Limits and topology of metric spaces

Paul Schrimpf

UBC
Economics 526

September 27, 2013
Limits and topology of metric spaces

Sequences and limits
Series
Cauchy sequences
Open sets
Closed sets
Compact sets

1. Sequences and limits
2. Open sets
3. Closed sets
4. Compact sets
Section 1

Sequences and limits
Sequences and limits

- **sequence** is a list of elements, \(\{x_1, x_2, \ldots \} \) or \(\{x_n\}_{n=1}^{\infty} \) or \(\{x_n\} \)
 - Different than set

- Examples
 1. \(\{1, 1, 2, 3, 5, 8, \ldots \} \)
 2. \(\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots \} \)
 3. \(\{\frac{1}{2}, \frac{-2}{3}, \frac{3}{4}, \frac{-4}{5}, \frac{5}{6}, \ldots \} \)
Definition
A metric space is a set, X, and function $d: X \times X \to \mathbb{R}$ called a metric (or distance) such that $\forall x, y, z \in X$

1. $d(x, y) > 0$ unless $x = y$ and then $d(x, x) = 0$
2. (symmetry) $d(x, y) = d(y, x)$
3. (triangle inequality) $d(x, y) \leq d(x, z) + d(z, y)$.

Example
\mathbb{R} is a metric space with $d(x, y) = |x - y|$.

Example
Any normed vector space is a metric space with $d(x, y) = \|x - y\|$.
Definition
A sequence \(\{x_n\}_{n=1}^{\infty} \) in a metric space converges to \(x \) if \(\forall \epsilon > 0 \ \exists N \) such that
\[
d(x_n, x) < \epsilon
\]
for all \(n \geq N \). We call \(x \) the limit of \(\{x_n\}_{n=1}^{\infty} \) and write
\[
\lim_{n \to \infty} x_n = x \text{ or } x_n \to x.
\]
Definition

a is an **accumulation point** of $\{x_n\}_{n=1}^\infty$ if $\forall \epsilon > 0 \ \exists$ infinitely many x_i such that

$$d(a, x_i) < \epsilon.$$
Lemma
If \(x_n \to x \), then \(x \) is an accumulation point of \(\{x_n\}_{n=1}^{\infty} \).

Proof.
Let \(\epsilon > 0 \) be given. By the definition of convergences, \(\exists N \) such that
\[
d(x_n, x) < \epsilon
\]
for all \(n \geq N \). \(\{n \in \mathbb{N} : n \geq N\} \) is infinite, so \(x \) is an accumulation point.
Definition
Given $\{x_n\}_{n=1}^\infty$ and any sequence of positive integers, $\{n_k\}$ such that $n_1 < n_2 < \ldots$ we call $\{x_{n_k}\}$ a subsequence of $\{x_n\}_{n=1}^\infty$.

Lemma
Let a be an accumulation point of $\{x_n\}$. Then \exists a subsequence that converges to a.
Sequences and arithmetic

Theorem

Let \(\{x_n\} \) and \(\{y_n\} \) be sequences in a normed vector space \(V \). If \(x_n \to x \) and \(y_n \to y \), then

\[
x_n + y_n \to x + y.
\]

Proof.

Let \(\epsilon > 0 \) be given. Then \(\exists N_x \) such that for all \(n \geq N_x \),

\[
d(x_n, x) < \epsilon/2,
\]

and \(\exists N_y \) such that for all \(n \geq N_y \),

\[
d(y_n, y) < \epsilon/2.
\]

Let \(N = \max\{N_x, N_y\} \). Then for all \(n \geq N \),

\[
d(x_n + y_n, x + y) = \|(x_n + y_n) - (x + y)\| \leq \|x_n - x\| + \|y_n - y\| < \epsilon/2 + \epsilon/2 = \epsilon.
\]
Sequences and arithmetic

Theorem

Let \(\{x_n\} \) be a sequence in a normed vector space with scalar field \(\mathbb{R} \) and let \(\{c_n\} \) be a sequence in \(\mathbb{R} \). If \(x_n \to x \) and \(c_n \to c \) then

\[
 x_n c_n \to xc.
\]

Proof.

