Paul Schrimpf

Gaynor and Vogt (2003) Results Merger simulation

Gowrisankarar Nevo, and Town (2015)

Goolsbee and Petrin (2004)

Fan (2013)

Gandhi, Lu, and Shi (2014 Results

References

References

Demand and supply of differentiated products Applications

Paul Schrimpf

UBC Economics 567

February 7, 2023

Paul Schrimpf

Gaynor and Vogt (2003)

Results Merger simulation

Gowrisankaran Nevo, and Town (2015)

Goolsbee and Petrin (2004)

Fan (2013)

Gandhi, Lu, and Shi (2014) Results

References

References

Section 1

Gaynor and Vogt (2003)

Paul Schrimpf

Gaynor and Vogt (2003)

Results Merger simulation

Gowrisankaran Nevo, and Town (2015)

Goolsbee and Petrin (2004)

Fan (2013)

Gandhi, Lu, and Shi (2014) Results

References

References

Gaynor and Vogt (2003) "Competition Among Hospitals"

• California hospitals

- Structural model of demand & pricing
- Merger simulation

Motivation

products Paul Schrimpf

Demand and supply of

differentiated

Gaynor and Vogt (2003)

Results Merger simulation

Gowrisankara Nevo, and Town (2015)

Goolsbee and Petrin (2004)

Fan (2013)

Gandhi, Lu, and Shi (2014) _{Results}

References

References

- Many hospital mergers, 900 from 1994-2000 (among 6100 hospitals)
- Profit vs non-profit plays role in antitrust decisions
 - 1993-2002: 6 federal anti-trust cases, one initially won (but lost on appeal)
 - Non-profit hospitals have argued that they will not raise prices court reaction mixed, generally sympathetic

Published: August 12, 2013

A Wave of Hospital Mergers

Over the last four years, there has been a surge in the number of hospital mergers. In 2012, the number of deals was more than twice what it was in 2009 — and each of those deals may involve multiple hospitals. Related Article »

105

38

93

^oSource.

Paul Schrimpf

Continued relevance

Gaynor and Vogt (2003)

Results Merger simulation

Gowrisankaraı Nevo, and Town (2015)

Goolsbee and Petrin (2004)

Fan (2013)

Gandhi, Lu, and Shi (2014) Results

References

References

- "Regulators Tamp Down on Mergers of Hospitals" NYTimes Dec 18, 2015
- "The Future of Health Care Mergers Under Trump" NYTimes Nov 20, 2016
- "How Nonprofit Hospitals Put Profits Over Patients" NYTimes The Daily Jan 25, 2023

Paul Schrimpf

Gaynor and Vogt (2003)

Results Merger simulation

Gowrisankaran Nevo, and Town (2015)

Goolsbee and Petrin (2004)

Fan (2013)

Gandhi, Lu, and Shi (2014) Results

References

References

• Structure-conduct-performance

• Regress market performance (price) on market structure

 $price_{mt} = \beta concentration_{mt} + \epsilon_{mt}$

- Typically find $\beta > 0$
- Results mixed when concentration interacted with non-profit
- Other contemporaneous (in 2003) structural work

Prior literature

Model 1

Demand and supply of differentiated products

Paul Schrimpf

Gaynor and Vogt (2003)

Results Merger simulation

Gowrisankarar Nevo, and Town (2015)

Goolsbee and Petrin (2004)

Fan (2013)

Gandhi, Lu, and Shi (2014) Results

References

References

• Utility of consumer *i* from hospital *j*

- Aggregate to get demand, D_j(p)
- Hospital profits:

$$\pi_j = p_j D_j(p) - C(D_j(p); Z_j, \zeta_j, W)$$

• For-profit pricing: $\max_{p_i} \pi_j$

$$p_j = rac{\partial C_j}{\partial D_j} - rac{D_j}{\partial D_j/\partial p_j}$$

Model 2

products Paul Schrimpf

Demand and supply of

differentiated

Gaynor and Vogt (2003)

Results Merger simulation

Gowrisankaran Nevo, and Town (2015)

Goolsbee and Petrin (2004)

Fan (2013)

Gandhi, Lu, and Shi (2014 Results

References

References

• Non-profit pricing: $\max_{p_j} U_j(\pi_j, D_j) s.t.\pi_j \ge \pi_L$

$$p_j = \frac{\partial C_j}{\partial D_j} - \frac{\partial U_j / \partial D_j}{\partial U_j / \partial \pi_j + \mu_j} - \frac{D_j}{\partial D_j / \partial p_j}$$

 Merged hospital systems maximize sum of profits or utility

Data

Paul Schrimpf

Gaynor and Vogt (2003)

Results Merger simulation

Gowrisankaran Nevo, and Town (2015)

Goolsbee and Petrin (2004)

Fan (2013)

Gandhi, Lu, and Shi (2014) _{Results}

References

References

• California OSHPD https: //www.oshpd.ca.gov/HID/Find-Hospital-Data.html

- annual discharge, annual financial, & quarterly financial data for 1995
- 913,660 discharges (i) and 374 hospitals

Name	Description	Mean	Standard Deviation
X	Consumer Characteristics		
9	E(quantity) from equation (9)	1.24	1.61
HMO	Membership in HMO	.50	
PPO	Membership in PPO	.31	
Unscheduled	Unscheduled admission	.53	
d	Distance		
$d_{i \rightarrow j}$	Distance to (chosen) hospital (miles)	11.56	27.78
$d_{i \rightarrow j}^2$	Distance ²		
Z	Hospital Characteristics		
р	E(price) from equation (9)	4696	1603
FP	For-profit status	.28	
NFP	Not-for-profit status	.52	
Teach	Teaching hospital	.21	
Tech Index	Technology index	15.02	6.06
System	Multihospital system member	.49	
w	Input Prices		
W	Wage index	.99	.15

