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1 Introduction

Kernel estimation of densities on the real line is a well-developed area. The core of the theory is a series

of results covering smooth densities that do not exhibit extreme curvature. Let K denote a kernel, an

integrable function on R, which satisfies
∫
R
K(t)dt = 1, h > 0 be a bandwidth and f be a density on R.

Assuming that {Xi}ni=1 is an independent and identically distributed (IID) sample from f , the traditional

Rosenblatt-Parzen kernel estimator of f(x) is defined by f̂R(x) = 1
nh

∑n
i=1K

(
x−Xi
h

)
. This estimator has

three desirable characteristics: 1) there exists a great profusion of kernels that can be used to construct the

estimator (usually, they are from the Gaussian or Epanechnikov families); they are usually symmetric and

do not depend on the point (x) of estimation, or on the class of densities being estimated; 2) there is a simple

link between the degree of smoothness of the density and the order of estimator’s bias: if f ∈ Csb (Ω) and

the kernel is of order s, then Ef̂(x)− f(x) = O(hs).1 The use of higher order kernels in the case of smooth

densities is also a standard feature; 3) the optimal bandwidth is of order n−1/(2s+1) for all estimation points,

unless there are areas of extreme curvature or discontinuities.

In cases where the domain of f has a boundary, the main problem is bad estimator behavior in the

vicinity of the boundary. This problem called into being a range of estimation methods. Among the widely

used ones are the reflection method, the boundary kernel method, the transformation method and the local

linear method (see, inter alia, Schuster (1985), Karunamuni and Alberts (2005), Malec and Schienle (2014),

Wen and Wu (2015) and their references). Other methods have proposed the use of asymmetric kernels and

kernel adjustments near the boundary. Such techniques necessarily require variable bandwidths, separation

of densities into subclasses that vanish or not at the boundary, densities that have derivatives of a certain sign

at the boundary, etc. The difficulties of estimation near the boundary precluded researchers from identifying

a core class for which analogs of the standard results mentioned above would be true. In particular, we have

not seen in the literature results that would guarantee a better bias rate for densities of higher smoothness.

In this paper we propose estimation procedures that permit a unified theoretical study of their properties

1Let s ∈ N and Ω ⊆ R. The class of functions f : Ω → R which are s-times differentiable with
∣∣f (s)(x)

∣∣ ≤ C for some

0 < C < ∞ is denoted by Csb (Ω). We say that the kernel K is of order s ≥ 2 if
∫
tjK(t)dt = 0 for j = 1, · · · , s − 1 and∫

tsK(t)dt 6= 0.
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under bounded and unbounded domains. We show that smoothness is all one needs to have a good bias rate,

and for smooth densities the behavior at the boundary is irrelevant (derivatives at endpoints are one-sided

derivatives). For densities on the half-axis [0,∞) and on the unit interval (0, 1) we introduce new estimators

for which all standard facts hold. Usual symmetric kernels and constant bandwidths can be used across the

domain and for f ∈ Csb (Ω) the biases of our estimators are of order O(hs). The bandwidth depends on the

sample size in the same way as in case of estimation on the whole line. In the case of estimation of piece-wise

continuous densities, with known discontinuity points, our estimators supply the required jumps at those

points. As in R, the estimator for densities in classes where s > 2 is not necessarily nonnegative, because

the estimation involves higher-order kernels. Our method does not cover densities with poles at endpoints.

Our estimation method is based on Hestenes’ extension (Hestenes (1941)). Let Df be the domain of the

density f and denote by g its Hestenes extension (the definitions for the half-axis and interval are given below

in the respective sections). The key observation is that g can be viewed as a linear combination of densities.

The sample generated from f is used to estimate each of these densities and the linear combination of the

estimators estimates g. The restriction of the estimator of g to Df estimates f . We show that the theory of

estimation on a domain with boundaries for smooth densities in effect becomes a chapter in estimation on

the whole line. The essential link between the proposed estimator f̂(x) of f(x) and the properties of g is of

type

Ef̂(x)− f(x) =

∫
R

K(t) (g(x− ht)− g(x)) dt, x ∈ Df .

This representation has eluded previous work, and can be used for evaluating bias. Our estimation procedure

does not require knowledge of g. There seems to be a slight loss in the speed of convergence as compared to

convergence on the line because the same data is exploited more than once to estimate different parts of g.

However, this loss does not affect the rate in Ef̂(x) − f(x) = chs + o(hs); it affects only the constant c, in

comparison with the classical estimator for densities on the line. In section 2, we start with estimation of a

density on [0,∞). Section 3 treats densities on a bounded interval. In section 4, the approach is extended to

estimation of discontinuous densities. Section 5 provides two methods to satisfy zero boundary conditions.
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2 Estimation of densities defined on [0,∞)

Let w1, ..., ws+1 be pairwise different positive numbers for s = 0, 1, · · · . Of special interest are the decreasing

sequence wi = 1/i, i = 1, ..., s + 1 (used by Hestenes (1941)) and the increasing sequence wi = i. Let the

numbers k1, ..., ks+1 be defined from the following system

s+1∑
i=1

(−wi)jki = 1, j = 0, ..., s. (2.1)

Since this system has the Van-der-Monde determinant∣∣∣∣∣∣∣∣
1 1 ... 1
−w1 −w2 ... −ws+1

... ... ...
(−w1)s (−w2)s ... (−ws+1)s

∣∣∣∣∣∣∣∣ 6= 0,

k1, ..., ks+1 are uniquely defined. If f has [0,∞) as its domain, its Hestenes extension for x < 0 is defined by

φs(x) =

s+1∑
j=1

kjf(−wjx), x < 0. (2.2)

φs is not a density, but it is a linear combination of densities wjf(−wjx) with coefficients kj/wj .

Assuming that f has s right-hand derivatives f(0+), ..., f (s)(0+) (s = 0 means continuity), we see that

the following sewing conditions at zero are satisfied due to (2.1):

φ(m)
s (0−) =

s+1∑
j=1

(−wj)mkjf (m)(0+) = f (m)(0+), m = 0, · · · , s.

Now define g on R by

g(x) =

{
f(x), x ≥ 0
φs(x), x < 0

, (2.3)

with g being s times differentiable. Moreover, if, for example, f belongs to the Sobolev space W s
p ([0,∞)),

then g belongs to W s
p (R), where 1 ≤ p <∞ (see Burenkov (1998)).

Suppose f is s times differentiable, m = 0, 1, · · · , s, the kernel K is m times differentiable, and let {Xi}ni=1

be an IID sample from f . The estimator of f (m)(x), for x > 0, is defined by

f̂ (m)(x) =
1

nhm+1

n∑
i=1

K(m)

(
x−Xi

h

)
+

s+1∑
j=1

kj
wj
K(m)

(
x+Xi/wj

h

) . (2.4)
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When the kernel K is an even function and m = s = 0, f̂ (0)(x) ≡ f̂S(x) is the “reflection estimator” from

Schuster (1985), i.e.,

f̂S(x) =
1

nh

n∑
i=1

[
K

(
x−Xi

h

)
+K

(
x+Xi

h

)]
.