On problem set.
Definition

Let \(\{x_n\}_{n=1}^{\infty} \) be a sequence in a normed vector space. Let \(s_n = \sum_{i=1}^{n} x_i \) denote the sum of the first \(n \) elements of the sequence. We call \(s_n \) the \(n \)th partial sum. We define the sum of all the \(x_i \)s as

\[
\sum_{i=1}^{\infty} x_i \equiv \lim_{n \to \infty} s_n
\]

This is called a(n infinite) **series**.
Series

Example

Geometric series: \(\sum_{i=0}^{\infty} \beta^i \) where \(\beta \in \mathbb{R} \) has partial sums:

\[
\begin{align*}
S_n &= 1 + \beta + \beta^2 + \cdots + \beta^n \\
&= 1 + \beta(1 + \beta + \cdots + \beta^{n-1}) \\
&= 1 + \beta(1 + \beta + \cdots + \beta^{n-1} + \beta^n) - \beta^{n+1} \\
S_n(1 - \beta) &= 1 - \beta^{n+1} \\
S_n &= \frac{1 - \beta^{n+1}}{1 - \beta},
\end{align*}
\]

so,

\[
\sum_{i=0}^{\infty} \beta^i = \lim S_n
\]

\[
= \lim \frac{1 - \beta^{n+1}}{1 - \beta}
\]

\[
= \frac{1}{1 - \beta} \text{ if } |\beta| < 1.
\]
Cauchy sequences

Definition
A sequence \(\{x_n\}_{n=1}^{\infty} \) is a **Cauchy** sequence if for any \(\epsilon > 0 \) \(\exists N \) such that for all \(i, j \geq N \), \(d(x_i, x_j) < \epsilon \).

Theorem
A sequence in \(\mathbb{R}^n \) converges if and only if it is a Cauchy sequence.

- Implied by least upper bound property of \(\mathbb{R} \)
- Proof in 29.1 of Simon and Blume
- Not always true, e.g. \(\mathbb{Q} \)
Completeness

Definition
A metric space, X, is complete if every Cauchy sequence of points in X converges in X.

- **Banach space** = complete normed vector space.
- **Hilbert space** = complete inner product space.
Section 2

Open sets
Open sets

Definition
Let \(X \) be a metric space and \(x \in X \). A **neighborhood** of \(x \) is the set
\[
N_\epsilon(x) = \{ y \in X : d(x, y) < \epsilon \}.
\]

Definition
A set, \(S \subseteq X \) is **open** if \(\forall x \in S \), \(\exists \epsilon > 0 \) such that
\[
N_\epsilon(x) \subseteq S.
\]

- At any point in an open, can move slightly and stay in the set.
Open sets

Example

Open sets:

- \((a, b) = \{x \in \mathbb{R} : a < x < b\}\)
- \((\infty, b) = \{x \in \mathbb{R} : x < b\}\)
- The whole space
- \(\emptyset\)
- Open unit ball \(\{x \in \mathbb{R}^n : \|x\| < 1\}\)
Not open sets

Example

Not open sets:

- \([a, b) = \{ x \in \mathbb{R} : a \leq x < b \}\]
- \([a, b] = \{ x \in \mathbb{R} : a \leq x \leq b \}\]
- Any linear subspace of dimension \(k < n \) in \(\mathbb{R}^n \).
- Finite sets in \(\mathbb{R}^n \)
- \(\mathbb{Q} \subset \mathbb{R} \)
Open sets

Theorem

1. Any union of open sets is open. (finite or infinite)
2. The finite intersection of open sets is open.

Proof.
Let $S_j, j \in J$ be a collection of open sets. Pick any $j_0 \in J$. If $x \in \bigcup_{j \in J} S_j$, then there must be $\epsilon_{j_0} > 0$ such that $N_{\epsilon_{j_0}}(x) \subset S_{j_0}$. It is immediate that $N_{\epsilon_{j_0}}(x) \subset \bigcup_{j \in J} S_j$ as well.