TABLE 2	Variable	Descriptions
---------	----------	--------------

Paul Schrimpf

Gaynor and Vogt (2003)

Results Merger simulation

Gowrisankaran Nevo, and Town (2015)

Goolsbee and Petrin (2004)

Fan (2013)

Gandhi, Lu, and Shi (2014)

References

References

Econometric model

Step 1 : use individual choice data to estimate δ_i

• Specification of V_{ij}

$$V_{ij} = -\tilde{\alpha}_i^p p_j E[q_i] + \tilde{\alpha}_i^d d_{i \to j} + \tilde{\alpha}_i^{d^2} d_{i \to j}^2 + \sum_k Z_{jk} \tilde{\alpha}_{ik} + \xi_j + \epsilon_{ij}$$

where

Micro-BLP

$$\begin{aligned} q_{i} &= \exp\left(\sum_{\ell} X_{i\ell} \beta_{\ell} + v_{i}\right) \quad \tilde{\alpha}_{i}^{P} &= \exp\left(\alpha_{0}^{P} + \sum_{\ell} X_{i\ell} \alpha_{\ell}^{P}\right) \\ \tilde{\alpha}_{i}^{d} &= \rho + \sum_{\ell} X_{i\ell} \rho_{\ell}^{X} \quad \tilde{\alpha}_{i}^{d^{2}} &= \rho^{2} + \sum_{\ell} X_{i\ell} \rho_{\ell}^{2X} \end{aligned}$$

$$\tilde{\alpha}_{ik} = \alpha_0 + \sum_{\ell} X_{i\ell} \alpha_{\ell k} + \rho_k^Z d_{i \to j} + \rho_k^{2Z} d_{i \to j}^2$$

Rearrange as hospital mean, δ_j, plus deviations

$$V_{ij} = \underbrace{\sum_{k=0}^{K} Z_{jk} \bar{\alpha}_k + \bar{\xi}_j}_{= \delta_i} + (X_i - \bar{X}) \alpha Z_j + \text{quadratic distance} + \epsilon_{ij}$$

- Estimate by MLE with individual choice data – gives estimates of $\hat{\delta}_j$

Paul Schrimpf

Gaynor and Vogt (2003)

Results Merger simulation

Gowrisankaran Nevo, and Town (2015)

Goolsbee and Petrin (2004)

Fan (2013)

Gandhi, Lu, and Shi (2014)

References

References

Econometric model 1

Step 2: estimate $\bar{\alpha}$ (include α^p) by 2SLS

$$\delta_j = Z_j \bar{\alpha} + \bar{\xi}_j$$

- Instruments: wages, exogenous product characteristics, consumer characteristics
 - Functional form of instruments: from FOC,

$$p_j = rac{\partial C_j}{\partial D_j} - rac{D_j}{\partial D_j/\partial p_j}$$

use estimate of D_j and $\frac{D_j}{\partial D_j/\partial p_j}$ (with $\alpha^p = 0$ and $\xi = 0$)

• *D_j* depends on coefficients first assume 0, get initial estimates, then redo to get final estimates

Econometric model 1

Paul Schrimpf Gaynor and

Vogt (2003)

Results Merger simulati

Gowrisankara Nevo, and Town (2015)

Goolsbee and Petrin (2004)

Fan (2013)

Gandhi, Lu, and Shi (2014) Results

References

References

Step 3 : estimate marginal cost function by 2SLS

$$P + \left(\Theta \cdot \times \frac{\partial D}{\partial p}\right)^{-1} D = \omega_0 + D\omega_D + W\omega_W + Z\omega_Z + \zeta$$

- D endogenous, same instruments as step 2
- Steps 2 & 3 often combined for efficiency, but not necessary for consistency

Paul Schrimpf

Gaynor and Vogt (2003)

Results Merger simulation

Gowrisankarar Nevo, and Town (2015)

Goolsbee and Petrin (2004)

Fan (2013)

Gandhi, Lu, and Shi (2014) Results

References

References

- Results as expected
- How to do inference?
 - 913,660 patients
 - 374 hospitals
 - 413 parameters

TABLE 3 Multinomial Logit Results

Variable	Estimate	Standard Error
p q	0261	.0005
p HMO	157	.002
p PPO	121	.003
p Unscheduled	.006	.002
FP q	.082	.004
FP HMO	.721	.016
FP PPO	.787	.018
FP Unscheduled	195	.013
NFP q	.046	.003
NFP HMO	.617	.013
NFP PPO	.695	.015
NFP Unscheduled	216	.011
Teach q	.040	.002
Teach HMO	.285	.008
Teach PPO	.078	.009
Teach Unscheduled	.052	.006
Tech Index q	.009	.0002
Tech Index HMO	.048	.001
Tech Index PPO	.034	.001
Tech Index Unscheduled	028	.001
$d_{i \rightarrow i}$	-23.92	.05
$d_{i \rightarrow i}^2$	3.15	.01
$d_{i \rightarrow i} q$.717	.003
$d_{i-1}^2 q$	119	.001
$d_{i \rightarrow i}$ HMO	-6.517	.018
$d_{i=1}^2$ HMO	1.023	.003
$d_{i \rightarrow i}$ PPO	-2.860	.017
d_{i}^2 , PPO	.412	.003
$d_{i \rightarrow i}$ Unscheduled	-1.909	.014
d ² _i , Unscheduled	.314	.003
$d_{i \rightarrow i} p$.596	.005
d_i^2 , p	069	.002
$d_{i \rightarrow i}$ FP	.621	.035
d^2 , FP	080	.008
$d_{i \rightarrow i}$ NFP	.280	.029
d ² _i , NFP	022	.007
$d_{i \rightarrow i}$ Teach	4.06	.019
d ² _i Teach	583	.005
$d_{i \to i}$ Tech Index	.048	.002
d ² Tech Index	004	.001

