<th>% std dev</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>y</td>
<td>c</td>
<td>x</td>
<td>n</td>
<td>ex</td>
<td>im</td>
</tr>
<tr>
<td>U.S. Data</td>
<td>1.49</td>
<td>0.62</td>
<td>2.92</td>
<td>0.68</td>
<td>3.93</td>
<td>4.98</td>
</tr>
<tr>
<td>(a) LAMP, $v = 0.5$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FA</td>
<td>0.90</td>
<td>0.65</td>
<td>1.49</td>
<td>0.13</td>
<td>0.98</td>
<td>0.98</td>
</tr>
<tr>
<td>BE</td>
<td>0.92</td>
<td>0.69</td>
<td>2.25</td>
<td>0.15</td>
<td>0.76</td>
<td>0.76</td>
</tr>
<tr>
<td>CM</td>
<td>0.91</td>
<td>0.70</td>
<td>2.27</td>
<td>0.15</td>
<td>0.78</td>
<td>0.78</td>
</tr>
<tr>
<td>(b) BKK with IST</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FA</td>
<td>1.00</td>
<td>0.61</td>
<td>2.27</td>
<td>0.38</td>
<td>1.09</td>
<td>1.09</td>
</tr>
<tr>
<td>BE</td>
<td>1.04</td>
<td>0.57</td>
<td>3.86</td>
<td>0.45</td>
<td>1.42</td>
<td>1.43</td>
</tr>
<tr>
<td>CM</td>
<td>1.04</td>
<td>0.57</td>
<td>3.90</td>
<td>0.45</td>
<td>1.48</td>
<td>1.49</td>
</tr>
<tr>
<td>(c) LAMP with IST</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FA</td>
<td>0.96</td>
<td>0.63</td>
<td>1.97</td>
<td>0.30</td>
<td>1.04</td>
<td>1.04</td>
</tr>
<tr>
<td>BE</td>
<td>0.99</td>
<td>0.62</td>
<td>3.48</td>
<td>0.36</td>
<td>1.44</td>
<td>1.44</td>
</tr>
<tr>
<td>CM</td>
<td>0.98</td>
<td>0.63</td>
<td>3.52</td>
<td>0.35</td>
<td>1.50</td>
<td>1.50</td>
</tr>
</tbody>
</table>

Note: This Table presents actual and simulated volatilities for the U.S. economy. All data statistics are for the period of 1973:1-2007:4. Details on the data are available in the Appendix A. Model-based statistics are obtained from 10000 simulations, 100 periods long, each. All series are logged and HP-filtered. The following models are considered: (a) LAMP with imperfectly substitutable labor input of participants and non-participants; (b) BKK with IST shocks; (c) LAMP with IST shocks. FA, BE and CM refer, respectively, to financial autarky, bond economy and complete markets economy.

Consider first the scenario where labor inputs of participants and non-participants are imperfectly substitutable with elasticity $v = 0.5$. In this case, the distinction between the original BKK and LAMP models becomes quantitatively sharper. In particular, relative to the case of perfect substitutability between two labor types reported in panel (b) of Tables 3, 4, and 5, volatility of consumption rises further, while volatilities of all other aggregates fall. Reducing elasticity of substitution in labor has the largest effect on cross-country correlations. In particular, it significantly lowers cross-correlation of consumption, and raises the cross-correlation of employment and investment. These changes are reflected in the formal model comparison. We find that while qualitatively, our test results remain unchanged, quantitatively they become stronger and more significant.14

Next, we turn to IST shocks. The simulated moments for the original BKK models with IST shocks are shown in panel (b) of Tables 3, 4, 5; while those for the LAMP model with IST shocks are in panel (c) of the same three tables. Not surprisingly, when IST shocks are introduced, all volatilities go up, especially for investment, international trade variables and relative prices. This increase is particularly pronounced in the bond economy and complete markets economy. Correlations with output, on the other hand, decline. Cross-country correlations of output and consumption also fall, while those of investment and employment turn more negative. These changes are characteristic of both BKK and LAMP economies.