Let S_1, \ldots, S_k be a finite collection of open sets. For each i, $\exists \epsilon_i > 0$ such that $N_{\epsilon_i}(x) \subset S_i$. Let $\xi = \min_{i \in \{1, \ldots, k\}} \epsilon_i$. Then $\xi > 0$ since it is the minimum of a finite set of positive numbers. Also, $N_\xi(x) \subset S_i$ for each i, so $N_\xi(x) \subset \bigcap_{i=1}^k S_i$. \qed
Definition
The **interior** of a set A is the union of all open sets contained in A. It is denoted as $\text{int}(A)$.

- The interior of a set is open
- Open sets are equal to their interior

Example
Interiors of sets in \mathbb{R}.

1. $A = (a, b)$, $\text{int}(A) = (a, b)$.
2. $A = [a, b]$, $\text{int}(A) = (a, b)$.
3. $A = \{1, 2, 3, 4, \ldots\}$, $A = \emptyset$
Section 3

Closed sets
Closed sets

Definition
A set $S \subseteq X$ is closed if its complement, X^c, is open.

Example
Closed sets:

1. $[a, b] \subseteq \mathbb{R}$
2. Any linear subspace of \mathbb{R}^n
3. $\{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \leq 1\}$

Not closed sets:

1. Any open set
2. $\mathbb{Q} \subseteq \mathbb{R}$
Closed sets

Theorem

1. The intersection of any collection of closed sets is closed.
2. The union of any finite collection of closed sets is closed.

Proof.
Let \(C_j, j \in J \) be a collection of closed sets. Then
\[
(\bigcap_{j \in J} C_j)^c = \bigcup_{j \in J} C_j^c.
\]
\(C_j^c \) are open, so by theorem 20,
\[
\bigcup_{j \in J} C_j^c = (\bigcap_{j \in J} C_j)^c = \text{is open}.
\]
The proof of part 2 is similar.
Closed sets

Theorem
Let \(\{x_n\} \) be any convergent sequence with each element contained in a set \(C \). Then \(\lim x_n = x \in C \) for all such \(\{x_n\} \) if and only if \(C \) is closed.

- This is usually a more useful definition of closed sets
Proof.

First, we will show that any set that contains the limit points of all its sequences is closed. Let \(x \in C^c \). Consider \(N_{1/n}(x) \). If for any \(n \), \(N_{1/n}(x) \subset C^c \), then \(C^c \) could be open. If for all \(n \), \(N_{1/n}(x) \not\subset C^c \), then \(\exists y_n \in N_{1/n}(x) \cap C \). The sequence \(\{y_n\} \) is in \(C \) and \(y_n \to x \). However, by assumption \(C \) contains the limit of any sequence within it. Therefore, there can be no such \(x \), and \(C^c \) must be open and \(C \) is closed.

Suppose \(C \) is closed. Then \(C^c \) is open. Let \(\{x_n\} \) be in \(C \) and \(x_n \to x \). Then \(d(x_n, x) \to 0 \), and for any \(\epsilon > 0 \), \(\exists x_n \in N_{\epsilon}(x) \).

Hence, there can be no \(\epsilon \) neighborhood of \(x \) contained in \(C^c \). \(C^c \) is open by assumption, so \(x \not\in C^c \) and it must be that \(x \in C \).
Closure

Definition
The **closure** of a set S, denoted by \overline{S} (or $\text{cl}(S)$), is the intersection of all closed sets containing S.

- The closure of a set is closed
- A closed set is its own closure
- Examples
 - $(a, b) = [a, b]$
 - $\emptyset = \emptyset$
Lemma

\(\overline{S} \) is the set of limits of convergent sequences in \(S \).

Proof.

Let \(\{x_n\} \) be a convergent sequence in \(S \) with limit \(x \). If \(C \) is any closed set containing \(S \), then \(\{x_n\} \) is in \(C \) and by theorem 26, \(x \in C \). Therefore, \(x \in S \).

Let \(x \in \overline{S} \). For any \(\epsilon > 0 \), \(N_\epsilon(x) \cap S \neq \emptyset \) because otherwise \(N_\epsilon(x)^c \) is a closed set containing \(S \), but not \(x \). Therefore, we can construct a sequence \(x_n \in S \cap N_{1/n}(x) \) that converges to \(x \) and is in \(S \).
Boundary

Definition
The **boundary** of a set S is $\overline{S} \cap \overline{S^c}$.