Paul Schrimpf

Gaynor and Vogt (2003)

Results Merger simulation

Gowrisankara Nevo, and Town (2015)

Goolsbee and Petrin (2004)

Fan (2013)

Gandhi, Lu, and Shi (2014) Results

References

References

 This paper was written at same time the weak identification literature was developing

First stage

TABLE A1 First-Stage Regression for 2SLS Estimates of Demand Equation Dependent Variable = Price in \$1000s

Variable	Estimate
Constant	2.38 (.64)
$D_i/(\partial D_i/\partial p_i)^{IV}$.12 (.04)
W	2.20 (.63)
D^{IV}	$-4.89 \times 10^{-5} (7.87 \times 10^{-5})$
FP	.20 (.26)
NFP	29 (.23)
Teach	.74 (.26)
Tech Index	$-1.22 \times 10^{-3} (1.78 \times 10^{-2})$
R^2	.086
F	4.91
Ν	374

Paul Schrimpf

Gaynor and Vogt (2003)

Results Merger simulatio

Gowrisankaran, Nevo, and Town (2015)

Goolsbee and Petrin (2004)

Fan (2013)

Gandhi, Lu, and Shi (2014) Results

References

References

 Average elasticity -4.85 (2.03)

TABLE 4	Demand Equation		
Variable	OLS	2SLS	
Constant	-1.92 (.53)	1.40 (1.84)	
р	52 (.08)	-1.22 (.38)	
FP	3.16 (.36)	3.15 (.40)	
NFP	1.54 (.34)	1.27 (.40)	
Teach	.22 (.32)	.67 (.43)	
Tech Index	.25 (.02)	.25 (.03)	
R^2	.42		
Ν	374	374	

Standard errors in parentheses.

Demand

Paul Schrimpf

Gaynor and Vogt (2003)

Results Merger simulation

Gowrisankaraı Nevo, and Town (2015)

Goolsbee and Petrin (2004)

Fan (2013)

Gandhi, Lu, and Shi (2014) _{Results}

References

References

- For-profit prices
 \$248 (187) higher
 - Behavioral marginal cost \$592 (329) higher
 - Markup 1183 (587) for profit, 948 (345) non-profit
- First-stage F-stat p-value < 0.01
- What is being assumed about dependence of ξ_j when calculating standard errors?

TABLE 5	Pricing Equation	
Variable	OLS	2SLS
Constant	.008 (.64)	.43 (.70)
W	3.24 (.65)	2.82 (.70)
D	15 (.11)	.16 (.20)
$D \times FP$	10 (.14)	30 (.25)
$D \times NFP$.07 (.11)	17 (.19)
FP	.91 (.31)	1.07 (.43)
NFP	12 (.29)	.10 (.37)
Teach	.87 (.23)	.90 (.24)
Tech Index	.03 (.02)	.002 (.25)
System	52 (.18)	48 (.19)
R^2	.17	
Ν	374	374

Standard errors in parentheses.

Demand and supply of **Cross-price elasticities** differentiated products FIGURE 1 Paul Schrimpf SPATIAL DIFFERENTIATION 100 1 .01 Results .000 Cross elasticity 1e-06 1e-08 1e-10 1e-12 1e-14 1e-16 10 100 1,000 1 .1 Distance FIGURE 2 SUBSTITUTION WITH FRENCH HOSPITAL 100 References References .01 Cross elasticity .0001 1e-06 1e-08 1e-10 1e-12 1e-14

.1

10

Distance

100

1,000

Merger simulation

Paul Schrimpf

Gaynor and Vogt (2003) Results Merger simulation

Gowrisankara Nevo, and Town (2015)

Goolsbee and Petrin (2004)

Fan (2013)

Gandhi, Lu, and Shi (2014) _{Results}

References

References

- Tenet & Ornda merged in 1997
- FTC required Tenet divest French Hospital (bought by Vista)
- Simulate assuming:
 - No divestiture of French
 - With divestiture of French
 - No divestiture, but assuming non-profit

Paul Schrimpf

Gaynor and Vogt (2003) Results Merger simulation

Gowrisankarar Nevo, and Town (2015)

Goolsbee and Petrin (2004)

Fan (2013)

Gandhi, Lu, and Shi (2014) Results

References

References

Merger simulation

San Luis Obispo County Hospitals

Hospital	Owner	р	D	Beds	Distance (Miles)
French Hospital	Ornda	4,434	2,179	147	.28
General	County	4,577	255	46	.72
Sierra Vista	Tenet	4,134	3,722	186	.99
Arroyo Grande	Vista	3,477	546	65	12.03
Twin Cities	Tenet	4,216	1,683	84	19.21
Marian Medical Center	Catholic	3,289	2,240	225	26.24
Valley Community	Ornda	4,439	2,313	53	26.79

Standard errors in parentheses.