What is behind these results? As in Raffo (2010) and Mandelman et al. (2011), IST

14Given that test results do not change qualitatively in this case, we do not report them in the paper. These results are available from the authors upon request.
shocks in our setup act as demand shocks. For instance, consider a positive IST shock in the domestic economy. Following this shock, domestic investment demand goes up, appreciating home terms of trade, on impact. To accommodate higher investment demand, domestic households must reduce their consumption. In bond and complete market economies, imports from abroad also rise to finance domestic investment boom, leading to trade deficit. Domestic households also increase their labor supply in response to the shock. As home output goes up and investment demand subsides (with temporary IST shocks), domestic terms of trade begin to depreciate. So does the real exchange rate. The impact appreciation of the terms of trade and real exchange rate, followed by depreciation some quarters later helps understand the higher volatility of these variables in the economy with IST shocks.

Foreign economy, on the other hand, being relatively less productive, cuts down its investment and employment. Released resources are used for temporarily higher consumption by foreign households. These dynamics imply low (for consumption) or negative (for output, employment and investment) cross-country correlations after IST shocks.

Overall, adding temporary IST shocks to our benchmark economies helps improve their performance on some dimensions, such as volatilities and some correlations. However, the models fit also worsens in some other dimensions, such as cross-country co-movements of investment and employment. As a result, a formal statistical method of model comparison is again warranted. Our results from comparison of models with IST shocks are presented in Table 10, where as before, we aggregate variances and covariances using data-dependent weighting matrix.

In the presence of IST shocks, our test picks BKK bond economy as the preferred model.
Table 9: Cross-country correlations: Robustness

<table>
<thead>
<tr>
<th></th>
<th>y_1, y_2</th>
<th>c_1, c_2</th>
<th>x_1, x_2</th>
<th>n_1, n_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S. Data</td>
<td>0.58</td>
<td>0.43</td>
<td>0.41</td>
<td>0.35</td>
</tr>
<tr>
<td>(a) LAMP, $v = 0.5$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FA</td>
<td>0.18</td>
<td>0.73</td>
<td>0.44</td>
<td>0.18</td>
</tr>
<tr>
<td>BE</td>
<td>0.15</td>
<td>0.48</td>
<td>-0.38</td>
<td>-0.12</td>
</tr>
<tr>
<td>CM</td>
<td>0.15</td>
<td>0.44</td>
<td>-0.38</td>
<td>-0.06</td>
</tr>
<tr>
<td>(b) BKK with IST</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FA</td>
<td>0.14</td>
<td>0.54</td>
<td>0.11</td>
<td>-0.17</td>
</tr>
<tr>
<td>BE</td>
<td>0.05</td>
<td>0.59</td>
<td>-0.64</td>
<td>-0.48</td>
</tr>
<tr>
<td>CM</td>
<td>0.06</td>
<td>0.57</td>
<td>-0.64</td>
<td>-0.45</td>
</tr>
<tr>
<td>(c) LAMP with IST</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FA</td>
<td>0.17</td>
<td>0.63</td>
<td>0.21</td>
<td>-0.08</td>
</tr>
<tr>
<td>BE</td>
<td>0.09</td>
<td>0.56</td>
<td>-0.62</td>
<td>-0.39</td>
</tr>
<tr>
<td>CM</td>
<td>0.10</td>
<td>0.53</td>
<td>-0.62</td>
<td>-0.36</td>
</tr>
</tbody>
</table>

Note: This Table presents actual and simulated cross-country correlations for the U.S. economy and the rest of the world. The data statistics are for the period of 1973:1-2007:4. Details on the data are available in the Appendix A. Model-based statistics are obtained from 10000 simulations, 100 periods long, each. All series are logged and HP-filtered. The following models are considered: (a) LAMP with imperfectly substitutable labor input of participants and non-participants; (b) BKK with IST shocks; (c) LAMP with IST shocks. FA, BE and CM refer, respectively, to financial autarky, bond economy and complete markets economy.

specification when the objective is to match volatilities. The results are statistically significant in all, but one pair-wise comparison. If the objective is to match correlations, out test implies that BKK autarky with IST shocks comes out at the top. However, when the overall performance (variances and correlations) is considered, LAMP complete markets economy with IST shocks is chosen as the winner. Importantly, this superior performance is highly statistically significant. These results imply that even in the presence of IST shocks, LAMP delivers a better match to the data.