- Equivalently, $\overline{S} \setminus \text{int}(S)$
- Boundary can be empty, e.g. $\mathbb{Q} \subset \mathbb{R}$, \emptyset
Lemma

If x is in the boundary of S then $\forall \epsilon > 0$, $N_\epsilon(x) \cap S \neq \emptyset$ and $N_\epsilon(x) \cap S^c \neq \emptyset$.

Proof.

As in the proof of lemma 28, all ϵ-neighborhoods of $x \in \overline{S}$ must intersect with S. The same applies to S^c.

\qed
Section 4

Compact sets
Open cover

Definition

An open cover of a set S is a collection of open sets, $\{G_\alpha\}$ $\alpha \in \mathcal{A}$ such that $S \subseteq \bigcup_{\alpha \in \mathcal{A}} G_\alpha$.

Example

Some open covers of \mathbb{R} are:

- $\{\mathbb{R}\}$
- $\{(-\infty, 1), (-1, \infty)\}$
- $\{\ldots, (-3, -1), (-2, 0), (-1, 1), (0, 2), (1, 3), \ldots\}$
- $\{(x, y) : x < y\}$

Example

Let X be a metric space and $A \subseteq X$ and $\epsilon > 0$. $\{N_\epsilon(x)\}_{x \in A}$ is an open cover of A.
Compact sets

Definition
A set K is **compact** if every open cover of K has a finite subcover.

- Finite subcover means finite $G_{\alpha_1}, \ldots G_{\alpha_n}$ such that $K \subseteq \bigcup_{i=1}^{n} G_{\alpha_i}$
- e.g. $G_{\alpha} = (\alpha - \epsilon, \alpha + \epsilon)$ for $\alpha \in [0, 1]$ is an open cover of $[0, 1]$. One finite subcover is $(-\epsilon, \epsilon), (\epsilon/2 - \epsilon, \epsilon/2 + \epsilon), \ldots (1 - \epsilon, \epsilon)$ i.e. $G_{\alpha_i} = (i\epsilon/2 - \epsilon, i\epsilon/2 + \epsilon)$
Example

\(\mathbb{R} \) is not compact.

\(\{\ldots, (-3, -1), (-2, 0), (-1, 1), (0, 2), (1, 3), \ldots\} \) is an infinite cover, but if we leave out any single interval (the one beginning with \(n \)) we will fail to cover some number \((n + 1) \).
Example

Let $K = \{x\}$, a set of a single point. Then K is compact. Let $\{G_\alpha\}_{\alpha \in \mathcal{A}}$ be an open cover of K. Then $\exists \alpha$ such that $x \in G_\alpha$. This single set is a finite subcover.
Example

Let $K = \{x_1, \ldots, x_n\}$ be a finite set. Then K is compact. Let $\{G_\alpha\}_{\alpha \in \mathcal{A}}$ be an open cover of K. Then for each i, $\exists \alpha_i$ such that $x_i \in G_{\alpha_i}$. The collection $\{G_{\alpha_1}, \ldots G_{\alpha_n}\}$ is a finite subcover.
Example

$(0, 1) \subseteq \mathbb{R}$ is not compact. $\{(1/n, 1)\}_{n=2}^{\infty}$ is an open cover, but there can be no finite subcover. Any finite subcover would have a largest n and could not contain, e.g. $1/(n + 1)$.
Compact sets

- Definition a bit abstract, but will show that a set in \mathbb{R}^n is compact iff it is closed and bounded, which we will prove in the next few slides

Definition

Let X be a metric space and $S \subseteq X$. S is **bounded** if

$\exists x_0 \in S$ and $r \in \mathbb{R}$ such that

$$d(x, x_0) < r$$

for all $x \in S$.
Lemma
Let X be a metric space and $K \subseteq X$. If K is compact, then K is closed.

Proof.
Let $x \in K^c$. The collection $\{N_d(x,y)/3(y)\}$, $y \in K$ is an open cover of K. K is compact, so there is a finite subcover, $N_d(x,y_1)/3(y_1), ..., N_d(x,y_n)/3(y_n)$. For each i, $N_d(x,y_i)/3(y_i) \cap N_d(x,y_i)/3(x) = \emptyset$, so

$$\cap_{i=1}^{n} N_d(x,y_i)/3(x)$$

is an open neighborhood of x that is contained in K^c. K^c is open, so K is closed.
Lemma

Let $K \subseteq X$ be compact. Then K is bounded.