TABLE 6

TABLE 7 Price Elasticities, San Luis Obispo County

Valley Communi
.20
.21
.16
.72
.01
2.08
-3.45

Paul Schrimpf

TADLE 0

Gaynor and Vogt (2003) Results Merger simulation

Gowrisankaran, Nevo, and Town (2015)

Goolsbee and Petrin (2004)

Fan (2013)

Gandhi, Lu, and Shi (2014) Results References

References

References

Merger simulation

IADLE 8 Me	rger Simulatio	n, san Lu	is Obispo	County		
			P	Post-Merger p		
			Dive	stiture		
Hospital	Owner	р	No	Yes	NFP	
French Hospital	Ornda	4,434	6,784	4,467	6,697	
General	County	4,577	4,784	4,607	4,753	
Sierra Vista	Tenet	4,134	5,469	4,202	5,437	
Arroyo Grande	Vista	3,477	3,654	3,712	3,654	
Twin Cities	Tenet	4,216	5,587	4,261	5,587	
Marian Medical Center	Catholic	3,289	3,331	3,319	3,331	
Valley Community	Ornda	4,439	4,552	4,512	4,552	

Manager Circulation Con Luis Obiens Country

Paul Schrimpf

Results Merger simulation

Petrin (2004)

and Shi (2014) Results

References

References

Merger simulation

TABLE 9	Merger Simulat	ion By Lo	cation			
				Post-Merger p		
			Dive	stiture		
Area	Owner	р	No	Yes	NFP	
San Luis Obispo	Tenet/Ornda	4,238	5,636	4,293	5,615	
	All	4,199	5,260	4,271	5,247	
Los Angeles	Tenet/Ornda	4,671	4,706	4,706	4,706	
	All	4,274	4,277	4,276	4,277	
San Diego	Tenet/Ornda	3,596	3,609	3,609	3,609	
	All	3,932	3,933	3,933	3,933	
Remainder	Tenet/Ornda	4,699	4,716	4,714	4,716	
	All	4,650	4,650	4,651	4,650	

Related papers

Paul Schrimpf

Gaynor and Vogt (2003) Results Merger simulation

- Gowrisankaran Nevo, and Town (2015)
- Goolsbee and Petrin (2004)
- Fan (2013)
- Gandhi, Lu, and Shi (2014) Results
- References
- References

- Gowrisankaran, Nevo, and Town (2015): BLP model of hospital demand, but hospital prices set through negotiations with MCOs
- Bundorf, Levin, and Mahoney (2012), Starc (2014): BLP model of insurance demand
- Goto and Iizuka (2016): BLP model of flu vaccine demand

Paul Schrimpf

Gaynor and Vogt (2003) Results Merger simulation

Gowrisankaran, Nevo, and Town (2015)

Goolsbee and Petrin (2004)

Fan (2013)

Gandhi, Lu, and Shi (2014 Results

References

References

Section 2

Gowrisankaran, Nevo, and Town (2015)

Paul Schrimpf

Gaynor and Vogt (2003) Results Merger simulation

Gowrisankaran, Nevo, and Town (2015)

Goolsbee and Petrin (2004)

Fan (2013)

Gandhi, Lu, and Shi (2014) _{Results}

References

References

Gowrisankaran, Nevo, and Town (2015) "Mergers When Prices Are Negotiated: Evidence from the Hospital Industry"

Slides:

http://www.u.arizona.edu/~gowrisan/pdf_papers/ hospital_merger_negotiated_prices_slides.pdf

Paul Schrimpf

Gaynor and Vogt (2003) Results Merger simulation

Gowrisankarar Nevo, and Town (2015)

Goolsbee and Petrin (2004)

Fan (2013)

Gandhi, Lu, and Shi (2014 Results

References

References

Section 3

Goolsbee and Petrin (2004)

Paul Schrimpf

Gaynor and Vogt (2003) Results Merger simulation

Gowrisankaran, Nevo, and Town (2015)

Goolsbee and Petrin (2004)

Fan (2013)

Gandhi, Lu, and Shi (2014) Results

References

References

Goolsbee and Petrin (2004)

- In U.S. in 1996 cable television deregulated
 - Hope was that multiple cable operators would enter each area and compete
 - Did not happen, but direct broadcast satellite (DBS) companies did enter
- Questions:
 - How much did competition from DBS lower cable prices?
 - How much did consumers gain from DBS?

Model

Demand and supply of differentiated products

Paul Schrimpf

Gaynor and Vogt (2003) Results Merger simulation

Gowrisankarar Nevo, and Town (2015)

Goolsbee and Petrin (2004)

Fan (2013)

Gandhi, Lu, and Shi (2014) Results

References

References

• Consumers *n*, products *j*, markets *m*

• Utility:

$$U_{nj} = \alpha_0 p_{mj} + \sum_{\substack{g=2\\\text{income effects}}}^5 \alpha_g p_{mj} d_{gn} + \beta^x x_{mj} + z_n \beta_j^z + (\xi_{mj} + \epsilon_{nj})$$
$$= \underbrace{\delta_{mj}}_{=\alpha_0 p_{mj} \beta^x x_{mj} + \xi_{mj}} + \sum_{\substack{g=2\\g=2}}^5 \alpha_g p_{mj} d_{gn} + z_n \beta_j^z + \epsilon_{nj}$$

ϵ_n ~ multivariate normal with unrestricted covariance across *j* (avoids IIA problem)

Paul Schrimpf

Gaynor and Vogt (2003) Results Merger simulation

Gowrisankaran Nevo, and Town (2015)

Goolsbee and Petrin (2004)

Fan (2013)

Gandhi, Lu, and Shi (2014) Results

References

References

Estimation

- Similar to micro-BLP
- Use micro data to estimate δ_{mj} , β^z
- Use estimated δ , instruments for price to estimate α_0 , β^x
 - Uses local tax on cable revenues as instrument for price
- Effect of entry, need to know price as function of model primitives
 - Could fully specify costs and form of competition
 - Instead estimate reduced form pricing equation,

 $p_{mj} = f(\text{observables})$

• Use pricing equation to predict prices without DBS, calculate compensating variation as measure of consumer welfare

Paul Schrimpf

Gaynor and Vogt (2003) Results Merger simulatio

Gowrisankarar Nevo, and Town (2015)

Goolsbee and Petrin (2004)

Fan (2013)

Gandhi, Lu, and Shi (2014) Results

References

Results: demographics and demand

TABLE V

MARGINAL EFFECTS ON PURCHASE PROBABILITIES (ESTIMATED PERCENTAGE CHANGES)