The next assumption is used only for m ≥ 1, when integration by parts is needed.

Assumption 2.1. a) K is even, m times differentiable and max
1≤j≤m−1

|K(j)(t)||t| = o(1) as |t| → ∞; b)

max
1≤j≤m−1

|f (j)(x)| = O(x) as x→∞.

The estimator in (2.4) can be constructed using kernels in the class {Mk(x)}k∈N proposed by Mynbaev

and Martins-Filho (2010), where

Mk(x) = − 1

Ck2k

k∑
|l|=1

(−1)lCl+k2k

|l|
K
(x
l

)
with Cl2k = 2k!

(2k−l)!l! for l = 0, · · · , 2k. In this context, K is called the seed of Mk. These kernel are used

together with an order 2k finite difference

∆2k
h g(x) =

k∑
|l|=0

(−1)l+kCl+k2k g(x− lh)

when Besov type norms are employed to measure smoothness (see Mynbaev and Martins-Filho (2010)). We

let f̂
(m)
k (x) denote the estimator defined in (2.4) with K replaced by Mk. Note that if K is even, then

M1(x) = K(x) and f̂
(m)
1 (x) = f̂ (m)(x).

Theorem 2.1. Suppose f is s-times differentiable on Df = [0,∞) and the kernel K is m times differentiable

on R with m = 0, 1, · · · , s. In case m ≥ 1 suppose that Assumption 2.1 holds. Then,

1) The bias of f̂ (m)(x) has the representation

Ef̂ (m)(x)− f (m)(x) =

∫
R

K(t)
[
g(m)(x− ht)− g(m)(x)

]
dt, x ∈ Df . (2.5)

2) If in (2.4) a kernel Mk with seed K is used, then

Ef̂
(m)
k (x)− f (m)(x) =

(−1)k+1

Ck2k

∫
R

K(t)∆2k
htg

(m)(x)dt, x ∈ Df . (2.6)
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Proof. 1) By the IID assumption

Ef̂ (m)(x) =
1

hm+1
E

K(m)

(
x−X1

h

)
+

s+1∑
j=1

kj
wj
K(m)

(
x+X1/wj

h

)
=

1

hm+1

∫ ∞
0

K(m)

(
x− t
h

)
f(t)dt+

s+1∑
j=1

kj
wj

∫ ∞
0

K(m)

(
x+ t/wj

h

)
f(t)dt

 . (2.7)

In the first integral let u = x−t
h , in the others u =

x+t/wj
h . Then

Ef̂ (m)(x) =
1

hm

−∫ −∞
x/h

K(m) (u) f(x− hu)du+

s+1∑
j=1

kj

∫ ∞
x/h

K(m)(u)f (−wj(x− hu)) du


=

1

hm

∫ x/h

−∞
K(m) (u) f(x− hu)du+

∫ ∞
x/h

K(m)(u)

s+1∑
j=1

kjf (−wj(x− hu)) du

 .
In the first integral we have x − hu > 0 and f(x − hu) = g(x − hu); in the second one x − hu < 0, so∑s+1
j=1 kjf (−wj(x− hu)) = g(x− hu). Hence,

Ef̂ (m)(x) =
1

hm

∫
R

K(m) (u) g(x− hu)du. (2.8)

By Assumption 2.1
∣∣K(j)(u)g(m−1−j)(x− hu)

∣∣ = o(1), as |u| → ∞ for j = 0, ...,m − 1, h > 0. Therefore,

integration by parts gives the following expression for (2.8)

Ef̂ (m)(x) =

m−1∑
j=0

1

hm−j
K(m−1−j)(u)g(j)(x− hu)

∞
|
−∞

+

∫
R

K(u)g(m)(x− hu)du

=

∫
R

K (u) g(m)(x− hu)du. (2.9)

Since
∫
R
K(t)dt = 1, this implies (2.5).

2) Plug the definition of Mk in (2.7) to get

Ef̂
(m)
k (x) = − 1

Ck2k

k∑
|l|=1

(−1)lCl+k2k

|l|lmhm+1

∫ ∞
0

K(m)

(
x− t
lh

)
f(t)dt+

s+1∑
j=1

kj
wj

∫ ∞
0

K(m)

(
x+ t/wj

lh

)
f(t)dt

 .
(2.10)

5



For l < 0,

∫ ∞
0

K(m)

(
x− t
lh

)
f(t)dt+

s+1∑
j=1

kj
wj

∫ ∞
0

K(m)

(
x+ t/wj

lh

)
f(t)dt

(replacing
x− t
lh

= u and
x+ t/wj

lh
= u)

= −lh

∫ ∞
x/(lh)

K(m) (u) f(x− lhu)du+

s+1∑
j=1

kj

∫ x/(lh)

−∞
K(m) (u) f(−wj(x− lhu))du


= −lh

∫
R

K(m) (u) g(x− lhu)du.

Similarly, we have for l > 0

∫ ∞
0

K(m)

(
x− t
lh

)
f(t)dt+

s+1∑
j=1

kj
wj

∫ ∞
0

K(m)

(
x+ t/wj

lh

)
f(t)dt = lh

∫
R

K(m) (u) g(x− lhu)du.

Therefore, (2.10) gives

Ef̂
(m)
k (x) = − 1

Ck2k

k∑
|l|=1

(−1)lCl+k2k

(lh)m

∫
R

K(m) (u) g(x− lhu)du

(integrating by parts as above)

= − 1

Ck2k

k∑
|l|=1

(−1)lCl+k2k

∫
R

K (u) g(m)(x− lhu)du.

Finally,

Ef̂
(m)
k (x)− f (m)(x) = − 1

(−1)kCk2k

k∑
|l|=1

(−1)l+kCl+k2k

∫
R

K (u) g(m)(x− lhu)du

− (−1)kCk2k
(−1)kCk2k

∫
R

K (u) g(m)(x)du = − 1

(−1)kCk2k

∫
R

K(u)∆2k
hug

(m)(x)du

which is (2.6).

The integral representations for biases obtained in Theorem 2.1 depend on the extension g, not the

density f . Consequently, existing results for smooth functions (not densities) on R allow us to easily obtain

bias estimates. If classical smoothness characteristics in terms of derivatives and Taylor expansions are used,

then part 1) of Theorem 2.1 is relevant. This approach can be used for derivatives of orders m ≤ s − 1

when the bias order is O(hs−m) and guaranteed to tend to zero as h→ 0. If, on the other hand, smoothness

is characterized in terms of finite differences and Besov spaces, then the second representation should be
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applied. It is appropriate for m = s − 1 or m = s when the derivative of order s may have a residual

fractional smoothness of order 0 < r < 1.