Proof.

Pick $x_0 \in K$. \{\(N_r(x_0)\)\}_{r \in \mathbb{R}} is an open cover of K, so there must be a finite subcover. The finite subcover has some maximum r^\ast. Then $K \subseteq N_{r^\ast}(x_0)$, so K is bounded.
Theorem (Heine-Borel)

A set $S \subseteq \mathbb{R}^n$ is compact if and only if it is closed and bounded.

Proof.

1. Compact \Rightarrow closed and bounded shown by last two lemmas (regardless of whether $S \subseteq \mathbb{R}^n$ or some other space)
Proof.

2 Closed and bounded \(\Rightarrow \) compact

- Bounded so subset of cube, \([−a, a]^n\), for some \(a\)

2.1 Show \([-a, a]^n\) compact

- Suppose not, infinite cover of \([-a, 0]\) or \([0, a]\), repeat \(k\) times to get infinite cover of closed interval \(I_k\) of length \(a2^{-k}\)
- \(\bigcap_{k=1}^{\infty} I_k \neq \emptyset\) because \(I_k\) closed and nested
- But eventually \(I_k \subset N_\epsilon(x)\) for any \(\epsilon > 0\) and we have a finite subcover

2.2 Closed subset of compact set is compact
- Always compact \Rightarrow close and bounded
- In \mathbb{R}^n closed and bounded \Rightarrow compact
- In infinite dimensional spaces, a set can be closed and bounded but not compact

Example

$\ell^\infty = \{(x_1, x_2, \ldots) : \sup_i |x_i| < \infty \text{ with norm } \|x\| = \sup_i |x_i|$

- $e_i = \text{all 0s except for a 1 in the } i\text{th position}$
- $E = \{e_i\}_{i=1}^\infty$ is closed and bounded
- E is not compact
Sequential compactness

Definition
Let X be a metric space and $K \subseteq X$. K is **sequentially compact** if every sequence in K has an accumulation point in K.

Example
- $[0, 1] \subseteq \mathbb{R}$ is sequentially compact
- $\mathbb{N} \subseteq \mathbb{R}$ is not sequentially compact
- $(0, 1) \subseteq \mathbb{R}$ is not sequentially compact
Compact \Rightarrow sequentially compact

Lemma

Let X be a metric space and $K \subseteq X$ be compact. Then K is sequentially compact.

Proof.

- Given $\{x_n\}_{n=1}^{\infty}$, construct Cauchy sub-sequence:
 - Pick any $\epsilon > 0$, $N_\epsilon(x)$, $x \in K$ is an open cover of K, so there is a finite subcover, so $\exists x^* \text{ s.t. } \text{infinite } x_n \in N_\epsilon(x^*)$
 - Let n_1 be smallest n s.t. $x_n \in N_\epsilon(x^*)$
 - Repeat with $\tilde{K} = \overline{N_\epsilon(x^*)} \cap K$ instead of K and $\epsilon/2$ instead of ϵ

- Conclude K sequentially compact
Theorem

Let X be a metric space and $K \subseteq X$. K is compact if and only if K is sequentially compact.

Proof.

- Already showed compact \Rightarrow sequentially compact
- See notes for proof that sequentially compact \Rightarrow compact
Theorem (Bolzano-Weierstrass)

A set $S \subseteq \mathbb{R}^n$ is closed and bounded if and only if it is sequentially compact.

- In \mathbb{R}^n, compact, sequentially compact, and closed and bounded are all equivalent

Corollary

Every bounded sequence in \mathbb{R}^n has a convergent subsequence.
Compactness

- $S \subseteq \mathbb{R}^n$ compact if
 1. Every open cover has a finite subcover
 2. Closed and bounded
 3. Every sequence in S has a convergent subsequence with its limit in S

- In metric spaces that are not \mathbb{R}^n, 1 and 3 are still equivalent, but 2 is not