For changing to: Change in probability (in %)	MU Dweller SU Dweller	Renter Nonrenter	Household Income Increases 10%
Antenna only Expanded basic	-1.81	72	-4.32
Premium	-8.95	-3.43	2.61
Satellite	95.83	25.57	.61
For changing to:	Not Male Single	Not Female Single	High School Educ.
Change in probability (in %)	Male Single	Female Single	College Educ.
Antenna only	6.84	99	22.79
Expanded basic	-11.85	15.72	1.45
Premium	8.11	-5.56	-17.52
Satellite	19.34	-46.10	-12.08

Notes: The table reports the average percentage change in purchase probabilities arising from changing all people with the characteristic in the top row to having the characteristic listed in the bottom row. Because they are percentage changes, they do not sum to one. MU/SU Dwelling is Multi-Unit/Single Unit Dwelling, and Educ. is an index of average household education.

Paul Schrimpf

Gaynor and Vogt (2003) Results Merger simulation

Gowrisankaran Nevo, and Town (2015)

Goolsbee and Petrin (2004)

Fan (2013)

Gandhi, Lu, and Shi (2014) Results

References

References

Results: demand elasticities

ESTIMATED DEMAND ELASTICITIES (MARSHALLIAN AND HICKSIAN)

	SUR	3SLS	3SLS
Method		Marshallian	Hicksian
Price of expanded basic			
Antenna only share	.020	1.301	1.323
Expanded basic share	.014	-1.538	-1.516
Premium share	040	1.263	1.284
Satellite share	014	.929	.951
Price of premium			
Antenna only share	000	.917	.932
Expanded basic share	030	.924	.938
Premium share	.074	-3.175	-3.161
Satellite share	035	1.173	1.187
Price of satellite			
Antenna only share	.001	.123	.129
Expanded basic share	005	.286	.292
Premium share	015	.492	.498
Satellite share	.050	-2.448	-2.442

Note: Specification is estimated using the 254 markets for which the tax on franchise revenues is reported in Warren Publishing. SUR is seemingly unrelated regressions (not instrumented). 3SLS is three stage least squares using the tax to instrument price.

Paul Schrimpf

Results: welfare

Vogt (2003) Results Merger simulation

Gowrisankaran Nevo, and Town (2015)

Goolsbee and Petrin (2004)

Fan (2013)

Gandhi, Lu, and Shi (2014) _{Results}

References

References

- No DBS would increase cable prices by \$4.17 per month
- Monthly consumer gains from DBS:
 - \$10.57 in consumer surplus for DBS subscribers
 - \$4.17 per month for cable subscribers from lower prices
 - \$1 per month for cable subscribers from increased quality

Paul Schrimpf

Gaynor and Vogt (2003) Results Merger simulation

Gowrisankarar Nevo, and Town (2015)

Goolsbee and Petrin (2004)

Fan (2013)

Gandhi, Lu, and Shi (2014) _{Results} References

References

Section 4

Fan (2013)

Fan (2013)

products Paul Schrimpf

Demand and supply of

differentiated

Gaynor and Vogt (2003) Results Merger simulation

Gowrisankaran Nevo, and Town (2015)

Goolsbee and Petrin (2004)

Fan (2013)

Gandhi, Lu, and Shi (2014) Results

References

References

- Question: effect of mergers on product characteristics
 - Merged firm will generally produce different product(s) than two separate firms
 - Need to endogenize choice of product characteristics
 - Setting: U.S. daily newspapers

Model 1

Demand and supply of differentiated products

Paul Schrimpf

Gaynor and Vogt (2003) Results Merger simulation

Gowrisankaraı Nevo, and Town (2015)

Goolsbee and Petrin (2004)

Fan (2013)

Gandhi, Lu, and Shi (2014) Results

References

References

- BLP style demand with endogenous price and other product characteristics, x_{jt} = quality index, local news ratio (share of local news staff), news variety (HHI of staff shares across sections)
- Demand for advertising:

$$\log a_{jt} = \eta + \underbrace{\lambda_0 \log H_{jt}}_{\text{market size}} + \underbrace{\lambda_1 \log q_{jt}}_{\text{circulation}} + \underbrace{\lambda_2 \log r_j t}_{\text{advertising price}} + \iota_{jt}$$

Note: no cross price elasticities, i.e. no competition

• Variable profits:

$$\pi_j^{II} = (p_j q_j - a c_j^{(q)} q_j) + (r_j a_j - m c_j^{(a)} a_j) + (\mu_1 q_j + \mu_2 / 2q_j^2)$$

where

Model 2

Demand and supply of differentiated products

Paul Schrimpf

- Gaynor and Vogt (2003) Results Merger simulation
- Gowrisankaran Nevo, and Town (2015)
- Goolsbee and Petrin (2004)

Fan (2013)

- Gandhi, Lu, and Shi (2014) Results
- References
- References

- $ac_j^{(q)}$ is average cost of producing quantity q and has some parametric form
- *mc_j^(q)* is marginal cost of advertising sales and has some parametric form
- Definition of market:
 - Newspapers compete in many overlapping local markets, so local paper in Portland, Maine potentially competes with local paper in Portland, Oregon
 - Define market for newspaper *j* as the counties where 85% of circulation for newspaper *j* is contained
- Equilibrium: solving backward
 - 3 Given Q_{jt} , advertising rate chosen to equalize marginal cost and marginal revenue of advertising
 - No competition in advertising rates
 - 2 Given characteristics, prices chosen in simultaneous Nash equilibrium
 - 1 Characteristics chosen simultaneous Nash equilibrium