For 1 ≤ p, q ≤ ∞ and Ω an open subset of R put ∆2k
h,Ωf(x) = ∆2k

h f(x) if [x − kh, x + kh] ⊂ Ω and

∆2k
h,Ωf(x) = 0 otherwise and let

‖f‖brp,q(Ω) =


∫
R


(∫

Ω

∣∣∣∆2k
h,Ωf(x)

∣∣∣p dx)1/p

|h|r


q

dh

|h|


1/q

where k is any integer satisfying 2k > r, and in case p = ∞ and/or q = ∞ the integral(s) is (are) replaced

by sup . Further, ‖f‖Brp,q(Ω) = ‖f‖brp,q(Ω) + ‖f‖Lp(Ω). The Hestenes extensionis known to be bounded from

Brp,q(Ω) to Brp,q(R).

Assumption 2.2. For 0 ≤ m ≤ s,
∥∥f (m)

∥∥
br∞,q(0,∞)

<∞ with some r > 0 and 1 ≤ q ≤ ∞ and

(∫
|K(t)|q

′
|t|(r+1/q)q′

dt

)q′
<∞

where 1/q + 1/q′ = 1.

Theorem 2.2. 1) Let Assumption 2.1 hold and assume that
∫
R
K(t)tjdt = 0, for j = 1, ..., s − m − 1,∫

R
|K(t)ts−m| dt <∞ and

∣∣f (s)(x)
∣∣ < C for all x > 0, then

Ef̂ (m)(x)− f (m)(x) = O(hs−m) for all x ∈ Df . (2.11)

2) Let f and K satisfy Assumption 2.2, then

Ef̂
(m)
k (x)− f (m)(x) = O(hr) for all x ∈ Df . (2.12)

Proof. For part 1), we note that since
∫
K(t)dt = 1 we have from Theorem 2.1

Ef̂ (m)(x)− f (m)(x) =

∫
K(t)(gm(x− ht)− g(m)(x))dt =

∫
K(t)

(
g(m+1)(x)(−ht) +

1

2!
g(m+2)(x)(−ht)2

+ · · ·+ 1

(s−m)!
g(s)(x− thτ)(−ht)s−m

)
dt

for some τ ∈ (0, 1). If
∫
R
K(t)tj = 0, for j = 1, ..., s−m− 1 then

|Ef̂ (m)(x)− f (m)(x)| ≤ hs−m

(s−m)!

∫
|t|s−m|K(t)||g(s)(x− thτ)|dt ≤ Chs−m,
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where the last inequality follows from the assumptions that
∫
R
|K(t)ts−m| dt <∞,

∣∣f (s)(x)
∣∣ < C for all x > 0

and the structure of g(s). For part 2), using (2.6) and Hölder’s inequality we have∣∣∣Ef̂ (m)
k (x)− f (m)(x)

∣∣∣ = c

∣∣∣∣∣
∫
R

K(t) |ht|r+1/q ∆2k
htg

(m)(x)

|ht|r+1/q
dt

∣∣∣∣∣
≤ c

(∫
R

|K(t)|q
′
|ht|(r+1/q)q′

dt

)1/q′
∫

R

 sup
x
|∆2k

htg
(m)(x)|

|ht|r

q

dt

|ht|

1/q

(changing variables on the second integral)

≤ chr
(∫
|K(t)|q

′
|t|(r+1/q)q′

dt

)1/q′ ∥∥∥g(m)
∥∥∥
br∞,q(R)

= O(hr).

In the last line we used the bound
∥∥g(m)

∥∥
Brp,q(R)

≤ c
∥∥f (m)

∥∥
Brp,q(0,∞)

.

From now on we give just expressions for bias and variance leaving consequences of type (2.11) and (2.12)

to the reader.

Theorem 2.3. Suppose that f is continuous, sup
x
|f(x)| < ∞, sup

x

∣∣K(m)(x)
∣∣ < ∞,

∫
R

∣∣K(m)(t)
∣∣2 dt and∫

R

∣∣K(m)(t)
∣∣ dt <∞. In case m > 0 also let Assumption 2.1 hold. Denote F (t) = M

(m)
k (t). Then

V
(
f̂

(m)
k (x)

)
=

1

nh2m+1

{
f(x)

∫
R

F 2(t)dt+ o(1)

}
, x > 0. (2.13)

The estimator f̂ (m)(x) has a similar property with F (t) = K(m)(t) in place of M
(m)
k (t).

Proof. Denoting ui = 1
hm+1

[
F
(
x−Xi
h

)
+
∑s+1
j=1

kj
wj
F
(
x+Xi/wj

h

)]
we have f̂

(m)
k (x) = 1

n

∑n
i=1 ui and given

the IID assumption

V
(
f̂

(m)
k (x)

)
=

1

n

[
Eu2

1 − (Eu1)2
]
. (2.14)

Let w0 = − 1
2 , k0 = 0, w−1 = −1, k−1 = −1 (the value of w0 does not matter). Then

Eu2
1 = E

 1

hm+1

s+1∑
j=−1

kj
wj
F

(
x+X1/wj

h

)2

=
1

h2m+2

s+1∑
i,j=−1

ki
wi

kj
wj

∫ ∞
0

F

(
x+ t/wi

h

)
F

(
x+ t/wj

h

)
f(t)dt. (2.15)

Denote by B(x, r) = {t : |x− t| ≤ r} the ball centered at x with radius r. For any positive ε there is a > 0

such that
∫
|u|>a |F (u)| du < ε. Note that

Bi ≡
{
t :

∣∣∣∣x+ t/wi
h

∣∣∣∣ ≤ a} = {t : |wix+ t| ≤ |wi|ha} = B(−wix, |wi|ha).
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Since all wi are different and x > 0, the balls Bi do not overlap for small h. Let h be that small and denote

Fi(t) = F ((x+ t/wi)/h). Then using R = Bi ∪Bci (here c stands for the complement) we have

∣∣∣∣∫ ∞
0

Fi (t)Fj (t) f(t)dt

∣∣∣∣ ≤ sup |f |
∫
Bi∪Bci

|Fi (t)Fj (t)| dt

= c1

[∫
Bi∩(Bj∪Bcj)

|Fi (t)Fj (t)| dt+

∫
Bci

|Fi (t)Fj (t)| dt

]
(using Bi ∩Bj = ∅, Bi ∩Bcj ⊂ Bcj )

≤ c2

(∫
Bcj

|Fj (t)| dt+

∫
Bci

|Fi (t)| dt

)
.

Further,

∫
Bci

|Fi (t)| dt =

∫
|wix+t|>|wi|ha

∣∣∣∣F (x+ t/wi
h

)∣∣∣∣ dt = |wi|h
∫
|u|>a

|F (u)| du = O(εh).