5 Conclusion

In this paper we propose a novel statistical test to conduct evaluation and formal comparison of DSGE models. Our procedure explicitly accounts for the possibility that a DSGE model might be misspecified. It also accounts for simulation uncertainty and the fact that some model parameters are estimated rather than calibrated. We apply our test to a standard international business cycles model with three specifications for asset markets structure: financial autarky, single risk-free bond economy, and an economy with complete asset markets. We find that financial autarky economy indeed fits the data best, in line with the findings in the literature. We then allow for domestic asset market incompleteness by introducing hand-to-mouth consumers that do not participate in the domestic or foreign financial markets. With limited asset market participation (LAMP), the models’ performance is improved in matching cross-country correlations, but worsened in matching volatilities. Formal statistical comparison confirms this result. Furthermore, we find that the conventional result that
Table 10: Test results from the comparison of models with IST shocks

<table>
<thead>
<tr>
<th>Model g</th>
<th>Model f</th>
<th>BKK</th>
<th>LAMP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>FA</td>
<td>BE</td>
</tr>
<tr>
<td>BKK, FA</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BKK, BE</td>
<td>-0.75***</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.00)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BKK, CM</td>
<td>-0.73***</td>
<td>0.01</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>(0.00)</td>
<td>(0.37)</td>
<td></td>
</tr>
<tr>
<td>LAMP, FA</td>
<td>0.29***</td>
<td>1.03***</td>
<td>1.02***</td>
</tr>
<tr>
<td>LAMP, BE</td>
<td>-0.69***</td>
<td>0.06*</td>
<td>0.04</td>
</tr>
<tr>
<td>LAMP, CM</td>
<td>-0.60***</td>
<td>0.15***</td>
<td>0.14***</td>
</tr>
</tbody>
</table>

(b) Correlations (with output and cross-country)

<table>
<thead>
<tr>
<th>Model g</th>
<th>Model f</th>
<th>BKK</th>
<th>LAMP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>FA</td>
<td>BE</td>
</tr>
<tr>
<td>BKK, FA</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BKK, BE</td>
<td>1.19***</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.00)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BKK, CM</td>
<td>1.02***</td>
<td>-0.17***</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>(0.02)</td>
<td>(0.00)</td>
<td></td>
</tr>
<tr>
<td>LAMP, FA</td>
<td>0.12</td>
<td>-1.08**</td>
<td>-0.90*</td>
</tr>
<tr>
<td>LAMP, BE</td>
<td>0.48</td>
<td>-0.71***</td>
<td>-0.54***</td>
</tr>
<tr>
<td>LAMP, CM</td>
<td>0.21</td>
<td>-0.99***</td>
<td>-0.81***</td>
</tr>
</tbody>
</table>

(c) Overall

<table>
<thead>
<tr>
<th>Model g</th>
<th>Model f</th>
<th>BKK</th>
<th>LAMP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>FA</td>
<td>BE</td>
</tr>
<tr>
<td>BKK, FA</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BKK, BE</td>
<td>0.45</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.24)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BKK, CM</td>
<td>0.29</td>
<td>-0.16***</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>(0.45)</td>
<td>(0.00)</td>
<td></td>
</tr>
<tr>
<td>LAMP, FA</td>
<td>0.40**</td>
<td>-0.04</td>
<td>0.12</td>
</tr>
<tr>
<td>LAMP, BE</td>
<td>-0.21</td>
<td>-0.65***</td>
<td>-0.49***</td>
</tr>
<tr>
<td>LAMP, CM</td>
<td>-0.39</td>
<td>-0.84***</td>
<td>-0.68***</td>
</tr>
</tbody>
</table>

Note: This Table reports the test statistics for comparison of the model in the row (model g) against the model in the column (model f). Positive numbers for the test statistic indicate that, compared with the model in the column, the model in the row provides a worse fit to the data moments. P-values are in the parentheses. * p-value≤0.10, ** p-value≤0.05, *** p-value≤0.01.