Data 1

supply of differentiated products

Demand and

Paul Schrimpf

- Gaynor and Vogt (2003) Results Merger simulation
- Gowrisankaran Nevo, and Town (2015)
- Goolsbee and Petrin (2004)

Fan (2013)

- Gandhi, Lu, and Shi (2014) _{Results}
- References
- References

- 1997-2005, market level data on newspaper quantity, price, and characteristics, and advertising quantity and price
- County demographics (education, age, income, urbanization)
- 5843 newspaper-year observations of newspaper characteristics and prices
- 11203 newspaper-county-year observations of quantity
- 422 newspaper-year also with advertising information

Estimation 1

products Paul Schrimpf

Demand and supply of

differentiated

Gaynor and Vogt (2003) Results Merger simulation

Gowrisankaran Nevo, and Town (2015)

Goolsbee and Petrin (2004)

Fan (2013)

Gandhi, Lu, and Shi (2014) Results

References

References

Moment conditions

- Consumer demand: $E[\xi_{jt}|w_{jt}] = 0$
- Advertiser demand: $E[\iota_{jt}|w_{jt}] = 0$
- Advertising first order condition: $E[\zeta_{jt}|w_{jt}] = 0$
- Price first order condition: $E[\omega_{jt}|w_{jt}] = 0$
- Characteristics first order condition: $E[v_{jt}|w_{jt}] = 0$
- Instruments from overlapping markets
 - Suppose newspaper A is only in county 1, but newspaper B is in counties 1 and 2
 - Demographics in county 2 affect prices and characteristics of newspaper B, which in turns affects newspaper A's price and characteristics
 - Use demographics in county 2 to instrument for newspaper A's price

Results 1

products Paul Schrimpf

Demand and supply of

differentiated

- Gaynor and Vogt (2003) Results Merger simulation
- Gowrisankaran, Nevo, and Town (2015)
- Goolsbee and Petrin (2004)
- Fan (2013)
- Gandhi, Lu, and Shi (2014) Results
- References
- References

- Parameter estimates
- Simulation of merger of *Minneapolis Star Tribune* and *St. Paul Pioneer*
 - In reality: owner of *Pioneer* bought *Star*, DOJ filed antitrust complaint 3 months later, owner of *Pioneer* sold *Star* 2 months later
- Simulate with and without characteristic adjustment, compare results

Paul Schrimpf

Gaynor and Vogt (2003) Results Merger simulatio

Gowrisankara Nevo, and Town (2015)

Goolsbee and Petrin (2004)

Fan (2013)

Gandhi, Lu, and Shi (2014) Results References

References

ANOKA WISHINGTON RAMSEY WRIGHT ANDIYOHI MEEKER HENNEPIN McLEOD CARVER RENVILLE DAKOTA SCOTT SIBLEY LE SUEUR)D NICOLLET GOOD HUE RICE WABASHA BROWN

ISANTI TE

BENTON

SHERBURNE

STEARNS

Market of the Star Tribune

Hennepin (Home County), Anoka, Carver, Dakota, McLeod, Ramsey, Rice, Scott, Sherburne, Stearns, Washington, Wright

Paul Schrimpf

Gaynor and Vogt (2003) Results Merger simulation

Gowrisankara Nevo, and Town (2015)

Goolsbee and Petrin (2004)

Fan (2013)

Gandhi, Lu, and Shi (2014) ^{Results} References

References

Market of the Pioneer Press

Ramsey (Home County), Anoka, Dakota, Hennepin, St. Croix, Washington

Paul Schrimpf

Gaynor and Vogt (2003) Results Merger simulation

Gowrisankaran Nevo, and Town (2015)

Goolsbee and Petrin (2004)

Fan (2013)

Gandhi, Lu, and Shi (2014) Results References

References

Table 5: Effects of Ownership Consolidation of the Star and the Pioneer

(a) Without Characteristic Adjustment

	price (\$/year)			ad rate (\$/column inch)			circulation		
	before	after	change	before	after	change	before	after	change
Star Tribune	172.79	175.98	3.19	230.88	227.00	-3.87	317337	310148	-7189
Pioneer Press	171.51	179.52	8.01	153.08	147.07	-6.00	159864	148519	-11345
Faribault Daily	111.31	111.32	0	12.37	12.39	0.02	6384	6434	50
St. Cloud Times	150.07	149.95	-0.12	44.15	44.19	0.03	24578	24667	89
Stillwater Gazette	78.33	75.03	-3.30	11.13	11.25	0.12	3341	3644	303

Paul Schrimpf

Gaynor and Vogt (2003) Results Merger simulation

Gowrisankaran Nevo, and Town (2015)

Goolsbee and Petrin (2004)

Fan (2013)

Gandhi, Lu, and Shi (2014) Results References

References

References

	conter	nt quality	/ index	loc	al news	(%)	variety		
	before	after	change	before	after	change	before	after	change
Star Tribune	788.49	771.78	-16.72	22	21.15	-0.85	83.38	81.79	-1.58
Pioneer Press	474.29	422.59	-51.7	27.48	23.88	-3.60	82.07	74.61	-7.46
Faribault Daily	7.00	7.17	0.17	14.29	14.47	0.18	50.00	50.35	0.35
St. Cloud Times	65.28	66.26	0.98	35.42	35.6	0.18	74.50	75.01	0.51
Stillwater Gazette	0.7	0.31	-0.40	0	0.05	0.05	0	0	0
	price (\$/year)		ear)	ad rate (\$/column inch)			circulation		
Star Tribune	172.79	175.39	2.59	230.88	227.09	-3.79	317337	310223	-7114
Pioneer Press	171.51	178.83	7.32	153.08	144.4	-8.68	159864	140635	-19229
Faribault Daily	111.31	111.26	-0.05	12.37	12.42	0.05	6384	6518	134
St. Cloud Times	150.07	149.64	-0.43	44.15	44.29	0.13	24578	24939	361
Stillwater Gazette	78.33	87.41	9.08	11.13	10.83	-0.30	3341	2597	-744