It follows that
∫∞

0
Fi(t)Fj(t)f(t)dt = o(h) and from (2.15)

Eu2
1 =

1

h2m+2

[
s+1∑
i=−1

(
ki
wi

)2 ∫ ∞
0

F 2
i (t) f(t)dt+ o(h)

]

=
1

h2m+2

[∫ ∞
0

F 2

(
x− t
h

)
f(t)dt+

s+1∑
i=1

(
ki
wi

)2 ∫ ∞
0

F 2

(
x+ t/wi

h

)
f(t)dt+ o(h)

]

=
1

h2m+1

[∫ x/h

−∞
F 2 (u) f(x− hu)du+

s+1∑
i=1

(
ki
wi

)2 ∫ ∞
x/h

F 2 (u) f(−wi(x− hu))dt+ o(1)

]
.

Defining

g∗(x) =

{
f(x), x > 0∑s+1
i=1

(
ki
wi

)2

f(−wjx), x < 0
(2.16)

we can write

Eu2
1 =

1

h2m+1

[∫
R

F 2 (u) g∗(x− hu)du+ o(1)

]
. (2.17)

g∗ is not a smooth extension of f but it is integrable on R and continuous at x > 0. Therefore
∫
R
F 2 (u) g∗(x−

hu)du→ g∗(x)
∫
R
F 2 (u) du = f(x)

∫
R
F 2 (u) du. Theorem 2.2, (2.14) and (2.17) finish the proof.
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3 Estimation on a bounded interval

Let f be defined on Df = (0, 1) and let the vectors w, k be as before. We would like to extend f to the left

of zero using (2.2). To obtain a common domain for the components of φ, we put a = mini(1/wi) and let

φ1(x) =

s+1∑
j=1

kjf(−wjx), −a < x < 0.

The sewing conditions at 0 are satisfied as before. Put

φ2(x) =

s+1∑
j=1

kjf(1− wj(x− 1)), 1 < x < 1 + a,

and define the extension by

g(x) =

 φ1(x), −a < x < 0
f(x), 0 < x < 1
φ2(x), 1 < x < 1 + a

(3.1)

The sewing condition holds at x = 1 :

φ
(j)
2 (1+) =

s+1∑
m=1

(−wm)jkmf
(j)(1−) = f (j)(1−), j = 0, ..., s.

Suppose f is s times differentiable, m is an integer, 0 ≤ m ≤ s, the kernel K is m times differentiable,

and let X1, ..., Xn be an IID sample from f . The estimator of f (m)(x), x ∈ (0, 1), is defined by

f̂ (m)(x) =
1

nhm+1


n∑
i=1

K(m)

(
x−Xi

h

)
+

s+1∑
j=1

kj
wj

 ∑
Xi<awj

K(m)

(
x+Xi/wj

h

)

+
∑

Xi>1−awj

K(m)

(
x− 1 + (Xi − 1)/wj

h

) . (3.2)

Theorem 3.1. Let f be s times differentiable on Df = (0, 1) and let K be an m times differentiable

kernel with finite support, 0 ≤ m ≤ s. Let h > 0 be small (specifically, it should satisfy the condition

suppK ⊂ (−a/h, a/h)). Then, the following statements hold:

1) For a classical kernel K (2.5) is true.

2) If in (3.2) K is replaced by Mk, then (2.6) is true.

Proof. 1) Let IA denote the indicator of a set A. Then, for an arbitrary function g,
∑
Xi<awj

g(Xi) =

10



∑n
i=1 I{Xi<awj}g(Xi). Using indicators in (3.2) and the fact that {Xi}ni=1 is IID, we have

Ef̂ (m)(x) =
1

hm+1


∫ 1

0

K(m)

(
x− t
h

)
f(t)dt+

s+1∑
j=1

kj
wj

[∫ awj

0

K(m)

(
x+ t/wj

h

)
f(t)dt

+

∫ 1

1−awj
K(m)

(
x− 1 + (t− 1)/wj

h

)
f(t)dt

]}
. (3.3)

Changing variables using x−t
h = u,

x+t/wj
h = u,

x−1+(t−1)/wj
h = u, we have

Ef̂ (m)(x) =
1

hm

−
∫ (x−1)/h

x/h

K(m) (u) f(x− hu)du+

s+1∑
j=1

kj

[∫ (x+a)/h

x/h

K(m) (u) f(−wj(x− hu))du

+

∫ (x−1)/h

(x−1−a)/h

K(m) (u) f(1− wj(x− hu− 1))du

]}
.

Applying (3.1), we have

Ef̂ (m)(x) =
1

hm


∫ x/h

(x−1)/h

K(m) (u) f(x− hu)du+

∫ (x+a)/h

x/h

K(m) (u)

s+1∑
j=1

kjf(−wj(x− hu))du

+

∫ (x−1)/h

(x−1−a)/h

K(m) (u)

s+1∑
j=1

kjf(1− wj(x− hu− 1))du


=

1

hm

∫ (x+a)/h

(x−1−a)/h

K(m) (u) g(x− hu)du. (3.4)

Regardless of x ∈ (0, 1), the interval ((x− 1− a)/h, (x+ a)/h) contains (−a/h, a/h) which contains suppK

for all small h. Therefore,

Ef̂ (m)(x) =
1

hm

∫
R

K(m) (u) g(x− hu)du.

For this to hold formally, g should be extended outside (−a, 1+a) smoothly; the manner of extension does not

affect the above integral. Finally, integration by parts and the condition
∫
R
K(t)dt = 1 prove the statement.

2) Since K is assumed to have finite support, we do not need Assumption 2.1. Calculations done in the

proof of Theorem 2.2 afterequation (2.10) include change of variables and integration by parts and can be

easily repeated here.

Remark. Instead of requiring K to have compact support one can define the extension so that it is

sufficiently smooth and has compact support. Take a smooth function h such that h(x) = 1 on (−a/2, 1+a/2)

and h(x) = 0 for x outside (−a, 1 + a). Instead of (3.1) consider the extension g∗(x) = h(x)g(x) and change

11



(3.2) accordingly. Then the statement of Theorem 3.1 will be true for g∗ without the assumption that K has

compact support. When m = 0 and integration by parts is not necessary, the function h does not have to be

smooth. g can be extended by zero outside (−a, 1 + a) or, equivalently, one can take h(x) = 1 on (−a, 1 + a)

and h(x) = 0 for x outside (−a, 1 + a).

Theorem 3.2. Under conditions of Theorem 3.1 the following is true.

1) For a classical kernel K

V
(
f̂ (m)(x)

)
=

1

nh2m+1

{
f(x)

∫
R

F 2(t)dt+O(h)

}
, x ∈ Df .

where F (x) = K(m)(x).

2) If Mk is used in place of K, then the same asymptotic expression is true with F (x) = M
(m)
k (x).

Proof. Define

ui =
1

hm+1

K(m)

(
x−Xi

h

)
+

s+1∑
j=1

kj
wj

[
I{Xi<awj}K

(m)

(
x+Xi/wj

h

)

+ I{Xi>1−awj}K
(m)

(
x− 1 + (Xi − 1)/wj

h

)]}
.

Then we can use equations similar to (2.14) and (2.15).