Financial autarky fits data best is overturned as our test picks LAMP with complete markets as the winning specification in matching correlations and in the presence of investment-specific technology shocks.
References

A Appendix

A.1 Data sources and calculations

Following Heathcote and Perri (2002), we collect data from OECD Main Economic Indicator (MEI) and OECD Quarterly National Accounts (QNA) for the period 1973-2007 and construct variables using the definitions summarized in Table A1.

Table A1: Data sources and calculations

<table>
<thead>
<tr>
<th>Variable</th>
<th>Definition</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>The U.S.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output ((y_1))</td>
<td>Gross Domestic Product (at constant price 2000)</td>
<td>OECD MEI</td>
</tr>
<tr>
<td>Consumption ((c_1))</td>
<td>Private plus Government Final Consumption Expenditure (at constant price 2000)</td>
<td>OECD MEI</td>
</tr>
<tr>
<td>Investment ((x_1))</td>
<td>Gross Fixed Capital Formation (at constant price 2000)</td>
<td>OECD MEI</td>
</tr>
<tr>
<td>Employment ((n_1))</td>
<td>Civilian Employment Index</td>
<td>OECD MEI</td>
</tr>
<tr>
<td>Real exchange rate ((r_x))</td>
<td>Price-adjusted Broad Dollar Index</td>
<td>Board of Governors</td>
</tr>
<tr>
<td>Import price</td>
<td>imports at current prices/imports at constant prices</td>
<td>OECD QNA</td>
</tr>
<tr>
<td>Export price</td>
<td>exports at current prices/exports at constant prices</td>
<td>OECD QNA</td>
</tr>
<tr>
<td>Terms of trade ((p))</td>
<td>import price/export price</td>
<td></td>
</tr>
<tr>
<td>Net exports ratio ((n_x))</td>
<td>((\text{import-p\text{*}export})/y_1) (all at current prices)</td>
<td></td>
</tr>
<tr>
<td>Real imports ratio ((i_r))</td>
<td>import/(GDP-export)</td>
<td></td>
</tr>
<tr>
<td>Rest of the World</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output ((y_2))</td>
<td>Aggregate of Canada, Japan and 19 European Counties (aggregate with PPP exchange rates in 2000)</td>
<td>OECD MEI</td>
</tr>
<tr>
<td>Consumption ((c_2))</td>
<td>Aggregate of Canada, Japan and 19 European Counties (aggregate with PPP exchange rates in 2000)</td>
<td>OECD MEI</td>
</tr>
<tr>
<td>Investment ((x_2))</td>
<td>Aggregate of Canada, Japan and 19 European Counties (aggregate with PPP exchange rates in 2000)</td>
<td>OECD MEI</td>
</tr>
<tr>
<td>Employment ((n_2))</td>
<td>Aggregate of Canada, Japan and 8 European Countries (weighted with populations in 2000)</td>
<td>OECD MEI</td>
</tr>
</tbody>
</table>

However, since OECD no longer reports aggregate data series on GDP, consumption and investment for European 15 which Heathcote and Perri (2002) used to compute variables for the rest of the world and since consistent series for each of those 15 European counties are not available either, instead, we used 19 European countries, including Austria, Belgium, Denmark, Finland, France, Germany, Greece, Ireland, Italy, Luxembourg, the Netherlands, Portugal, Spain, Sweden and United Kingdom, Iceland, Luxembourg, Switzerland and Turkey. The employment series for the rest of the world, because of data unavailability, is computed as the weighted aggregate of Canada, Japan and 8 European countries (Austria,
Finland, Germany, Italy, Norway, Spain, Sweden and UK). These differences in the sample may be contribute to the differences between the estimates of productivity shock process in Heathcote and Perri (2002) and in this paper.