(b) With Characteristic Adjustment

Paul Schrimpf

Gaynor and Vogt (2003) Results Merger simulation

Gowrisankaran Nevo, and Town (2015)

Goolsbee and Petrin (2004)

Fan (2013)

Gandhi, Lu, and Shi (2014) _{Results} References

Kelelelices

References

Table 6: Welfare Effects of Ownership Consolidation of the Star and the Pioneer

	change in RS	% change in RS	change in AS	change in ${\cal PS}$	% change in PS
	(million \$)	(%)	(%)	(million \$)	(%)
without characteristic adjustment	-2.22	-4.67	-4.66	4.23	36.41
with characteristic adjustment	-3.28	-6.87	-7.10	4.32	37.25

Paul Schrimpf

Gaynor and Vogt (2003) Results Merger simulation

Gowrisankarar Nevo, and Town (2015)

Goolsbee and Petrin (2004)

Fan (2013)

Gandhi, Lu, and Shi (2014) Results

References

References

Section 5

Gandhi, Lu, and Shi (2014)

Paul Schrimpf

Gaynor and Vogt (2003) Results Merger simulation

Gowrisankaran Nevo, and Town (2015)

Goolsbee and Petrin (2004)

Fan (2013)

Gandhi, Lu, and Shi (2014)

References

References

"Demand Estimation with Scanner Data: Revisiting the Loss-Leader Hypothesis" gandhi2014 1

- Motivation:
 - Frequent price discounts (sales) in scanner data
 - Chevalier, Kashyap, and Rossi (2003): loss-leader model implies prices can fall when demand increases because of promotional effect; evidence that prices fall during seasonal peak demand (e.g. tuna during Lent)
 - Nevo and Hatzitaskos (2006): prices could also fall during high demand because elasticity of demand could increase (if buying more quantity, makes more sense to search for lower price)
- Methodology: estimate BLP demand model, see if demand elasticity is different during seasonal peak
- Data: Dominick's scanner data (grocery store)

Paul Schrimpf

Gaynor and Vogt (2003) Results Merger simulation

Gowrisankaran, Nevo, and Town (2015)

Goolsbee and Petrin (2004)

Fan (2013)

Gandhi, Lu, and Shi (2014) Results

References

References

"Demand Estimation with Scanner Data: Revisiting the Loss-Leader Hypothesis" gandhi2014 2

- Difficulty: many product categories have hundreds of products, so many products have 0 observed share in some markets
- Solution: optimally shift observed shares away from 0

Data

Paul Schrimpf

Gaynor and Vogt (2003) Results Merger simulation

Gowrisankaran, Nevo, and Town (2015)

Goolsbee and Petrin (2004)

Fan (2013)

Gandhi, Lu, and Shi (2014) Results

References

References

- Dominick's scanner data (grocery store)
- Estimate separately for each product category
- Market = store \times week (all stores in Chicago, 1989-1997, gives \approx 400, 000 markets)
- Many products in each category (Table 4) 283 cheese, 537 soft drinks, 820 shampoos, 118 canned tuna, etc
- Sales concentrated among top 20% of products in each category (Table 4) approximately 80%
- High percent (20-80) of products with 0 sales (Table 4) 35% for canned tuna
- Distribution of sales approximately follows Zipf's law kth most popular product has sales proportional to 1/k^s for some s > 1

Paul Schrimpf

Gaynor and Vogt (2003) Results Merger simulation

Gowrisankaran, Nevo, and Town (2015)

Goolsbee and Petrin (2004)

Fan (2013)

Gandhi, Lu, and Shi (2014) Results

References

References

Model and zero share problem 1

- BLP setup (but empirical results are without random coefficients)
- Zero share problem, 0 = $\sigma(\delta)$ implies $\delta = -\infty$
 - Cannot just drop goods with 0 share because that creates selection (0 share implies low ξ)
- Laplace: when observe zero share, add 1 sale to each product

$$s_{jt}^L S = \frac{n_t s_{jt} + 1}{n_t + J_t + 1}$$

Optimal Bayes estimator under uniform prior

• Could use Laplace transformation here, but what is optimal for estimating shares might not be optimal for estimating demand

Paul Schrimpf

Gaynor and Vogt (2003) Results Merger simulation

Gowrisankaran Nevo, and Town (2015)

Goolsbee and Petrin (2004)

Fan (2013)

Gandhi, Lu, and Shi (2014) Results

References

References

Model and zero share problem 2

 Choose transformation π^{*}(s_t, n_t) that minimizes asymptotic (slowly growing n_t) MSE

$$\pi^*(\mathbf{s}_t, \mathbf{n}_t) = \sigma\left(\mathsf{E}\left[\sigma^{-1}(\pi_t)|\mathbf{s}_t, \mathbf{n}_t\right]\right)$$

- $F_{\pi_t|s_t,n_t}$ unknown, show that if assume Zipf's law, can estimate it
- Use estimated $F_{\pi_t|s_t,n_t}$ to estimate optimal transformation
- Estimate rest of model using BLP with transformed shares

Paul Schrimpf

Gaynor and Vogt (2003) Results Merger simulation

Gowrisankaran, Nevo, and Town (2015)

Goolsbee and Petrin (2004)

Fan (2013)

Gandhi, Lu, and Shi (2014) Results

References

References

Zero share correction reduces bias

Table: Table 6: Average Bias for a Repeated Simulation

Fraction of Zeros	16.48%	36.90%	49.19%	63.70%			
Using Empirical Share	.3833	.6589	.7965	.9424			
Using Laplace Rule	.2546	.5394	.6978	.8476			
Inverse Demand EB	0798	0924	0066	.0362			
Note: $T = 500$, $n = 10,000$, Number of Repetitions = 1,000.							