We want to show that in the analog of (2.15) all cross-products vanish if h is small. Suppose suppK ⊂

(−b, b) for some b > 0. In the cross-products we have integrands that include products of functions

f0(t) = K(m)

(
x− t
h

)
, fj(t) = K(m)

(
x+ t/wj

h

)
, gj(t) = K(m)

(
x− 1 + (t− 1)/wj

h

)
.

It is easy to see that

suppf0 ⊆ B(x, hb), suppfj ⊆ B(−wjx,wjhb), supp gj ⊆ B(1− wj(x− 1), wjhb).

Since the radii of the balls here tend to zero, for small h they do not overlap if their centers are different. It

is easy to show that all the centers are indeed different using the conditions that 0 < x < 1, wj > 0 for all j

and all wj are different.
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Thus, for small h

Eu2
1 =

1

h2m+2

{∫ 1

0

F 2

(
x− t
h

)
f(t)dt +

s+1∑
j=1

(
kj
wj

)2 [∫ awj

0

F 2

(
x+ t/wj

h

)
f(t)dt

+

∫ 1

1−awj
F 2

(
x− 1 + (t− 1)/wj

h

)
f(t)dt

]}
.

Define

g∗(x) =


∑s+1
i=1

(
ki
wi

)2

f(−wix), −a < x < 0

f(x), x ∈ (0, 1)∑s+1
i=1

(
ki
wi

)2

f(1− wi(x− 1)), 1 < x < 1 + a

(3.5)

Repeating the changes of variables that led from (4.2) to (5.1) and recalling that suppK ⊂ (−a/h, a/h)

we obtain

Eu2
1 =

1

h2m+1

∫ (x+a)/h

(x−1−a)/h

F 2 (u) g(x− hu)du =
1

h2m+1

∫
R

F 2 (u) g(x− hu)du.

Overall, using Theorem 3.1.1)

V
(
f̂ (m)(x)

)
=

1

n

[
1

h2m+1

∫
R

F 2 (u) g(x− hu)du−
(

1

hm

∫
R

K(m) (u) g(x− hu)du

)2
]

=
1

nh2m+1

(
f(x)

∫
R

F 2 (u) du+O(h)

)
.

The proof for Mk is the same.

4 Estimation of smooth pieces of densities

Ideas developed in the previous sections can be applied to estimation of densities with discontinuities or with

discontinuous derivatives. Here we provide two results. Cline and Hart (1991) used Schuster’s symmetrization

device to improve bias around a discontinuity point.

The first result in this section applies, for example, to the Laplace distribution which is continuous

everywhere but has a discontinuous derivative at zero. The usual kernel density estimator on the whole line

will inevitably have a large bias at zero. The suggestion is to estimate its smooth restrictions f+ and f− on

the right half-axis (0,∞) and left half-axis (−∞, 0). As a second example, consider a piece-wise constant

density on the interval (0, 1). The restriction of the density on each interval where it is constant is smooth
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and can be estimated using our approach. Obviously, the jumps of the estimators will estimate the jumps

of the density.

f+ and f− do not need to have the same degree of smoothness. Suppose that the right part f+ is s times

differentiable and 0 ≤ m ≤ s. The estimator of f
(m)
+ (x), x > 0, is defined by

f̂
(m)
+ (x) =

1

nhm+1

∑
Xi>0

K(m)

(
x−Xi

h

)
+

s+1∑
j=1

kj
wj
K(m)

(
x+Xi/wj

h

) .
Theorem 4.1. In Theorem 2.1 and in definition (2.3) let f = f+ and Df = (0,∞). If the conditions of

Theorem 2.1 are satisfied for f and K, then 1) (2.5) and (2.6) are true and 2) for the variance of f̂
(m)
+ (x)

one has (2.13).

Proof. 1) Instead of (2.7) we have

Ef̂
(m)
+ (x) =

1

hm+1
E

I{X1>0}

K(m)

(
x−X1

h

)
+

s+1∑
j=1

kj
wj
K(m)

(
x+X1/wj

h

)
=

1

hm+1

∫ ∞
0

K(m)

(
x− t
h

)
f+(t)dt+

s+1∑
j=1

kj
wj

∫ ∞
0

K(m)

(
x+ t/wj

h

)
f+(t)dt

 .
Repeating calculations that led from (2.7) to (2.9) we get

Ef̂
(m)
+ (x) =

∫
R

K (s) g
(m)
+ (x− hs)ds

(those calculations did not use the fact that f was a density).

2) Similarly, replacing in (4.3) f by f+ and repeating the argument of Theorem 2.3 we see that

V
(
f̂

(m)
+ (x)

)
=

1

nh2m+1

{
f+(x)

∫
R

F 2(t)dt+ o(1)

}
, x > 0,

where F (t) = K(m)(t).

Now suppose that the domain Df of a density f contains a finite segment (c, d) such that the restriction

fr of f onto (c, d) is smooth. Denote

φ1(x) =

s+1∑
j=1

kjfr(c− wj(x− c)), c− a1 < x < c,

14



the extension of fr to the left of c and

φ2(x) =

s+1∑
j=1

kjfr(d− wj(x− d)), d < x < d+ a1,

the extension of fr to the right of d. Here we choose a1 = a(d − c), to make sure that c − wj(x − c) and

d− wj(x− d) belong to (c, d). The extended restriction then is defined by

gr(x) =

 φ1(x), c− a1 < x < c,
fr(x), c < x < d,
φ2(x), d < x < d+ a1.

(4.1)

Definition (3.2) guides us to define

f̂ (m)(x) =
1

nhm+1

{ ∑
c<Xi<d

K(m)

(
x−Xi

h

)

+

s+1∑
j=1

kj
wj

 ∑
c<Xi<c+a1wj

K(m)

(
x− c+ (Xi − c)/wj

h

)

+
∑

d−a1wj<Xi<d

K(m)

(
x− d+ (Xi − d)/wj

h

) , x ∈ (c, d).

Theorem 4.2. Let fr be s times differentiable, 0 ≤ m ≤ s, and let K have compact support. For h

sufficiently small (such that suppK ⊆ (−a1/h, a1/h)) we have

Ef̂ (m)(x)− f (m)
r (x) =

∫
R

K(u)
[
g(m)
r (x− hu)− g(m)

r (x)
]
du, c < x < d. (4.2)

Further,

V
(
f̂ (m)(x)

)
=

1

nh2m+1

{
f(x)

∫
R

F 2(t)dt+O(h)

}
, c < x < d,

where F (t) = K(m)(t) or F (t) = M
(m)
k (t) depending on which kernel is used in the definition of f̂ (m)(x).

Proof. By the i.i.d. assumption

Ef̂ (m)(x) =
1

hm+1

{∫ d

c

K(m)

(
x− t
h

)
fr(t)dt

+

s+1∑
j=1

kj
wj

[∫ c+a1wj

c

K(m)

(
wj(x− c) + (t− c)

wjh

)
fr(t)dt

+

∫ d

d−a1wj
K(m)

(
wj(x− d) + (t− d)

wjh

)
fr(t)dt

]}
.
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The obvious changes of variables are:

x− t
h

= u,
wj(x− c) + (t− c)

wjh
= u,

wj(x− d) + (t− d)

wjh
= u.