A.2 Estimation details

In this section, we describe our estimation procedure, and show how it corresponds with the asymptotic linearization in (7) and (8).

First, note that in our case, \(\theta = \beta = (\rho_{11}, \rho_{12}, \sigma_{e_1}, \sigma_{e_1 e_2})' \). The parameters are estimated using the following estimating equations:

\[
\begin{pmatrix}
 z_{1,t} \\
 z_{2,t}
\end{pmatrix} =
\begin{pmatrix}
 \mu_1 \\
 \mu_2
\end{pmatrix} +
\begin{pmatrix}
 \rho_{11} & \rho_{12} \\
 \rho_{12} & \rho_{11}
\end{pmatrix}
\begin{pmatrix}
 z_{1,t-1} \\
 z_{2,t-1}
\end{pmatrix} +
\begin{pmatrix}
 \varepsilon_{1,t} \\
 \varepsilon_{2,t}
\end{pmatrix},
\]

(A1)

\[
\sigma_{e_1} = \sqrt{E\varepsilon_{1,t}^2},
\]

(A2)

\[
\sigma_{e_1 e_2} = \sqrt{E\varepsilon_{1,t} \varepsilon_{2,t}}.
\]

(A3)

Define \(y_{1,t} = z_{1,t} \) and \(y_{2,t} = z_{2,t} \) for \(t = 2, \ldots, n \), and let \(Y_1 \) and \(Y_2 \) denote the corresponding \((n-1)\)-vectors of observations. Let \(X_t = (1, z_{1,t-1}, z_{2,t-1})' \) for \(t = 2, \ldots, n \), and let \(X \) denote the corresponding \((n-1)\times3\) matrix of observations. Let \(\varepsilon_1 \) and \(\varepsilon_2 \) denote the \((n-1)\)-vectors of observations on the error terms. We have the following SUR system:

\[
Y_* = (I_2 \otimes X) \gamma_* + \varepsilon_* ,
\]

where \(Y_* = (Y_1', Y_2')' \), \(\varepsilon_* = (\varepsilon_1', \varepsilon_2')' \), and \(\gamma_* = (\mu_1, \rho_{11}, \rho_{12}, \mu_2, \rho_{12}, \rho_{11})' \), and note that \(\gamma_* \) is restricted by \(R\gamma_* = 0_{2 \times 1} \), where

\[
R = \begin{pmatrix}
 0 & 1 & 0 & 0 & 0 & -1 \\
 0 & 0 & 1 & 0 & -1 & 0
\end{pmatrix}.
\]

Define \(\Sigma \) as the variance-covariance matrix of \((\varepsilon_1, \varepsilon_2)'\):

\[
\Sigma = \begin{pmatrix}
 \sigma_{e_1} & \sigma_{e_1 e_2} \\
 \sigma_{e_1 e_2} & \sigma_{e_1} \sigma_{e_2}
\end{pmatrix},
\]

and let \(\hat{\Sigma} \) denote its consistent estimator. For example, \(\hat{\Sigma} \) can be constructed using the residuals obtained from OLS equation-by-equation estimation of (A1). The restricted (FGLS)
efficient SUR estimator of γ_* is given by:

$$\hat{\gamma}_* = \tilde{\gamma}_* - \left(\hat{\Sigma}^{-1} \otimes (X'^{-1}) \right) R' \left(R \left(\hat{\Sigma}^{-1} \otimes (X'^{-1}) \right) R' \right)^{-1} R \tilde{\gamma}_*,$$

where $\tilde{\gamma}_*$ denotes the unrestricted OLS equation-by-equation estimator of γ_*.\(^{15}\)