Paul Schrimpf

Gaynor and	
Vogt (2003)	
Results	
Merger simulation	

Gowrisankarar
Nevo, and
Town (2015)

Goolsbee and Petrin (2004)

Fan (2013)

Gandhi, Lu, and Shi (2014)

Results

References

References

				Average Own	Fraction of
		Price	Nesting	Price	Inelastic
		Coefficient	Parameter	Elasticity	Products
Logit	Emp. Shares	51	-	77	82.82 %
		(<.01)			
	Opt. Shares	-2.01	-	-3.01	.33 %
		(.01)			
Nested Logit	Emp. Shares	52	.51	-1.50	29.26 %
		(<.01)	(<.01)		
	Opt. Shares	98	.82	-7.56	<.01 %
		(<.01)	(<.01)		

۰.

m 11

Note: The instrumental variables for price include wholesale price, its first and second lags (for the same product/store). IV for the within group (nest) share is the number of products in the group.

Paul Schrimpf

Gaynor and
Vogt (2003)
Results
Merger simulation

Gowrisankarar Nevo, and Town (2015)

Goolsbee and Petrin (2004)

Fan (2013)

Gandhi, Lu, and Shi (2014)

Results

References

References

Table 8: Demand in Lent vs. Non-Lent								
		Price	Coefficient	Nesting Parameter		Average Own		
							Price Elasticity	
		Lent	Non-Lent	Lent	Non-Lent	Lent	Non-Lent	
Logit	Emp. Share	60	50	-		89	75	
		(.02)	(.01)					
	Opt. Share	-1.96	-2.01		-	-2.90	-3.01	
		(.03)	(.01)					
Nested Logit	Emp. Share	57	52	.43	.53	-1.39	-1.54	
		(.01)	(<.01)	(.01)	(<.01)			
	Opt. Share	-1.02	98	.76	.83	-5.81	-7.79	
		(.01)	(<.01)	(<.01)	(<.01)			

Note: The instrumental variables for price include wholesale price, its first and second lags (for the same product/store). IV for the within group (nest) share is the number of products in the group.

Paul Schrimpf

Gaynor and Vogt (2003) Results Merger simulation

Gowrisankarar Nevo, and Town (2015)

Goolsbee and Petrin (2004)

Fan (2013)

Gandhi, Lu, and Shi (2014) Results

References

References

Section 6

References

Paul Schrimpf

Gaynor and Vogt (2003) Results Merger simulation

Gowrisankaran Nevo, and Town (2015)

Goolsbee and Petrin (2004)

Fan (2013)

Gandhi, Lu, and Shi (2014) Results

References

References

Bundorf, M. Kate, Jonathan Levin, and Neale Mahoney. 2012. "Pricing and Welfare in Health Plan Choice." *The American Economic Review* 102 (7):3214–3248. URL http://www.jstor.org/stable/41724632.

Chevalier, Judith A., Anil K. Kashyap, and Peter E. Rossi. 2003. "Why Don't Prices Rise during Periods of Peak Demand? Evidence from Scanner Data." *The American Economic Review* 93 (1):pp. 15–37. URL

http://www.jstor.org/stable/3132160.

Fan, Ying. 2013. "Ownership Consolidation and Product Characteristics: A Study of the US Daily Newspaper Market." American Economic Review 103 (5):1598–1628. URL http://www.aeaweb.org/articles.php?doi=10. 1257/aer.103.5.1598.

Gandhi, Amit, Zhentong Lu, and Xiaoxia Shi. 2014. "Demand Estimation with Scanner Data: Revisiting the Loss-Leader Hypothesis." URL http://economics.uchicago.edu/ workshops/pdfs/Gandhi_Scanner_Demand_v2.pdf.

Paul Schrimpf

Gaynor and Vogt (2003) Results Merger simulation

Gowrisankaran Nevo, and Town (2015)

Goolsbee and Petrin (2004)

Fan (2013)

Gandhi, Lu, and Shi (2014) Results

References

References

Gaynor, Martin and William B. Vogt. 2003. "Competition among Hospitals." *The RAND Journal of Economics* 34 (4):764–785. URL

http://www.jstor.org/stable/1593787.

Goolsbee, A. and A. Petrin. 2004. "The consumer gains from direct broadcast satellites and the competition with cable TV." *Econometrica* 72 (2):351–381. URL http://www.jstor.org/stable/10.2307/3598906.

Goto, Ujo and Toshiaki Iizuka. 2016. "Cartel sustainability in retail markets: Evidence from a health service sector." International Journal of Industrial Organization 49:36 - 58. URL http://www.sciencedirect.com/science/ article/pii/S0167718716301849.

Gowrisankaran, Gautam, Aviv Nevo, and Robert Town. 2015. "Mergers When Prices Are Negotiated: Evidence from the Hospital Industry." American Economic Review 105 (1):172-203. URL http://www.aeaweb.org/articles? id=10.1257/aer.20130223.

Paul Schrimpf

Gaynor and Vogt (2003) Results Merger simulation

Gowrisankaran Nevo, and Town (2015)

Goolsbee and Petrin (2004)

Fan (2013)

Gandhi, Lu, and Shi (2014) Results

References

References

Nevo, Aviv and Konstantinos Hatzitaskos. 2006. "Why does the average price paid fall during high demand periods?" Tech. rep., CSIO working paper. URL http://hdl.handle.net/10419/38662.

Starc, Amanda. 2014. "Insurer pricing and consumer welfare: evidence from Medigap." *The RAND Journal of Economics* 45 (1):198–220. URL

http://dx.doi.org/10.1111/1756-2171.12048.