The mean value becomes

Ef̂ (m)(x) =
1

hm

{
−
∫ (x−d)/h

(x−c)/h
K(m) (u) fr(x− hu)du

+

s+1∑
j=1

kj

[∫ (x−c+a1)/h

(x−c)/h
K(m) (u) fr(c− wj(x− c) + wjhu)du

+

∫ (x−d)/h

(x−d−a1)/h

K(m) (u) fr(d− wj(x− d) + wjhu)du

]}
.

Applying (4.1) we see that this is the same as

Ef̂ (m)(x) =
1

hm

{∫ (x−c)/h

(x−d)/h

K(m) (u) fr(x− hu)du

+

∫ (x−c+a1)/h

(x−c)/h
K(m) (u)

s+1∑
j=1

kjfr(c− wj(x− hu− c))du

+

∫ (x−d)/h

(x−d−a1)/h

K(m) (u)

s+1∑
j=1

kjfr(d− wj(x− hu− d))du


=

1

hm

∫ (x−c+a1)/h

(x−d−a1)/h

K(m) (u) gr(x− hu)du.

Regardless of x ∈ (c, d), the interval ((x − d − aL/h, (x − c + a)/h) contains (−a/h, a/h) which contains

suppK for all small h. Therefore, also integrating by parts,

Ef̂ (m)(x) =
1

hm

∫
R

K(m) (u) gr(x− hu)du =

∫
R

K (u) g(m)
r (x− hu)du.

The derivation of the expression for variance largely repeats that from Theorem 3.2. Define

ui =
1

hm+1

{
I{c<Xi<d}K

(m)

(
x−Xi

h

)
+

s+1∑
j=1

kj
wj

[
I{c<Xi<c+a1wj}K

(m)

(
x− c+ (Xi − c)/wj

h

)

+I{d−a1wj<Xi<d}K
(m)

(
x− d+ (Xi − d)/wj

h

)]}
.

Then we can use equations similar to (2.14) and (2.15).
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We want to show that in the analog of (2.15) all cross-products vanish if h is small. Suppose suppK ⊂

(−b, b) for some b > 0. In the cross-products we have integrands that include products of functions

f0(t) = K(m)

(
x− t
h

)
, fj(t) = K(m)

(
x− c+ (Xi − c)/wj

h

)
,

gj(t) = K(m)

(
x− d+ (Xi − d)/wj

h

)
.

It is easy to see that

suppf0 ⊆ B(x, hb), suppfj ⊆ B(c− wj(x− c), wjhb), supp gj ⊆ B(d− wj(x− d), wjhb).

Since the radii of the balls here tend to zero, for small h they do not overlap if their centers are different. It

is easy to show that all the centers are indeed different using the conditions that c < x < d, wj > 0 for all j

and all wj are different.

Thus, for small h

Eu2
1 =

1

h2m+2

{∫ d

c

F 2

(
x− t
h

)
fr(t)dt

+

s+1∑
j=1

(
kj
wj

)2 [∫ c+a1wj

c

F 2

(
x− c+ (t− c)/wj

h

)
fr(t)dt

+

∫ d

d−a1wj
F 2

(
x− d+ (t− d)/wj

h

)
fr(t)dt

]}
.

Define

g∗r (x) =


∑s+1
i=1

(
ki
wi

)2

f(c− wi(x− c)), c− a1 < x < c

f(x), x ∈ (c, d)∑s+1
i=1

(
ki
wi

)2

f(d− wi(x− d)), d < x < d+ a1

(4.3)

Repeating the changes of variables that led from (4.2) to (5.1) and recalling that suppK ⊂ (−a1/h, a1/h)

we obtain

Eu2
1 =

1

h2m+1

∫ (x−c+a1)/h

(x−d−a1)/h

F 2 (u) g∗r (x− hu)du =
1

h2m+1

∫
R

F 2 (u) g∗r (x− hu)du.

Overall, combining this with the bias estimate 4.2 we obtain

V
(
f̂ (m)(x)

)
=

1

n

[
1

h2m+1

∫
R

F 2 (u) g∗r (x− hu)du−
(

1

hm

∫
R

K(m) (u) g∗r (x− hu)du

)2
]

=
1

nh2m+1

(
fr(x)

∫
R

F 2 (u) du+O(h)

)
.
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5 Estimators satisfying zero boundary conditions

For simplicity we consider only densities on Df = (0,∞). For estimator (2.4) we provide two modifications

designed to satisfy zero boundary conditions for the estimator itself and/or its derivatives. In both cases the

bias rate is retained. The first estimator also reduces the variance near zero. The main difference between

the estimators is in the number of derivatives that are guaranteed to vanish. Everywhere it is assumed that

f is s times differentiable, 0 ≤ m ≤ s and the purpose is to estimate f (m)(x).

Let l be an integer between m and s and let ψ be a function on Df with properties

ψ(0+) = ... = ψ(l−m)(0+) = 0, ψ(l−m+1)(0+) 6= 0, (5.1)

ψ(x) = 1 for x ≥ 1, 0 ≤ ψ(x) ≤ 1 everywhere. If

f (m)(0+) = ... = f (s)(0+) = 0, (5.2)

put α = 1. Otherwise, let k be the least integer such that m ≤ k ≤ s, f (k)(0+) 6= 0 and put α = s−m
k−m . For

any estimator f̂ (m)(x) of f (m)(x) define another estimator f̃ (m)(x) = ψ(xh−α)f̂ (m)(x).

Theorem 5.1. Let the estimator f̂ (m)(x) of f (m)(x) satisfy (2.11). Then f̃ (m)(x) satisfies

f̃ (m)(0+) = ... = f̃ (l)(0+) = 0, (5.3)

Ef̃ (m)(x)− f (m)(x) = O(hs−m) for all x ∈ Df . (5.4)

and

V
(
f̃ (m)(x)

)
=

 V
(
f̂ (m)(x)

)
, x ≥ hα

V
(
f̂ (m)(x)

)
(xh−α)2(l−m+1), x < hα.

(5.5)

Proof. (5.1) implies

(
d

dx

)j
f̃ (m)(x) |x=0+ =

j∑
i=0

Cij

[(
d

dx

)i
ψ(xh−α)

][(
d

dx

)j−i
f̂ (m)(x)

]
|x=0+ = 0,

for j = 0, ..., l −m, so (5.3) is satisfied.

To prove (5.4), consider two cases.

Case xh−α ≥ 1. (5.4) follows trivially from (2.11) because f̃ (m)(x) = f̂ (m)(x).
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Case xh−α ≤ 1. Obviously, in the equation

Ef̃ (m)(x)− f (m)(x) = ψ(xh−α)
[
Ef̂ (m)(x)− f (m)(x)

]
+
[
ψ(xh−α)− 1

]
f (m)(x)

the first term on the right is O(hs−m), and it remains to prove that [ψ(xh−α)− 1] f (m)(x) = O(hs−m).