Let $\hat{\sigma}_{e_1}$ and $\hat{\sigma}_{e_1 e_2}$ denote the estimators of σ_{e_1} and $\sigma_{e_1 e_2}$ respectively constructed by replacing the expectations in (A2) and (A3) with sample averages and ε’s with fitted residuals from the SUR system above. We need additional notation to describe the linearization of the estimator of β in (8). Define:

$$H = I_6 - \left(\Sigma^{-1} \otimes \left(\text{plim}_{n \to \infty} \frac{X'X}{n} \right)^{-1} \right) R' \left(R \left(\Sigma^{-1} \otimes \left(\text{plim}_{n \to \infty} \frac{X'X}{n} \right)^{-1} \right) R' \right)^{-1} R,$$

and let $H_{2:3}$ denote the second and third rows of H. In this case, $\sqrt{n}(\hat{\beta} - \beta)$, B, and $\sqrt{n}(\hat{h}_1 - h_1)$ in (8) are given by the corresponding terms in the following expression:

$$\sqrt{n} \left(\begin{array}{c}
\hat{\rho}_{11} - \rho_{11} \\
\hat{\rho}_{12} - \rho_{12} \\
\hat{\sigma}_{e_1} - \sigma_{e_1} \\
\hat{\sigma}_{e_1 e_2} - \sigma_{e_1 e_2}
\end{array} \right) = \left(H_{2:3} \begin{array}{ccc}
0_{2 \times 1} & 0_{2 \times 1} & 0_{2 \times 1} \\
1_{2 \times 6} & 0 & 0 \\
0_{1 \times 6} & -\frac{\sigma_{e_1 e_2}}{2\sigma_{e_1}^2} & -\frac{\sigma_{e_1 e_2}}{2\sigma_{e_2}^2} \\
0_{1 \times 6} & -\frac{\sigma_{e_1 e_2}}{2\sigma_{e_1}^2} & -\frac{\sigma_{e_1 e_2}}{2\sigma_{e_2}^2}
\end{array} \right) \frac{1}{\sqrt{n}} \sum_{t=2}^{n} \left(\begin{array}{c}
\varepsilon_{1,t} \\
\varepsilon_{2,t} \\
\varepsilon_{1,t} - \sigma_{e_1}^2 \\
\varepsilon_{1,t} - \sigma_{e_1} - \sigma_{e_1 e_2}^2 \\
\varepsilon_{2,t} - \sigma_{e_2}^2 \\
\varepsilon_{2,t} - \sigma_{e_1 e_2} \sigma_{e_1} \sigma_{e_2}
\end{array} \right),$$

where $\hat{\rho}_{11}$ and $\hat{\rho}_{12}$ denote the second and third elements of the efficient SUR estimator $\hat{\gamma}_*$.

To estimate Λ_{11} and B, one should replace the population parameters in the above expression with their sample counterparts and ε’s with fitted residuals from SUR estimation. To estimate Λ_{22} and Λ_{12}, one can use a linearization (similar to that of $\hat{\sigma}_{e_1}$ and $\hat{\sigma}_{e_1 e_2}$ above) for \hat{h}_2.

A.3 Derivation of asymptotic variances formulas in (10)-(12)

When H_0 is true, S can be written as

$$S = \left[\left(\hat{h}_2 - \hat{g}(\hat{\beta}) \right)' W_{h_2} \left(\hat{h}_2 - \hat{g}(\hat{\beta}) \right) - \left(h_2 - g(\beta) \right)' W_{h_2} \left(h_2 - g(\beta) \right) \right]$$

\(^{15}\)Since the two equations have the same set of regressors, the unrestricted efficient SUR estimator is the equation-by-equation OLS estimator.
\[- \left[(\hat{h}_2 - \hat{f}(\theta))' W_{h_2} (\hat{h}_2 - \hat{f}(\theta)) - (h_2 - f(\theta))' W_{h_2} (h_2 - f(\theta)) \right]. \tag{A4} \]

Next,
\[
\left(\hat{h}_2 - \hat{g}(\beta) \right)' W_{h_2} \left(\hat{h}_2 - \hat{g}(\beta) \right) - (h_2 - g(\beta))' W_{h_2} (h_2 - g(\beta)) \tag{A5}
\]
\[
= \left(\hat{h}_2 - \hat{g}(\beta) \right)' (W_{h_2} - W_{h_2}) \left(\hat{h}_2 - \hat{g}(\beta) \right) + \left(\hat{h}_2 - \hat{g}(\beta) + h_2 - g(\beta) \right)' W_{h_2} (\hat{h}_2 - h_2) - \left(\hat{h}_2 - \hat{g}(\beta) + h_2 - g(\beta) \right)' W_{h_2} (\hat{g}(\beta) - g(\beta))
\]
\[
= ((h_2 - g(\beta)) \otimes (h_2 - g(\beta)))' J \left(w(\hat{h}_2) - w(h_2) \right) + 2 (h_2 - g(\beta))' W_{h_2} (\hat{h}_2 - h_2)
\]
\[
- 2 (h_2 - g(\beta))' W_{h_2} (\hat{g}(\beta) - g(\beta)) + o_p(1/\sqrt{n}),
\]

where the last equality holds by $\text{vec}(ABC) = (C' \otimes A) \text{vec}(B)$ (see Magnus and Neudecker (1999), equation (5) on page 30), (9), and (14). With a similar expression for the second term in (A4) and a first-order Taylor expansion for $w(\hat{h}_2)$, we obtain that (A5) multiplied by \sqrt{n} is equal to
\[
\left(\begin{array}{c}
2W_{h_2}(f(\theta) - g(\beta)) + \frac{\partial w(h_2)}{\partial h} J' K(h_2, f(\theta), g(\beta)) \\
2W_{h_2}(h_2 - f(\theta)) \\
-2W_{h_2}(h_2 - g(\beta))
\end{array} \right)'
\left(\begin{array}{c}
\sqrt{n}(\hat{h}_2 - h_2) \\
\sqrt{n} \sqrt{R}(\hat{f}(\theta) - f(\theta)) \\
\sqrt{n} \sqrt{R}(\hat{g}(\beta) - g(\beta))
\end{array} \right) + o_p(1) \tag{A6}
\]

Next, by a first-order Taylor expansion,
\[
\left(\hat{h}_2 - \hat{g}(\beta) \right)' W_{h_2} \left(\hat{h}_2 - \hat{g}(\beta) \right) = \left(\hat{h}_2 - \hat{g}(\beta) \right)' W_{h_2} \left(\hat{h}_2 - \hat{g}(\beta) \right)
\]
\[
- 2 \left(\hat{h}_2 - \hat{g}(\beta) \right)' W_{h_2} \frac{\partial g(\beta)}{\partial \beta} (\hat{\beta} - \beta) + o_p(1/\sqrt{n}).
\]

By combining this result (and a similar expansion for model f) with the results in (A6) and (A4), and using (7)-(8), we obtain:
\[
\sqrt{n}\mathbf{S} = \left(\begin{array}{c}
2A' \frac{\partial f(\theta)}{\partial \theta} W_{h_2}(h_2 - f(\theta)) - 2B' \frac{\partial g(\beta)}{\partial \beta} W_{h_2}(h_2 - g(\beta)) \\
2W_{h_2}(f(\theta) - g(\beta)) + \frac{\partial w(h_2)}{\partial h} J' K(h_2, f(\theta), g(\beta)) \\
2W_{h_2}(h_2 - f(\theta)) \\
-2W_{h_2}(h_2 - g(\beta))
\end{array} \right)'
\]

A4
\[
\begin{pmatrix}
\sqrt{n}(h_1 - h_1) \\
\sqrt{n}(h_2 - h_2) \\
\sqrt{n}\sqrt{R}(\hat{f}(\theta) - f(\theta)) \\
\sqrt{n}\sqrt{R}(\hat{g}(\beta) - f(\beta))
\end{pmatrix}
\times
+ o_p(1).
\]

The results in (10)-(12) now follow by (6) and (9).