Suppose (5.2) is true, so that α = 1. Then

f (m)(x) = f (m)(0+) + ...+ f (s)(0+)
xs−m

(s−m)!
+ o(xs−m)

= o
(
(hα)s−m

)
= o(hs−m). (5.6)

Suppose (5.2) is wrong. Then α = s−m
k−m and

f (m)(x) = f (m)(0+) + ...+ f (s)(0+)
xk−m

(k −m)!
+ o(xk−m)

= O
(
xk−m

)
= O(hs−m). (5.7)

(5.6) and (5.7) prove what we need.

To prove (5.5), consider two cases.

Case xh−α ≥ 1. The first part of (5.5) is obvious because f̃ (m)(x) = f̂ (m)(x).

Case xh−α ≤ 1. From (5.1) it follows that

ψ(xh−α) = ψ(0+) + ...+ ψ(l−m+1)(0+)
(xh−α)

(l−m+1)

(l −m+ 1)!
∼
(
xh−α

)(l−m+1)

which proves the second part of (5.5).

Let ψ be a function with properties: ψ is m times differentiable on Df , ψ(x) = 1 for x ∈ (0, 2], ψ(x) = 0

for x ≥ 3, 0 ≤ ψ(x) ≤ 1 everywhere. Define

f̂ (m)(x) =
1

nhm+1

n∑
i=1

ψ(Xi/x)

K(m)

(
x−Xi

h

)
+

s+1∑
j=1

kj
wj
K(m)

(
x+Xi/wj

h

) .
Theorem 5.2. All derivatives of f̂ (m)(x) that exist vanish at zero and

Ef̂ (m)(x)− f (m)(x) =

∫
R

K(t)
[
g(m)
x (x− ht)− g(m)

x (x)
]
dt, x ∈ Df , (5.8)

where gx is the Hestenes extension of fx(t) = f(t)ψ (t/x) . Besides, V
(
f̂ (m)(x)

)
satisfies (2.13).
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Proof. For almost all samples miniXi > 0 and for 0 < x < 1
3 miniXi one has ψ(Xi/x) = 0, i = 1, ..., n.

Hence f̂ (m)(x) vanishes, together with all its derivatives, in the neighborhood of zero for almost all samples.

Following (2.7) we see that the mean is

Ef̂ (m)(x) =
1

hm+1

∫ ∞
0

K(m)

(
x− t
h

)
+

s+1∑
j=1

kj
wj
K(m)

(
x+ t/wj

h

)ψ( t
x

)
f(t)dt.

Here the function fx(t) = f(t)ψ (t/x) has support suppfx ⊆ [0, 3]. Implementing changes applied after (2.8),

including integration by parts, we obtain an analog of (2.9) with gx instead of g. gx is obtained by replacing

f in (2.2)-(2.3) by fx. The rest is familiar.

Repeating the calculations from the proof of Theorem 2.3 with fx in place of f and using fx(x) = f(x)

we obtain (2.13).

6 Simulations

We conducted a series of simulations to provide some evidence on the finite sample performances of our

estimators and to contrast them with that of some of the most commonly used estimators for densities with

supports that are subsets of R . We focus on two broad cases: first, we consider densities that are defined

on [0,∞); second we consider the case of a density with a discontinuity at x = 0.

In the first case we considered random variables with the following densities:

1. Normal density left-truncated at x = 0: fTN (x) = 2√
2π

exp(− 1
2x

2),

2. Gamma density: fG(x) = 1
βαΓ(α)x

α−1exp(− 1
βx) with α = β = 1,

3. Chi-squared density: fχ(x) = 1
2v/2Γ(v/2)

xv/2−1exp(− 1
2x) with v = 5,

4. Exponential density: fE(x) = λexp(−λx) with λ = 1.

For each density we generated samples of size n = 250, 500 and calculated the following estimators: f̂R, f̂S

and f̂k for k = 1, 2, 3, wi = i, i−1 and s = 1, 2. In each case we used a Gaussian kernel and a Gaussian seed

kernel, as necessary. We also calculated the Gamma kernel estimator of Chen (2000), which we denote by

f̂C . For each estimator we selected an optimal bandwidth by minimizing the integrated squared error over
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a fixed grid on the interval (0, 4) with step 10−3. Figure 1 gives a set of estimates for one of the generated

samples of size n = 250 associated with the Gamma density. For each sample, and each estimator, a root

average squared error (RASE) over the grid is calculated. The average of RASE across all 1000 generated

samples are reported on Table 1.

As expected, the RASE, for each estimator and across all densities, decreases as n increases from 250 to

500. Except for data generated from the fχ density, all estimators that are based on Hestenes’ extension

and constructed using the Mk kernels (including the case where k = 1 and M1 = K) have smaller RASE

when wi = i. Also, for estimators f̂2 and f̂3, choosing s = 1 reduces RASE (compared with s = 2) for all

densities, except fG and fE when n = 500. Except for the case of the truncated normal density - fTN - there

is always a Hestenes’ based estimator that outperforms the estimator f̂S proposed by Schuster (1985). In

fact, if we choose wi = i, all Hestenes’ based estimators have smaller RASE than that of f̂S . For all densities,

there is always a Hestenes’ based estimator that outperforms the estimator f̂C proposed by Chen (2000).

In addition, as in the comparison with f̂S , if we choose wi = i, all Hestenes’ based estimators have smaller

RASE than that of f̂C for all densities. Lastly, as expected, the traditional Rosenblatt-Parzen estimator has

the poorest performance across all densities and all estimators. The choice of kernel, or seed-kernel, does

not qualitatively impact the relative performance described above. This preliminary experimental evidence

seems to support the use of wi = i and the choice of s = 1 relative to s = 2. Results for s = 3 and k > 3

(not reported) suggest rapid deterioration of performance. The evidence also suggests that Hestenes-based

estimators outperform the well known estimators proposed by Schuster (1985) and Chen (2000).

In the second broad case, we consider a density that has a point of discontinuity at x = 0. Specifically,

f(x) =

{
1√

2πσ2
exp

(
− 1

2
x2

σ2

)
if x < 0

1√
2π

exp
(
− 1

2x
2
)

if x ≥ 0
(6.1)

where σ2 controls the size of the jump. If σ2 = 1 the density is continuous everywhere, and for 0 < σ2 < 1

the jump at x = 0 is given by Jf (0) = f(0−)− f(0+) = 1√
2π

(
1
σ − 1

)
. The left and right panels of Figure 2

provide graphs of this density for σ2 = 0.5 and σ2 = 0.25.

With knowledge of the point of discontinuity (x = 0) we evaluate two estimators for f . The first, f̂H ,
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based on Hestenes’ extension, is composed of the estimator

f̂+(x) =
1

nh

∑
Xi>0

K (x−Xi

h

)
+

s+1∑
j=1

kj
wj
K

(
x+Xi/wj

h

) .
for the part f+ of f defined on [0,∞) and f̂− is the analog estimator for the f− part of f defined on

(−∞, 0]. The jump Jf (0) is estimated by Jf̂ (0) = f̂−(0−) − f̂+(0+). The second estimator is composed of

a Rosenblatt-Parzen estimator

f̂R+(x) =
1

nh

∑
Xi>0

K

(
x−Xi

h

)
for f+ and f̂R− is the analog estimator for f−. Jf (0) is estimated by Jf̂R(0) = f̂R−(0−)− f̂R+(0+).

For each density (σ2 = 0.25, 0.5) we generated samples of size n = 250, 500 and calculated the Rosenblatt-

Parzen and Hestenes estimator for wi = i, i−1, i/(s + 1) and s = 1, 2 using a Gaussian kernel. For each

estimator we selected an optimal bandwidth by minimizing the integrated squared error over a fixed grid on

the interval (−2.5, 3) with step 5× 10−3 for the case where σ2 = 0.5 and (−1.5, 3) with step 5× 10−3 for the

case where σ2 = 0.25. For each sample, and each estimator, a root average squared error (RASE) over the

grid is calculated. The average of RASE across all 1000 generated samples are reported on Table 2 and 3.

Average estimated jumps (across all generated samples) for both estimators, as well as their deviation from

the true jump, are also provide for both estimators.

We observe the following general regularities. First, all estimators have smaller average RASE when

n = 500 compared to n = 250 for both σ2 = 0.5 and σ2 = 0.25. All versions of f̂H have smaller average

RASE than f̂R and f̂H performs better when s = 1 and wi = i for both σ2 = 0.5 and σ2 = 0.25. For each

choice of s, the estimator f̂H performs similarly when wi = i−1 or wi = i/(s+ 1).

The estimated jump is much closer to the true jump under f̂H than under f̂R. Jf̂R severely underestimates

the true jump for both σ2 = 0.5 and σ2 = 0.25. Jf̂H , calculated under all versions of the estimators, is much

closer to the true value of the jump, but for both σ2 = 0.5 and σ2 = 0.25 there seems to be some evidence

of a slight overestimation of the jump. Except for the case where s = 1 and wi = i, jump estimators become

more accurate when n = 500 compared to n = 250. However, results are mixed regarding the impact of s

and wi on the accuracy of jump estimates. For an arbitrary sample of size n = 500 and σ2 = 0.25, Figure 3
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provides a graph for f̂R and f̂H for s = 2 and wi = i−1.

7 Summary and conclusions

We provided a set of easily implementable kernel estimators for densities defined on subsets of R that have

boundaries. The use of Hestenes’ extensions allows us to obtain theoretical representations for bias and

variance of our proposed estimators that preserve the orders of traditional kernel estimators for densities

defined on R. In effect, the insights gained from using Hestenes’ extensions make the study of suitably

defined kernel estimators in sets that have boundaries a special case of the theory developed for densities

defined on R. Preliminary simulations reveal very good finite sample performance relative to a number of

commonly used alternative estimators. Further work should investigate the possible existence of optimal

choices for s and w1, · · · , ws+1 under a suitably defined criterion. If possible, this would produce a best

estimator in the class we have defined.
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Figure 1: Density fG(x) (blue), f̂R (yellow), f̂C (green), f̂S (red) and f̂k (black) for k = 2, s = 1, wi = i.
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Figure 2: Density f(x) with a discontinuity at x = 0. Left panel is for σ2 = 0.5, right panel is for σ2 = 0.25
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Table 2. Average RASE and Jump Estimate

f̂R and f̂H for σ2 = 0.5

Experiment (s,wi,n) Average Squared Error Jump Estimate True Jump: J = 0.1652

f̂R f̂H Jf̂R Jf̂H Jf̂R − J Jf̂H − J
(s=1,wi = i−1,250) 0.0500 0.0316 0.0782 0.1820 -0.0870 0.0168
(s=2,wi = i−1,250) 0.0508 0.0566 0.0773 0.1714 -0.0879 0.0061
(s=1,wi = i,250) 0.0509 0.0273 0.0718 0.1679 -0.0935 0.0026
(s=2,wi = i,250) 0.0508 0.0294 0.0777 0.2094 -0.0875 0.0441
(s=1,wi = i/(s+ 1),250) 0.0505 0.0314 0.0807 0.1869 -0.0845 0.0217
(s=2,wi = i/(s+ 1),250) 0.0508 0.0510 0.0808 0.1735 -0.0845 0.0082
(s=1,wi = i−1,500) 0.0431 0.0236 0.0775 0.1757 -0.0877 0.0104
(s=2,wi = i−1,500) 0.0432 0.0398 0.0793 0.1637 -0.0860 -0.0016
(s=1,wi = i,500) 0.0435 0.0211 0.0781 0.1817 -0.0871 0.0164
(s=2,wi = i,500) 0.0430 0.0230 0.0765 0.1977 -0.0888 0.0324
(s=1,wi = i/(s+ 1),500) 0.0428 0.0236 0.0780 0.1785 -0.0873 0.0132
(s=2,wi = i/(s+ 1),500) 0.0432 0.0371 0.0777 0.1570 -0.0875 -0.0083

Table 3. Average RASE and Jump Estimate

f̂R and f̂H for σ2 = 0.25

Experiment (s,wi,n) Average Squared Error Jump Estimate True Jump: J = 0.3989

f̂R f̂H Jf̂R Jf̂H Jf̂R − J Jf̂H − J
(s=1,wi = i−1,250) 0.0578 0.0356 0.1906 0.4322 -0.2083 0.0332
(s=2,wi = i−1,250) 0.0579 0.0625 0.1923 0.4097 -0.2067 0.0107
(s=1,wi = i,250) 0.0581 0.0316 0.1882 0.4261 -0.2107 0.0271
(s=2,wi = i,250) 0.0581 0.0341 0.1901 0.4863 -0.2089 0.0873
(s=1,wi = i/(s+ 1),250) 0.0579 0.0355 0.1919 0.4318 -0.2071 0.0329
(s=2,wi = i/(s+ 1),250) 0.0582 0.0561 0.1939 0.4282 -0.2050 0.0293
(s=1,wi = i−1,500) 0.0497 0.0276 0.1937 0.4214 -0.2053 0.0224
(s=2,wi = i−1,500) 0.0493 0.0459 0.1957 0.4002 -0.2033 0.0013
(s=1,wi = i,500) 0.0488 0.0243 0.1968 0.4403 -0.2022 0.0413
(s=2,wi = i,500) 0.0493 0.0266 0.1943 0.4742 -0.2047 0.0753
(s=1,wi = i/(s+ 1),500) 0.0496 0.0278 0.1957 0.4246 -0.2033 0.0257
(s=2,wi = i/(s+ 1),500) 0.0493 0.0420 0.1900 0.4025 -0.2089 0.0035
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